

2021 Regional Water Plan

Initially Prepared Plan

Prepared by: Lavaca Regional Water Planning Group with Assistance from AECOM

Prepared for: Texas Water Development Board

2021 Regional Water Plan Initially Prepared Plan

Prepared by: Lavaca Regional Water Planning Group with funding assistance from the Texas Water Development Board

With assistance from: AECOM Technical Services, Inc. TBPE Reg. No. F-3580

Document is for Interim Review and Not Intended for Construction, Bidding, or Permit Purposes.

Jaime J. Burke , PE

92863
Texas Serial No.

February 27, 2020
Date

March 2020 AECOM Project 60513046

Contents

Executive	e Summ	nary	ES-1
ES.1	Introduc	ction	ES-1
	Scope	of Work	ES-1
	ES.1.1	Task 1	ES-1
	ES.1.2	Task 2	ES-1
	ES.1.3	Task 3	ES-2
	ES.1.4	Task 4	ES-3
	ES.1.5	Task 5	ES-3
	ES.1.6	Task 6	ES-4
	ES.1.7	Task 7	ES-4
	ES.1.8	Task 8	ES-4
	ES.1.9	Task 9	ES-5
	ES.1.10	OTask 10	ES-5
	ES.1.11	1Task 11	ES-5
Chapter '	1 – Desc	cription of the Lavaca Regional Water Planning Area	1-1
	Chapte	r 1 – Description of the Lavaca Regional Water Planning Area	1-1
	1.1	Introduction and Background	1-1
	1.2	Description of the Lavaca Regional Water Planning Area	1-1
		1.2.1 Governmental Authorities in the Lavaca Planning Region	1-4
		1.2.2 General Economic Conditions	1-5
	1.3	Population and Municipal Water Use in the Lavaca Region	1-6
	1.4	Non-Municipal Water Use in the Lavaca Region	1-6
	1.5	Lavaca Regional Water Supply Sources and Providers	1-6
		1.5.1 Groundwater Sources	1-6
		1.5.2 Surface Water Sources	1-7
		1.5.3 Use by Source	1-7
		1.5.4 Major Water Providers	1-7
	1.6	Water Quality and Natural Resources	1-8
		1.6.1 Water Quality	1-8
		1.6.2 Recreational and Natural Resources	1-11
		1.6.3 Navigation	1-13
		1.6.4 Threats to Agricultural and Natural Resources	1-13
	1.7	Existing Water Plans	1-13

		1.7.1 Existing Regional and Local Water Management Plans	1-13
		1.7.2 Current Preparations for Drought	1-15
		1.7.3 Water Loss Audits	1-15
Chapter 2	2 – Pres	sentation of Population and Water Demands	2-1
	2.1	Introduction	2-1
		2.1.1 Scope of Work	2-1
		2.1.2 Background	2-1
		2.1.3 Description of the Region	2-1
	2.2	Methodology and Projections	2-2
		2.2.1 General	2-2
		2.2.2 Population Projections	2-3
		2.2.3 Municipal Water Demand Projections	2-3
		2.2.4 Irrigation Water Demand Projections	2-4
		2.2.5 Steam-Electric Water Demand Projections	2-5
		2.2.6 Manufacturing Water Demand Projections	2-5
		2.2.7 Mining Water Demand Projections	2-6
		2.2.8 Livestock Water Demand	2-6
	2.3	Wholesale Water Providers Projections	2-6
Chapte	r 3 – An	nalysis of Current Water Supplies	3-1
	3.1	Introduction	3-1
	3.2	Identification of Groundwater Sources	3-1
		3.2.1 Groundwater Aquifers	3-1
		3.2.2 Groundwater Use Overview	3-4
		3.2.3 Aquifer Conditions	3-4
		3.2.4 Groundwater Quality	3-6
		3.2.5 Water Level Monitoring Program for the LRWPA	3-6
		3.2.6 Subsidence Effects	3-6
		3.2.7 Public Supply Groundwater Usage	3-7
		3.2.8 Agricultural Groundwater Usage	3-7
	3.3	Groundwater Availability for the Central Gulf Coast Aquifer	3-7
	3.4	Identification of Surface Water Sources	3-9
		3.4.1 Available Surface Water	3-9
	3.5	Major Water Providers	3-11
	3.6	Inter-Regional Coordination	3-12
	3.7	Water Supply Allocations	3-12

Chapter 4 - Iden	tification of Water Needs4-1	
4.1	Identification of Water Needs4-1	
4.2	Socioeconomic Impact of Projected Water Shortages 4-1	
Chapter 5 - Eval	uation and Selection of Water Management Strategies5-1	
5.1	Selection and Application of Water Management Strategies 5-1	
	5.1.1 Potential Water Management Strategies	
	5.1.2 Recommended Strategies to Meet Irrigation Water Needs 5-3	
	5.1.2.1 Irrigation Conservation	
	5.1.3 Recommended Strategies for Major Water Providers 5-5	
	5.1.3.1 Lavaca Off-Channel Reservoir	
	5.1.3.2 LNRA Desalination5-7	
	5.1.4 Recommended Strategies for Municipal Utilities	
	5.1.4.1 Drought Management 5-10	
	5.1.4.2 Municipal Conservation5-10	
	5.1.4.3 Reuse	
	5.1.5 Alternative Strategies	
	5.1.5.1 Expand Use of Groundwater (Alternative Strategy)5-14	
	5.1.5.2 Lake Texana Dredging (Alternative Strategy)5-15	
	5.1.5.3 LNRA Aquifer Storage and Recovery (Alternative Strategy) 5-17	
	5.1.5.4 Irrigation Conservation – Alternate Wetting and Drying (Alternative Strategy)5-19	
	5.1.5.5 Drought Management for Manufacturing (Alternative Strategy) 5-20	
	5.1.6 Strategies Considered but Not Recommended 5-21	
	5.1.6.1 Drought Management for Irrigation (Considered) 5-21	
	5.1.6.2 Irrigation Conservation – Row-Irrigated Rice (Considered) 5-21	
	5.1.7 Strategy Allocation	
5.2	Water Conservation	
	5.2.1 Municipal Conservation	
	5.2.2 Conservation for Manufacturing	
	5.2.3 Irrigation Conservation	
	5.2.3.1 On-Farm Conservation	
	5.2.3.2 Tail Water Recovery5-24	
Chapter 6 – Impa	acts of the Regional Water Plan6-1	
6.1	Scope of Work 6-1	
6.2	Cumulative Impacts of the Regional Water Plan 6-1	
6.3	Impacts of Water Management Strategies on Agricultural Resources, Water Resource and Natural Resources	es,

	6.3.1 Agricultural	6-3
	6.3.2 Other Water Resources of the State including Groundwater and Sur Interrelationships	
	6.3.2.1 Colorado River Basin	6-4
	6.3.2.2 Colorado-Lavaca Coastal River Basin	6-4
	6.3.2.3 Lavaca River Basin	6-4
	6.3.2.4 Lavaca-Guadalupe Coastal Basin	6-4
	6.3.2.5 Guadalupe River Basin	6-4
	6.3.3 Natural Resources	6-5
	6.3.4 Third-party Social and Economic Impacts resulting from Voluntary Redistributions of Water	6-5
	6.3.4.1 Moving Water from Rural and Agricultural Areas	6-5
6.4	Impacts of Water Management Strategies on Key Parameters of Water Quality	6-6
	6.4.1 Water Quality Overview	6-6
	6.4.2 Conservation Impacts	6-7
	6.4.3 Impacts of the Recommended Management Strategies	6-8
6.5	Impacts of Water Management Strategies on Navigation	6-9
Chapter 7 – Dro	ught Response Information, Activities and Recommendations	7-1
7.1	Drought of Record in Regional Water Planning Area	7-2
	7.1.1 Current Drought of Record	7-2
	7.1.2 Potential New Drought of Record	7-3
7.2	Current Drought Preparations and Response	7-3
7.3	Existing and Potential Emergency Interconnects	7-11
7.4	Emergency Responses to Local Drought Conditions or Loss of Municipal Supply	7-11
7.5	Region-Specific Drought Response Recommendations and Model Drought Plans	
	7.5.1 Region – Specific Drought Response Recommendations	7-14
	7.5.2 Region – Specific Model Drought Contingency Plans	7-14
7.6	Drought Management Strategies	7-14
	7.6.1 Recommended Drought Management Strategies	7-14
	7.6.2 Alternative Drought Management Strategies	7-15
	7.6.2 Potential Drought Management Strategies Considered	7-15
7.7	Other Drought Recommendations	7-15
Chapter 8 – Unio	que Stream Segments, Reservoir Sites, and Legislative Recommendat	ions 8-1
8.1	Unique Stream Segments and Reservoir Sites	8-1
8.2	Proposed Regulatory Changes or Resolutions	8-3

	8.2.1 Environmental Issues	8-3
	8.2.2 Ongoing Regional Water Planning Activities	8-3
	8.2.3 Inter-Regional Coordination	8-3
	8.2.4 Conservation Policy	8-3
	8.2.5 Sustainable Yield of the Gulf Coast Aquifer	8-4
	8.2.6 Support of the Rule of Capture	8-4
	8.2.7 Groundwater Conservation Districts	8-4
	8.2.8 Establishment of Fees for Groundwater Export	8-4
	8.2.9 Limits for Groundwater Conservation Districts	8-4
Chapter 9 – Wa	ter Infrastructure Financing Recommendations	9-1
9.1	Introduction	9-1
9.2	Summary of Survey Responses	9-1
9.3	Policy Recommendations	9-1
Chapter 10 – Pu	ublic Participation	10-1
10.1	Introduction	10-1
10.2	Public Meetings	10-1
	10.2.1 March 21, 2016, Meeting	10-1
	10.2.2 May 24, 2016, Meeting	10-1
	10.2.3 December 12, 2016, Meeting	10-2
	10.2.4 February 23, 2017, Meeting	10-2
	10.2.5 October 2, 2017, Meeting	10-2
	10.2.6 April 16, 2018, Meeting	10-3
	10.2.7 June 18, 2018, Meeting	10-3
	10.2.8 August 6, 2018, Meeting	10-3
	10.2.9 January 28, 2019 Meeting	10-3
	10.2.10 May 20, 2019, Meeting	10-4
	10.2.11 August 19, 2019, Meeting	10-4
	10.2.12 December 16, 2019, Meeting	10-4
Chapter 11 – Im	nplementation and Comparison to the Previous Regional Water Plan	11-1
11.1	Implementation	11-1
11.2	Comparison to the Previous Regional Water Plan	11-1
	11.2.1 Population Projections	11-1
	11.2.2 Water Demand Projections	11-2
	11.2.3 Drought of Record and Hydrologic Assumptions	11-3
	11.2.4 Groundwater and Surface Water Availability and Water Supplies	11-3
	11.2.5 Water Needs	11-5

Table of Contents March 2020

	11.2.8 Assessment of Progress Towards "Regionalization"
List of Table	es
Table ES-1	Total Demands in Acre-Feet per Year
Table ES-2	Lavaca Region Groundwater Availability for Gulf Coast Aquifer
Table ES-3	Water Needs in Acre-Feet per Year
Table 1–1	Property Value by County
Table 1–2	Population and Water Usage by County for the Lavaca Regional Water Planning Area
Table 1–3	Stream Segment Uses and Water Quality Criteria in the Lavaca River Basin 2012
Table 1–4	Stream Segment Water Quality Concerns in the Lavaca Region
Table 1–5	Threatened, Endangered, and Rare Species Found in Jackson, Lavaca, and Wharton CountiesTable 2-1 Lavaca Region Water User Group Population by City, Collective Reporting Unit, Individual Retail Public Utility, and Rural County
Table 2-1	Lavaca Region Water User Group Population by Individual Water Utility or Rural County
Table 2-2	Water Demand by Water User Group, County, and Basin
Table 2-3	Gallons Per Capita Per Day (GPCD) Values
Table 2-4	Lavaca Region Water Demands on Lavaca-Navidad River Authority (Major Water Provider)
Table 2-5	Lavaca-Navidad River Authority Water Sales Agreements
Table 3-1	Modeled Available Groundwater (MAG) Volumes for the Gulf Coast Aquifer System in the Lavaca Region (ac-ft/yr)
Table 3-2	Lavaca Region Groundwater Availability for the Gulf Coast Aquifer System (ac-ft/yr)
Table 3-3	Permitted Diversions from LRWPA Rivers and Streams
Table 5-1	Estimated Unit Cost of On-Farm Conservation Improvements
Table 5-2	Drought Management Municipal Water Demand Reductions
Table 5-3	Municipal Conservation Target GPCDs
Table 5-4	Municipal Conservation Water Demand Reductions
Table 5-5	Municipal Conservation Costs
Table 5-6	LNRA Lake Texana Dredging Yield
Table 5-7	Potential Applicable Regulations for Dredging Activities
Table 5-8	Drought Management for Manufacturing Water Demand Reductions
Table 5-9	Conservation for Manufacturing Water Demand ReductionsTable 6-1 SB3 Environmental Flow Standard Frequency Attainment – No Strategies
Table 6-1	Lavaca Bay Freshwater Inflow Targets (acre-feet)

March 2020 Table of Contents

Table 6-2	SB3 Environmental Flow Standard Frequency Attainment
Table 7-1	Summary of Current Drought Triggers in the Lavaca Region
Table 7-2	Potential Emergency Supplies for Sole-Source Municipal WUGs under 7,500 in Population and all County-Other
Table 11-1	Population Change by County in Year 2070, from 2016 RWP to 2021 RWP
Table 11-2	Water Demand Change by Water Usage Category in Year 2070, from 2016 RWP to 2021 RWP
Table 11-3	Counties with Year 2070 Water Demand Increase, from 2016 RWP to 2021 RWP
Table 11-4	Counties with Year 2070 Water Demand Decrease, from 2016 RWP to 2021 RWP
Table 11-5	Region P Source Availability Comparison from 2016 RWP to 2021 RWP
Table 11-6	Region P Supply Comparison from 2016 RWP to 2021 RWP
List of Figur	res
Figure 1-1	General Location Map
Figure 1-2	Major Surface Water Sources

Figure 1-1	General Location Map
Figure 1-2	Major Surface Water Sources
Figure 3-1	Groundwater Aquifers
Figure 3-2	Static Water Levels in West Wharton County (Well 66-53-406)
Figure 3-3	Static Water Levels in West Wharton County near Louise, TX (Well 66-61-302)
Figure 7-1	Categories of Drought and Natural Climate Variability

List of Appendices

Appendix ES.A – TWDB DB22 Report – WUG Population Appendix ES.B – TWDB DB22 Report – WUG Demand Appendix ES.C – TWDB DB22 Report – WUG Category Summary Appendix ES.D - TWDB DB22 Report - Source Availability Appendix ES.E – TWDB DB22 Report – WUG Existing Water Supply Appendix ES.F - TWDB DB22 Report - WUG Needs/Surplus Appendix ES.G - TWDB DB22 Report - WUG Second-Tier Identified Water Needs Appendix ES.H – TWDB DB22 Report – WUG Second-Tier Identified Water Needs Summary Appendix ES.I – TWDB DB22 Report – Source Water Balance (Availability – WUG Supply) Appendix ES.J - TWDB DB22 Report - WUG Data Comparison to 2016 Regional Water Plan Appendix ES.K – TWDB DB22 Report – Source Data Comparison to 2016 Regional Water Plan Appendix ES.L - TWDB DB22 Report - WUG Unmet Needs (No Data for Region P) Appendix ES.M - TWDB DB22 Report - WUG Unmet Needs Summary Appendix ES.N – TWDB DB22 Report – Recommended WUG WMS Appendix ES.O - TWDB DB22 Report - Recommended Projects Associated with WMS

Table of Contents March 2020

- Appendix ES.P TWDB DB22 Report Alternative WUG WMS
- Appendix ES.Q TWDB DB22 Report Alternative Projects Associated with WMS
- Appendix ES.R TWDB DB22 Report WUG Management Supply Factor
- Appendix ES.S TWDB DB22 Report Recommended WMS Supply Associated with New or Amended Inter-Basin Transfer Permit (No Data for Region P)
- Appendix ES.T TWDB DB22 Report WUGs Recommended WMS Supply Associated with a New or Amended Inter-Basin Transfer Permit and Total Recommended Conservation WMS Supply (No Data for Region P)
- Appendix ES.U TWDB DB22 Report Sponsored Recommended Water WMS Supplies Unallocated to WUG
- Appendix ES.V TWDB DB22 Report WMS Strategy Supplies by WMS Type
- Appendix ES.W TWDB DB22 Report WMS Strategy Supplies by Source Type
- Appendix ES.X TWDB DB22 Report Major Water Provider Existing Sales and Transfers
- Appendix ES.Y TWDB DB22 Report Major Water Provider WMS Summary
- Appendix 1A Sources Used
- Appendix 1B TWDB DB17 Reports
- Appendix 2A Sample Correspondence to Water User Groups
- Appendix 2B Population and Water Demand Data Reports from Texas Water Development Board (DB22)
- Appendix 2C Region P Municipal Water Demand Savings Due to Plumbing Codes and Water-Efficient Appliances
- Appendix 3A TWDB DB22 Reports
- Appendix 3B Modified TCEQ Lavaca River WAM Run 3
- Appendix 3C TCEQ Active Water Rights
- Appendix 4A WUG Needs Report and MWP Needs Data
- Appendix 4B Socioeconomic Impacts of Projected Water Shortages for the Lavaca (Region P) Regional Water Planning Area Appendix 5A Consideration of Strategies that are Potentially Feasible for Meeting Water Needs
- Appendix 5A Consideration of Strategies that are Potentially Feasible for Meeting Water Needs
- Appendix 5B Potential Management Strategies and Impacts
- Appendix 5C Recommended and Alternative Water Management Strategy Summaries
- Appendix 5D Water Management Strategy Cost Tables
- Appendix 5E TWDB DB22 Reports
- Appendix 5F Strategy WAM Coding Appendix 6A -Water Rights
- Appendix 7A Region-Specific Model Drought Contingency Plans
- Appendix 8A TPWD Ecologically Significant Stream Segments
- Appendix 10A Meeting Minutes
- Appendix 11A Implementation Survey Template for 2011 RWP Projects
- Appendix 11B Comparison Tables and Graphs for Population and Demand Projections

Abbreviations Used in the Report

Ac-ft/yr Acre-feet per year

CBGCD Coastal Bend Groundwater Conservation District

DB22 TWDB Database containing RWP Data

DCP Drought Contingency Plan

DOR Drought of Record

GAM Groundwater Availability Model
GCD Groundwater Conservation District
GMA Groundwater Management Area

GPCD Gallons Per Capita Daily

LNRA Lavaca-Navidad River Authority
LRWPA Lavaca Regional Water Planning Area
LRWPG Lavaca Regional Water Planning Group

MAG Modeled Available Groundwater

MGD Million gallons per day
MWP Major Water Provider
nPF Not Potentially Feasible
PF Potentially Feasible

ROR Run of River

RWP Regional Water Plan

RWPG Regional Water Planning Group STWM South Texas Watermaster

SWP State Water Plan

TCEQ Texas Commission on Environmental Quality

TPWD Texas Parks and Wildlife Department
TWDB Texas Water Development Board

USS Unique Stream Segment
WAM Water Availability Model
WCP Water Conservation Plan
WMS Water Management Strategy

WUG Water User Group

WWP Wholesale Water Provider

Water Measurements

Acre-foot (AF) = 43,560 cubic feet = 325,851 gallons

Acre-foot per year (ac-ft/yr) = 325,851 gallons per year = 893 gallons per day

Gallons per minute (gpm) = 1,440 gallons per day = 1.6 ac-ft/yr

Million gallons per day (mgd) = 1,000,000 gallons per day = 1,120 ac-ft/yr

March 2020 Executive Summary

Contents

ES	- Executive Su	mmary	ES-1
	ES.1 Introduct	ion	ES-1
	Scope of Work		ES-1
	ES.1.1	Task 1 – Planning Area Description	. ES-1
	ES.1.2	Task 2A and 2B – Non-Population Related Water Demand Projections and Population and Population-Related Water Demand Projections	. ES-1
	ES.1.3	Task 3 – Water Supply Analyses	ES-2
	ES.1.4	Task 4 – Identification of Water Needs	ES-3
	ES.1.5	Task 5 – Evaluation and Recommendation of Water Management Strategies Water Conservation Recommendations	
	ES.1.6	Task 6 – Impacts of the Regional Water Plan	.ES-4
	ES.1.7	Task 7 – Drought Response Information, Activities, and Recommendations	.ES-4
	ES.1.8	Task 8 – Unique Stream Segments, Reservoir Sites, and Legislative Recommendations	. ES-4
	ES.1.9	Task 9 – Water Infrastructure Financing Recommendations	.ES-5
	ES.1.10	Task 10 – Public Participation	.ES-5
	ES.1.11	Task 11 – Implementation and Comparison to the Previous Regional Water	. ES-5

List of Tables

Table ES- 1 Total Water Demands in Acre-Feet per Year

Table ES- 2 Lavaca Region Groundwater Availability for Gulf Coast Aquifer

Table ES- 3 Water Needs in Acre-Feet per Year

List of Appendices

Appendix ES.A – TWDB DB22 Report – WUG Population

Appendix ES.B – TWDB DB22 Report – WUG Demand

Appendix ES.C – TWDB DB22 Report – WUG Category Summary

Appendix ES.D - TWDB DB22 Report - Source Availability

Appendix ES.E – TWDB DB22 Report – WUG Existing Water Supply

Appendix ES.F - TWDB DB22 Report - WUG Needs/Surplus

Appendix ES.G – TWDB DB22 Report – WUG Second-Tier Identified Water Needs

Appendix ES.H – TWDB DB22 Report – WUG Second-Tier Identified Water Needs Summary

Appendix ES.I – TWDB DB22 Report – Source Water Balance (Availability – WUG Supply)

Executive Summary March 2020

Appendix ES.J – TWDB DB22 Report – WUG Data Comparison to 2016 Regional Water Plan
Appendix ES.K – TWDB DB22 Report – Source Data Comparison to 2016 Regional Water Plan
Appendix ES.L – TWDB DB22 Report – WUG Unmet Needs (No Data for Region P)
Appendix ES.M – TWDB DB22 Report – WUG Unmet Needs Summary
Appendix ES.N – TWDB DB22 Report – Recommended WUG WMS
Appendix ES.O – TWDB DB22 Report – Recommended Projects Associated with WMS
Appendix ES.P – TWDB DB22 Report – Alternative WUG WMS
Appendix ES.Q – TWDB DB22 Report – Alternative Projects Associated with WMS
Appendix ES.R – TWDB DB22 Report – WUG Management Supply Factor
Appendix ES.S – TWDB DB22 Report – Recommended WMS Supply Associated with New or Amended Inter-Basin Transfer Permit (No Data for Region P)
Appendix ES.T – TWDB DB22 Report – WUGs Recommended WMS Supply Associated with a New or Amended Inter-Basin Transfer Permit and Total Recommended Conservation WMS Supply (No Data for Region P)
Appendix ES.U – TWDB DB22 Report – Sponsored Recommended Water WMS Supplies Unallocated to WUG
Appendix ES.V – TWDB DB22 Report – WMS Strategy Supplies by WMS Type
Appendix ES.W – TWDB DB22 Report – WMS Strategy Supplies by Source Type
Appendix ES.X – TWDB DB22 Report – Major Water Provider Existing Sales and Transfers
Annendix ES V - TWDR DR22 Report - Major Water Provider WMS Summary

March 2020 Executive Summary

ES - Executive Summary

ES.1 Introduction

The 2021 Regional Water Planning process continues the planning process set forth by the 2016 Regional Water Plans (RWPs) for the State of Texas. Beginning in 2016, the 2021 RWP process sought to combine a variety of expertise and interests to prepare updated plans for the 16 unique planning regions within the state. These "initially prepared" Regional Water Plans were to be submitted to the Texas Water Development Board (TWDB) by March 3, 2020. Following a comment period from state agencies and the general public, these plans will be finalized and adopted by October 14, 2020, to be combined into the 2022 State Water Plan. In order to provide consistency and facilitate the compilation of the different regional plans, the TWDB requires the incorporation of the data from the completed regional plans into a standardized online database, referred to as TWDB DB22.

Data provided by the TWDB in DB22 Reports are included in Appendix ES.A through ES.Y.

1.1 Scope of Work

The scope of work was prepared through a public process and is reflected in the tasks below:

ES.1.1 Task 1 – Planning Area Description

Task 1 was intended to collect data and to provide a physical, social, and economic description of the Lavaca Regional Water Planning Area (LRWPA). The LRWPA is located along the southeastern Texas coast and consists of all of Lavaca and Jackson Counties, as well as Precinct 3 of Wharton County and the majority of the City of El Campo, as shown in *Error! Reference source not found.* of **Chapter 1.** The eastern portion of Wharton County, including a very small portion of El Campo, is included in the Lower Colorado Regional Water Planning Area and planning efforts are coordinated as necessary between this and other neighboring regions.

ES.1.2 Task 2A and 2B – Non-Population Related Water Demand Projections and Population and Population-Related Water Demand Projections

Tasks 2A and 2B were intended to prepare population and water demand projections for the LRWPA. **Chapter 2** summarizes this data and discusses the procedures used to obtain revised population and demand projections. These revised projections were then submitted to TWDB in a formal request to be accepted for use in the State Water Plan. The total demands for each county or portion of a county are shown in **Table ES-1** below. Since agriculture constitutes the dominant water use in the basin, nearly 90 percent of the demands shown are related to irrigation. In addition, Chapter 2 lists the Major Water Providers in the region. The Major Water Provider in the LRWPA is the Lavaca-Navidad River Authority (LNRA). Further information regarding population and water demand projections is available in **Chapter 2**.

Executive Summary March 2020

Counties	2020	2030	2040	2050	2060	2070
Jackson	93,199	93,277	93,228	93,207	93,200	93,201
Lavaca	18,788	18,076	17,557	17,079	16,631	16,391
Wharton (Region P)	94,317	94,408	94,474	94,556	94,651	94,741
LRWPA Total	206,304	205,761	205,259	204,842	204,482	204,333

Table ES- 1 Total Water Demands in Acre-Feet per Year

ES.1.3 Task 3 – Water Supply Analyses

The availability of surface water and groundwater supplies were determined in Task 3. Surface water sources were determined to be limited under drought-of-record (DOR) conditions. The only surface water supply determined to be available during DOR was a supply of 79,000 acre-feet from Lake Texana, the only reservoir in the region; of this 79,000 acre-feet, 4,500 acre-feet is reserved for required releases for the bays and estuaries. This brings the available firm yield to 74,500 ac-ft for all decades in the planning horizon. This firm yield was determined using a modified version of the TCEQ Lavaca River WAM Run 3. A hydrologic request to use the modified model was submitted to and approved by the TWDB staff. Only a small portion of this supply is contracted through the Lavaca-Navidad River Authority (LNRA) to a customer within the region. The remaining supply is used to meet demands from outside of the region.

Groundwater supplies are responsible for meeting nearly all of the WUG demands within the LRWPA, although a portion of the Irrigation demands are met through surface water from the Colorado River in Region K through the Garwood Irrigation Division. Available groundwater for this planning cycle was based on the Desired Future Condition (DFC) of the Central Gulf Coast Aquifer, which was determined by the Groundwater Conservation Districts within Groundwater Management Area 15. The TWDB used a groundwater availability model (GAM) to convert the DFC into a volume of groundwater known as the Modeled Available Groundwater, or MAG. The MAG is considered the maximum amount of groundwater available for the regional water planning process from a particular aquifer.

	Table ES- 2 Lavaca Region	Groundwater	Availability	for Gulf	Coast Aquifer
--	---------------------------	-------------	--------------	----------	---------------

Country	Basin			Ye	ar		
County	Dasin	2020	2030	2040	2050	2060	2070
	Colorado-Lavaca	28,025	28,025	28,025	28,025	28,025	28,025
Jackson	Lavaca	49,582	49,582	49,582	49,582	49,582	49,582
Jackson	Lavaca-Guadalupe	12,875	12,875	12,875	12,875	12,875	12,875
	County Total		90,482	90,482	90,482	90,482	90,482
	Guadalupe	41	41	41	41	41	41
Lavaca	Lavaca	19,811	19,811	19,811	19,811	19,811	19,811
Lavaca	Lavaca-Guadalupe	401	401	401	401	401	401
	County Total	20,253	20,253	20,253	20,253	20,253	20,253
	Colorado	873	873	873	873	873	873
Wharton	Colorado-Lavaca	14,091	14,091	14,091	14,091	14,091	14,091
vviiaitori	Lavaca	62,992	62,992	62,992	62,992	62,992	62,992
	County Total	77,956	77,956	77,956	77,956	77,956	77,956

March 2020 Executive Summary

The Lavaca Regional Water Planning Group (LRWPG) was made aware in previous planning cycles that water demands in neighboring regions have caused a demand for water within the LRWPA sooner than initially expected. As such, the LRWPG understands that continued coordination with neighboring regional water planning groups is essential to maintaining consistency among the different regions and insuring that supplies and management strategies are properly developed. Based on the coordination that has occurred to date, implementation of water management strategies currently planned for Regions L and N are not expected to impact supplies in the LRWPA. For additional information regarding the determination of available water supplies, see **Chapter 3**.

ES.1.4 Task 4 – Identification of Water Needs

Task 4 was to determine the surpluses and shortages resulting from the division of available resources performed for Task 3. **Table ES-3** includes a summary of water shortages/needs for the LRWPA.

Table ES- 3 Water Needs in Acre-Feet per Year

County	WUG	Basin	2020	2030	2040	2050	2060	2070
WHARTON	IRRIGATION	LAVACA	-8,067	-8,067	-8,067	-8,067	-8,067	-8,067

The sum of projected shortages for the planning horizon is 8,067 ac-ft/year. While not identified in this Regional Water Plan, recent activity by existing and potential future customers of LNRA has shown that there may be new industrial demands in the region within the planning horizon. Currently, LNRA is looking at various water management strategy options to meet the potential needs. These strategies are discussed in **Chapter 5**. For additional information regarding the determination of water needs, see **Chapter 4**.

ES.1.5 Task 5 – Evaluation and Recommendation of Water Management Strategies and Water Conservation Recommendations

A process for the evaluation of feasibility of strategy implementation was developed in Task 5. Water management strategies were presented in a form so that all potential alternatives were identified and evaluated in accordance with local desires and needs. The costs of potential water management strategies (WMSs) were given the most consideration during the strategy selection process for meeting Irrigation needs because irrigators are sensitive to the increase in water prices and all shortages in the LRWPA were assumed to impact these users.

Several strategies considered for evaluation were for meeting Irrigation water needs. The remaining strategies were evaluated at the request of the project sponsor or were included to encourage conservation and drought management in the region. If a project sponsor wishes to be considered for certain types of State funding, the project that the funding is requested for must be included in the Regional and State Water Plan.

Potential WMSs that were recommended were those that met irrigation needs, have the potential to increase wholesale water provider supplies, and that could help municipalities use water more efficiently or reduce their water use during times of drought. Further discussion of recommended and alternative water management strategies is included in **Chapter 5**. In addition, a section was included in **Chapter 5** to discuss recommended conservation strategies. Water conservation plans are required for any entity seeking a TWDB loan, a new or amended surface water right, or current holders of existing surface water diversion permits under certain circumstances.

Executive Summary March 2020

ES.1.6 Task 6 – Impacts of the Regional Water Plan

The purpose of Task 6 was to determine the effects of water management strategies on water resources, agricultural resources, and natural resources. In addition, determination of social and economic impacts resulting from voluntary redistribution of water from rural regions to population centers was considered. This activity was part of a consensus-based planning effort to include local concerns in the statewide water supply planning process.

Overall, the recommended strategies keep the groundwater levels at a sustainable level and have no impact on spring flows. As a result of drought management, conservation, and reuse strategies being implemented, there is only a slight reduction in instream flows and bay and estuaries flows during times of drought. Frequency targets for meeting freshwater inflow goals to Lavaca Bay that were met using the unmodified TCEQ WAM Run 3 continue to be met when incorporating the water management strategies into the model. The LRWPG balanced meeting water needs with good stewardship of water, agricultural, and natural resources within the Region.

ES.1.7 Task 7 – Drought Response Information, Activities, and Recommendations

Task 7 presents all necessary requirements for drought management and contingency plans. Drought contingency plans are required of certain water right owners and applicants. These documents have become integral to providing a reliable supply of water throughout the State.

The LRWPG acknowledged that the Drought Contingency Plan for the LNRA is the best drought management tool for surface water supplies in the Lavaca Region. LNRA uses multiple triggers at each stage that include water surface elevations of the lake as well as a broad trigger that allows for any additional scenario that would cause the LNRA to notify its customers that a drought stage has been triggered.

Throughout the region, the Drought Contingency Plans for groundwater users are developed specifically to their use and location. Aquifer properties can vary across the region and it can be difficult to require the same triggers for all users of a particular groundwater source that covers several counties. The LRWPG acknowledges that the municipalities that use groundwater have the best knowledge to develop their Drought Contingency Plan triggers and responses.

ES.1.8 Task 8 – Unique Stream Segments, Reservoir Sites, and Legislative Recommendations

Task 8 presents the RWPG's unique stream segments, unique reservoir sites, and legislative, administrative, and regulatory recommendations.

No designation of unique stream segments or reservoir sites was recommended for the current round of regional water planning.

Several policy issues have been adopted by the LRWPG concerning regulatory and legislative issues. These recommendations are listed below and are described in detail in **Chapter 8**.

- Environmental Issues
- Ongoing RWPG Activities
- Inter-Regional Coordination
- Conservation Policy
- Sustainable Yield of the Gulf Coast Aquifer
- Support of the Rule of Capture

March 2020 Executive Summary

- Groundwater Conservation Districts
- Establishment of Fees for Groundwater Export
- Limits for Groundwater Conservation Districts

ES.1.9 Task 9 – Water Infrastructure Financing Recommendations

Task 9 includes information on how sponsors of the recommended water management strategies propose to finance projects. In SB 2 of the 77th Texas Legislature, the preparation of an infrastructure financing report was added to the regional planning process. **Chapter 9** of the Initially Prepared Plan introduces the following, while the Final Adopted Plan will address the following:

- The number of political subdivisions with identified needs that will be unable to finance their water infrastructure needs
- The amount of infrastructure costs in the RWPs that cannot be financed by the local political subdivisions
- Funding options, including state funding, that are proposed by the political subdivisions to finance water infrastructure costs that cannot be financed locally
- Additional roles the RWPG proposes for the state in financing the recommended water supply projects

ES.1.10 Task 10 – Public Participation

Public participation has been encouraged through the efforts of the Planning Group members as they take information back to the WUGs they represent. This was the most effective method of informing the public of the progress of the Plan. All of the members were active in meeting with various interest groups and making presentations. Public meetings were held throughout the planning cycle to review the population and water demand data; the supplies, surpluses, and shortages; and management strategies. Meetings of the Planning Group followed the Open Meetings Act requirements and were well attended by the members and non-voting members, but participation by the general public has been limited. Meeting events are summarized in **Chapter 10**.

ES.1.11 Task 11 – Implementation and Comparison to the Previous Regional Water Plan

Chapter 11 presents a discussion and survey of water management strategy projects that were recommended in the 2016 Regional Water Plan and have since been implemented, as well as providing a summary comparison of the 2021 Regional Water Plan to the 2016 Regional Water Plan with respect to population, demands, water availability and supplies, and water management strategies.

March 2020 Executive Summary

APPENDIX ES

ES.A - TWDB DB22 Report -	WUG Population
ES.B – TWDB DB22 Report –	WUG Demand
ES.C - TWDB DB22 Report -	WUG Category Summary
ES.D - TWDB DB22 Report -	Source Availability
ES.E – TWDB DB22 Report –	WUG Existing Water Supply
ES.F - TWDB DB22 Report -	WUG Needs/Surplus
ES.G - TWDB DB22 Report -	WUG Second-Tier Identified Water Needs
ES.H – TWDB DB22 Report –	WUG Second-Tier Identified Water Needs Summary
ES.I – TWDB DB22 Report –	Source Water Balance (Availability – WUG Supply)
ES.J – TWDB DB22 Report –	WUG Data Comparison to 2016 Regional Water Plan
ES.K – TWDB DB22 Report –	Source Data Comparison to 2016 Regional Water Plan
ES.L – TWDB DB22 Report –	WUG Unmet Needs
ES.M - TWDB DB22 Report -	- WUG Unmet Needs Summary
ES.N - TWDB DB22 Report -	Recommended WUG WMS
ES.O – TWDB DB22 Report –	Recommended Projects Associated with WMS
ES.P – TWDB DB22 Report –	Alternative WUG WMS
ES.Q – TWDB DB22 Report –	Alternative Projects Associated with WMS
ES.R - TWDB DB22 Report -	WUG Management Supply Factor
ES.S – TWDB DB22 Report –	Recommended WMS Supply Associated with New or Amended Inter-Basin Transfer Permit
ES.T – TWDB DB22 Report –	WUGs Recommended WMS Supply Associated with a New or Amended Inter-Basin Transfer Permit and Total Recommended Conservation WMS Supply
ES.U - TWDB DB22 Report -	Sponsored Recommended Water WMS Supplies Unallocated to WUG
ES.V - TWDB DB22 Report -	WMS Strategy Supplies by WMS Type
ES.W - TWDB DB22 Report -	- WMS Strategy Supplies by Source Type
ES.X - TWDB DB22 Report -	Maior Water Provider Existing Sales and Transfers

ES.Y – TWDB DB22 Report – Major Water Provider WMS Summary

TWDB: WUG Population Page 1 of 1 1/12/2020 10:01:10 AM

Region P Water User Group (WUG) Population

			WUG POPL	JLATION		
	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	2,236	2,315	2,348	2,375	2,392	2,403
COLORADO-LAVACA BASIN TOTAL	2,236	2,315	2,348	2,375	2,392	2,403
EDNA	5,747	5,949	6,034	6,105	6,150	6,177
GANADO	2,080	2,153	2,184	2,209	2,224	2,236
COUNTY-OTHER	4,064	4,206	4,267	4,317	4,349	4,368
LAVACA BASIN TOTAL	11,891	12,308	12,485	12,631	12,723	12,781
COUNTY-OTHER	479	496	503	509	512	515
LAVACA-GUADALUPE BASIN TOTAL	479	496	503	509	512	515
JACKSON COUNTY TOTAL	14,606	15,119	15,336	15,515	15,627	15,699
COUNTY-OTHER	33	33	33	33	33	33
GUADALUPE BASIN TOTAL	33	33	33	33	33	33
HALLETTSVILLE	2,820	2,820	2,820	2,820	2,820	2,820
MOULTON	874	874	874	874	874	874
SHINER	2,054	2,054	2,054	2,054	2,054	2,054
YOAKUM*	3,701	3,701	3,701	3,700	3,701	3,701
COUNTY-OTHER	9,776	9,776	9,776	9,777	9,776	9,776
LAVACA BASIN TOTAL	19,225	19,225	19,225	19,225	19,225	19,225
COUNTY-OTHER	5	5	5	5	5	5
LAVACA-GUADALUPE BASIN TOTAL	5	5	5	5	5	5
LAVACA COUNTY TOTAL	19,263	19,263	19,263	19,263	19,263	19,263
EL CAMPO*	1,658	1,735	1,797	1,851	1,900	1,944
COUNTY-OTHER*	175	197	214	230	244	256
COLORADO BASIN TOTAL	1,833	1,932	2,011	2,081	2,144	2,200
EL CAMPO*	10,148	10,621	11,000	11,327	11,631	11,899
COUNTY-OTHER*	750	844	919	984	1,044	1,098
COLORADO-LAVACA BASIN TOTAL	10,898	11,465	11,919	12,311	12,675	12,997
EL CAMPO*	290	304	314	324	332	340
WHARTON COUNTY WCID 1	1,076	1,146	1,201	1,248	1,293	1,331
COUNTY-OTHER*	2,523	2,839	3,093	3,311	3,512	3,692
LAVACA BASIN TOTAL	3,889	4,289	4,608	4,883	5,137	5,363
WHARTON COUNTY TOTAL	16,620	17,686	18,538	19,275	19,956	20,560
REGION P POPULATION TOTAL	50,489	52,068	53,137	54,053	54,846	55,522

 $^{^*}$ A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

TWDB: WUG Demand Page 1 of 2 1/12/2020 10:02:06 AM

Region P Water User Group (WUG) Demand

		W	UG DEMAND (AC	RE-FEET PER YEA	ıR)	
	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	234	232	227	225	226	227
MANUFACTURING	10,549	10,627	10,627	10,627	10,627	10,627
MINING	10	10	8	6	4	3
LIVESTOCK	415	415	415	415	415	415
IRRIGATION	22,372	22,372	22,372	22,372	22,372	22,372
COLORADO-LAVACA BASIN TOTAL	33,580	33,656	33,649	33,645	33,644	33,644
EDNA	878	880	869	869	874	877
GANADO	237	236	232	231	231	233
COUNTY-OTHER	426	421	411	409	410	411
MANUFACTURING	146	147	147	147	147	147
MINING	39	41	31	22	14	10
LIVESTOCK	1,289	1,289	1,289	1,289	1,289	1,289
IRRIGATION	45,136	45,136	45,136	45,136	45,136	45,136
LAVACA BASIN TOTAL	48,151	48,150	48,115	48,103	48,101	48,103
COUNTY-OTHER	50	50	49	48	48	49
MANUFACTURING	229	231	231	231	231	231
MINING	21	22	16	12	8	6
LIVESTOCK	178	178	178	178	178	178
IRRIGATION	10,990	10,990	10,990	10,990	10,990	10,990
LAVACA-GUADALUPE BASIN TOTAL	11,468	11,471	11,464	11,459	11,455	11,454
JACKSON COUNTY TOTAL	93,199	93,277	93,228	93,207	93,200	93,201
COUNTY-OTHER	4	4	4	4	4	4
LIVESTOCK	37	37	37	37	37	37
GUADALUPE BASIN TOTAL	41	41	41	41	41	41
HALLETTSVILLE	641	628	617	611	610	610
MOULTON	179	175	171	170	169	169
SHINER	485	475	467	463	462	462
YOAKUM*	658	641	627	619	618	618
COUNTY-OTHER	1,258	1,212	1,174	1,154	1,150	1,150
MANUFACTURING	563	625	625	625	625	625
MINING	2,544	1,860	1,416	977	537	297
LIVESTOCK	3,650	3,650	3,650	3,650	3,650	3,650
IRRIGATION	8,692	8,692	8,692	8,692	8,692	8,692
	•		·			
LAVACA BASIN TOTAL COUNTY-OTHER	18,670	17,958	17,439	16,961	16,513	16,273
LIVESTOCK	76	76		76	76	76
LAVACA-GUADALUPE BASIN TOTAL	70	70	76 77	70	76	76
LAVACA-GUADALUFE BASIN TOTAL LAVACA COUNTY TOTAL	18,788	18,076	17,557	17,079	16,631	16,391
EL CAMPO*	313	320	325	331	339	347
COUNTY-OTHER*	23	25	26	28	30	31
COLORADO BASIN TOTAL	336	345	351	359	369	378
EL CAMPO*	1,918	1,958	1,989	2,028	2,078	2,125
COUNTY-OTHER*	99	107	113	121	128	
MANUFACTURING*	34	34		34	34	134
			34			
MINING*	6	6	5	3	2	1 194
LIVESTOCK*	184	184	184	184	184	184
IRRIGATION*	4,858	4,858	4,858	4,858	4,858	4,858
COLORADO-LAVACA BASIN TOTAL	7,099	7,147	7,183	7,228	7,284	7,336

 $[\]hbox{^*A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.}$

TWDB: WUG Demand Page 2 of 2 1/12/2020 10:02:06 AM

Region P Water User Group (WUG) Demand

		W	UG DEMAND (AC	RE-FEET PER YEA	AR)	
	2020	2030	2040	2050	2060	2070
EL CAMPO*	55	56	57	58	59	61
WHARTON COUNTY WCID 1	184	190	195	200	207	213
COUNTY-OTHER*	333	359	381	406	429	452
MINING*	12	13	9	7	5	3
STEAM ELECTRIC POWER*	2,060	2,060	2,060	2,060	2,060	2,060
LIVESTOCK*	650	650	650	650	650	650
IRRIGATION*	83,588	83,588	83,588	83,588	83,588	83,588
LAVACA BASIN TOTAL	86,882	86,916	86,940	86,969	86,998	87,027
WHARTON COUNTY TOTAL	94,317	94,408	94,474	94,556	94,651	94,741
REGION P DEMAND TOTAL	206,304	205,761	205,259	204,842	204,482	204,333

 $[\]hbox{*A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.}\\$

Region P Water User Group (WUG) Category Summary

MUNICIPAL	2020	2030	2040	2050	2060	2070
POPULATION	30,448	31,357	31,979	32,512	32,979	33,376
DEMAND (acre-feet per year)	5,548	5,559	5,549	5,580	5,647	5,715
EXISTING SUPPLIES (acre-feet per year)	6,948	6,948	6,948	6,948	6,948	6,948
NEEDS (acre-feet per year)*	0	0	0	0	0	0
COUNTY-OTHER	2020	2030	2040	2050	2060	2070
POPULATION	20,041	20,711	21,158	21,541	21,867	22,146
DEMAND (acre-feet per year)	2,428	2,411	2,386	2,396	2,426	2,459
EXISTING SUPPLIES (acre-feet per year)	3,237	3,237	3,237	3,237	3,237	3,237
NEEDS (acre-feet per year)*	0	0	0	0	0	0
MANUFACTURING	2020	2030	2040	2050	2060	2070
DEMAND (acre-feet per year)	11,521	11,664	11,664	11,664	11,664	11,664
EXISTING SUPPLIES (acre-feet per year)	11,583	11,664	11,664	11,664	11,664	11,664
NEEDS (acre-feet per year)*	0	0	0	0	0	0
MINING	2020	2030	2040	2050	2060	2070
DEMAND (acre-feet per year)	2,632	1,952	1,485	1,027	570	320
EXISTING SUPPLIES (acre-feet per year)	2,636	2,636	2,636	2,636	2,636	2,636
NEEDS (acre-feet per year)*	0	0	0	0	0	0
STEAM ELECTRIC POWER	2020	2030	2040	2050	2060	2070
DEMAND (acre-feet per year)	2,060	2,060	2,060	2,060	2,060	2,060
EXISTING SUPPLIES (acre-feet per year)	2,060	2,060	2,060	2,060	2,060	2,060
NEEDS (acre-feet per year)*	0	0	0	0	0	0
LIVESTOCK	2020	2030	2040	2050	2060	2070
DEMAND (acre-feet per year)	6,479	6,479	6,479	6,479	6,479	6,479
EXISTING SUPPLIES (acre-feet per year)	6,479	6,479	6,479	6,479	6,479	6,479
NEEDS (acre-feet per year)*	0	0	0	0	0	0
IRRIGATION	2020	2030	2040	2050	2060	2070
DEMAND (acre-feet per year)	175,636	175,636	175,636	175,636	175,636	175,636
EXISTING SUPPLIES (acre-feet per year)	167,569	167,569	167,569	167,569	167,569	167,569
NEEDS (acre-feet per year)*	8,067	8,067	8,067	8,067	8,067	8,067

^{*}WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Category Summary report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the Needs totals.

TWDB: Source Availability Page 1 of 1 1/12/2020 10:03:00 AM

Region P Source Availability

GROUNDWATER SOURCE TYPE				SOURCE AVAILABILITY (ACRE-FEET PER YEAR)						
SOURCE NAME	COUNTY	BASIN	SALINITY *	2020	2030	2040	2050	2060	2070	
GULF COAST AQUIFER SYSTEM	JACKSON	COLORADO- LAVACA	FRESH	28,025	28,025	28,025	28,025	28,025	28,025	
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA	FRESH/ BRACKISH	49,582	49,582	49,582	49,582	49,582	49,582	
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA- GUADALUPE	FRESH	12,875	12,875	12,875	12,875	12,875	12,875	
GULF COAST AQUIFER SYSTEM	LAVACA	GUADALUPE	FRESH	41	41	41	41	41	41	
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA	FRESH	19,811	19,811	19,811	19,811	19,811	19,811	
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA- GUADALUPE	FRESH	401	401	401	401	401	401	
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO	FRESH	873	873	873	873	873	873	
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO- LAVACA	FRESH	14,091	14,091	14,091	14,091	14,091	14,091	
GULF COAST AQUIFER SYSTEM	WHARTON	LAVACA	FRESH	62,992	62,992	62,992	62,992	62,992	62,992	
	GROUNDWATERSOURCE AVAILABILITY TOTAL				188,691	188,691	188,691	188,691	188,691	

SURFACE WATER SOURCE TYPE					SOURCE AVAILABILITY (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY *	2020	2030	2040	2050	2060	2070	
TEXANA LAKE/RESERVOIR	RESERVOIR**	LAVACA	FRESH	74,500	74,500	74,500	74,500	74,500	74,500	
	SURFACE V	VATER SOURCE AVA	AILABILITY TOTAI	74,500	74,500	74,500	74,500	74,500	74,500	
	REG	ION P SOURCE AVA	ΜΙ ΔΒΙΙ ΙΤΥ ΤΟΤΔΙ	263 191	263 191	263 191	263 191	263 191	263 191	

^{*} Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

^{**} Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

Region P Water User Group (WUG) Existing Water Supply

	SOURCE			EXISTING	SUPPLY (A	CRE-FEET PE	R YEAR)	
WUG NAME	REGION	SOURCE DESCRIPTION	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	331	331	331	331	331	331
MANUFACTURING	Р	TEXANA LAKE/RESERVOIR	10,549	10,627	10,627	10,627	10,627	10,627
MINING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	10	10	10	10	10	10
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	415	415	415	415	415	415
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	22,372	22,372	22,372	22,372	22,372	22,372
		COLORADO-LAVACA BASIN TOTAL	33,677	33,755	33,755	33,755	33,755	33,755
EDNA	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	1,281	1,281	1,281	1,281	1,281	1,281
GANADO	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	340	340	340	340	340	340
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	602	602	602	602	602	602
MANUFACTURING	Р	TEXANA LAKE/RESERVOIR	146	147	147	147	147	147
MINING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	41	41	41	41	41	41
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	1,289	1,289	1,289	1,289	1,289	1,289
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	45,136	45,136	45,136	45,136	45,136	45,136
		LAVACA BASIN TOTAL	48,835	48,836	48,836	48,836	48,836	48,836
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	71	71	71	71	71	71
MANUFACTURING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	50	50	50	50	50	50
MANUFACTURING	Р	TEXANA LAKE/RESERVOIR	179	181	181	181	181	181
MINING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	22	22	22	22	22	22
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	178	178	178	178	178	178
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	10,990	10,990	10,990	10,990	10,990	10,990
		LAVACA-GUADALUPE BASIN TOTAL	11,490	11,492	11,492	11,492	11,492	11,492
		JACKSON COUNTY TOTAL	94,002	94,083	94,083	94,083	94,083	94,083
COUNTY-OTHER	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	4	4	4	4	4	4
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	37	37	37	37	37	37
		GUADALUPE BASIN TOTAL	41	41	41	41	41	41
HALLETTSVILLE	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	846	846	846	846	846	846
MOULTON	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	234	234	234	234	234	234
SHINER	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	641	641	641	641	641	641
YOAKUM*	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	860	860	860	860	860	860
COUNTY-OTHER	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	1,611	1,611	1,611	1,611	1,611	1,611
MANUFACTURING	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	625	625	625	625	625	625
MINING	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	2,544	2,544	2,544	2,544	2,544	2,544
LIVESTOCK	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	3,650	3,650	3,650	3,650	3,650	3,650
IRRIGATION	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	8,692	8,692	8,692	8,692	8,692	8,692
		LAVACA BASIN TOTAL	19,703	19,703	19,703	19,703	19,703	19,703
COUNTY-OTHER	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	1	1	1	1	1	1
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	76	76	76	76	76	76
		LAVACA-GUADALUPE BASIN TOTAL	77	77	77	77	77	77
		LAVACA COUNTY TOTAL	19,821	19,821	19,821	19,821	19,821	19,821
EL CAMPO*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	347	347	347	347	347	347
COUNTY-OTHER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	31	31	31	31	31	31
		COLORADO BASIN TOTAL	378	378	378	378	378	378
EL CAMPO*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	2,125	2,125	2,125	2,125	2,125	2,125
COUNTY-OTHER*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	134	134	134	134	134	134
MANUFACTURING*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	34	34	34	34	34	34
MINING*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	6	6	6	6	6	6
LIVESTOCK*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	184	184	184	184	184	184
IRRIGATION*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	4,858	4,858	4,858	4,858	4,858	4,858

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Existing Water Supply

	SOURCE			EXISTIN	G SUPPLY (A	CRE-FEET PE	R YEAR)	
WUG NAME	REGION	SOURCE DESCRIPTION	2020	2030	2040	2050	2060	2070
		COLORADO-LAVACA BASIN TOTAL	7,341	7,341	7,341	7,341	7,341	7,341
EL CAMPO*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	61	61	61	61	61	61
WHARTON COUNTY WCID 1	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	213	213	213	213	213	213
COUNTY-OTHER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	452	452	452	452	452	452
MINING*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	13	13	13	13	13	13
STEAM ELECTRIC POWER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	2,060	2,060	2,060	2,060	2,060	2,060
LIVESTOCK*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	650	650	650	650	650	650
IRRIGATION*	К	COLORADO RUN-OF-RIVER	16,000	16,000	16,000	16,000	16,000	16,000
IRRIGATION*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	59,521	59,521	59,521	59,521	59,521	59,521
	•	LAVACA BASIN TOTAL	78,970	78,970	78,970	78,970	78,970	78,970
		WHARTON COUNTY TOTAL	86,689	86,689	86,689	86,689	86,689	86,689
		REGION P EXISTING WATER SUPPLY TOTAL	200,512	200,593	200,593	200,593	200,593	200,593

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Needs/Surplus

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Needs/Surplus report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Surplus volumes are shown as positive values, and needs are shown as negative values in parentheses.

		(NEI	EDS)/SURPLUS (A	CRE-FEET PER YE	AR)	
	2020	2030	2040	2050	2060	2070
JACKSON COUNTY - COLORADO-LAVACA BASIN						
COUNTY-OTHER	97	99	104	106	105	104
MANUFACTURING	0	0	0	0	0	0
MINING	0	0	2	4	6	7
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
JACKSON COUNTY - LAVACA BASIN						
EDNA	403	401	412	412	407	404
GANADO	103	104	108	109	109	107
COUNTY-OTHER	176	181	191	193	192	191
MANUFACTURING	0	0	0	0	0	0
MINING	2	0	10	19	27	31
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
JACKSON COUNTY - LAVACA-GUADALUPE BASIN						
COUNTY-OTHER	21	21	22	23	23	22
MANUFACTURING	0	0	0	0	0	0
MINING	1	0	6	10	14	16
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
LAVACA COUNTY - GUADALUPE BASIN						
COUNTY-OTHER	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
LAVACA COUNTY - LAVACA BASIN						
HALLETTSVILLE	205	218	229	235	236	236
MOULTON	55	59	63	64	65	65
SHINER	156	166	174	178	179	179
YOAKUM*	202	219	233	241	242	242
COUNTY-OTHER	353	399	437	457	461	461
MANUFACTURING	62	0	0	0	0	0
MINING	0	684	1,128	1,567	2,007	2,247
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
LAVACA COUNTY - LAVACA-GUADALUPE BASIN						
COUNTY-OTHER	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
WHARTON COUNTY - COLORADO BASIN						
EL CAMPO*	34	27	22	16	8	0
COUNTY-OTHER*	8	6	5	3	1	0
WHARTON COUNTY - COLORADO-LAVACA BASIN						
EL CAMPO*	207	167	136	97	47	0
COUNTY-OTHER*	35	27	21	13	6	0
MANUFACTURING*	0	0	0	0	0	0
MINING*	0	0	1	3	4	5

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Needs/Surplus

LIVESTOCK*	0	0	0	0	0	0				
IRRIGATION*	0	0	0	0	0	0				
WHARTON COUNTY - LAVACA BASIN										
EL CAMPO*	6	5	4	3	2	0				
WHARTON COUNTY WCID 1	29	23	18	13	6	0				
COUNTY-OTHER*	119	93	71	46	23	0				
MINING*	1	0	4	6	8	10				
STEAM ELECTRIC POWER*	0	0	0	0	0	0				
LIVESTOCK*	0	0	0	0	0	0				
IRRIGATION*	(8,067)	(8,067)	(8,067)	(8,067)	(8,067)	(8,067)				

 $^{^*}$ A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Second-Tier Identified Water Needs

Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)								
	2020	2030	2040	2050	2060	2070			
JACKSON COUNTY - COLORADO-LAVACA BASIN									
COUNTY-OTHER	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0				
MINING	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
IRRIGATION	0	0	0	0	0				
JACKSON COUNTY - LAVACA BASIN									
EDNA	0	0	0	0	0				
GANADO	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0				
MINING	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
IRRIGATION	0	0	0	0	0				
JACKSON COUNTY - LAVACA-GUADALUPEBASIN	· · · ·	<u>.</u>							
COUNTY-OTHER	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0				
MINING	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
IRRIGATION	0	0	0	0	0				
LAVACA COUNTY - GUADALUPE BASIN					,				
COUNTY-OTHER	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
LAVACA COUNTY - LAVACA BASIN			1	1	<u> </u>				
HALLETTSVILLE	0	0	0	0	0				
MOULTON	0	0	0	0	0				
SHINER	0	0	0	0	0				
YOAKUM*	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0				
MINING	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
IRRIGATION	0	0	0	0	0				
LAVACA COUNTY - LAVACA-GUADALUPEBASIN			•		,				
COUNTY-OTHER	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0				
WHARTON COUNTY - COLORADO BASIN	<u> </u>		<u> </u>		<u> </u>				
EL CAMPO*	0	0	0	0	0				
COUNTY-OTHER*	0	0	0	0	0				
WHARTON COUNTY - COLORADO-LAVACA BASIN	,								
EL CAMPO*	0	0	0	0	0				
COUNTY-OTHER*	0	0	0	0	0				
MANUFACTURING*	0	0	0	0	0				
MINING*	0	0	0	0	0				
	0	0	0	0	0				

 $^{^*}$ A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Second-Tier Identified Water Needs

	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)								
	2020	2030	2040	2050	2060	2070			
WHARTON COUNTY - COLORADO-LAVACA BASIN									
IRRIGATION*	0	0	0	0	0	0			
WHARTON COUNTY - LAVACA BASIN									
EL CAMPO*	0	0	0	0	0	0			
WHARTON COUNTY WCID 1	0	0	0	0	0	0			
COUNTY-OTHER*	0	0	0	0	0	0			
MINING*	0	0	0	0	0	0			
STEAM ELECTRIC POWER*	0	0	0	0	0	0			
LIVESTOCK*	0	0	0	0	0	0			
IRRIGATION*	0	0	0	0	0	0			

 $^{^*}$ A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Second-Tier Identified Water Needs Summary

Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

	NEEDS (ACRE-FEET PER YEAR)							
WUG CATEGORY	2020	2030	2040	2050	2060	2070		
MUNICIPAL	0	0	0	0	0	0		
COUNTY-OTHER	0	0	0	0	0	0		
MANUFACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
STEAM ELECTRIC POWER	0	0	0	0	0	0		
LIVESTOCK	0	0	0	0	0	0		
IRRIGATION	0	0	0	0	0	0		

TWDB: Source Water Balance Page 1 of 1 1/12/2020 10:09:46 AM

Region P Source Water Balance (Availability - WUG Supply)

GROUNDWATERSOURCE TYPE	GROUNDWATER SOURCE TYPE					SOURCE WATER BALANCE (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY*	2020	2030	2040	2050	2060	2070		
GULF COAST AQUIFER SYSTEM	JACKSON	COLORADO- LAVACA	FRESH	4,897	4,897	4,897	4,897	4,897	4,897		
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA	FRESH/ BRACKISH	893	893	893	893	893	893		
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA- GUADALUPE	FRESH	1,564	1,564	1,564	1,564	1,564	1,564		
GULF COAST AQUIFER SYSTEM	LAVACA	GUADALUPE	FRESH	0	0	0	0	0	0		
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA	FRESH	108	108	108	108	108	108		
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA- GUADALUPE	FRESH	324	324	324	324	324	324		
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO	FRESH	842	842	842	842	842	842		
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO- LAVACA	FRESH	6,279	6,279	6,279	6,279	6,279	6,279		
GULF COAST AQUIFER SYSTEM	WHARTON	LAVACA	FRESH	83	83	83	83	83	83		
GROUNDWATERSOURCE WATER BALANCE TOTAL				14,990	14,990	14,990	14,990	14,990	14,990		

SURFACE WATER SOURCE TYPE					SOURCE WATER BALANCE (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY*	2020	2030	2040	2050	2060	2070	
TEXANA LAKE/RESERVOIR	RESERVOIR**	LAVACA	FRESH	0	0	0	0	0	0	
SURFACE WATER SOURCE WATER BALANCE TOTAL					0	0	0	0	0	

REGION P SOURCE WATER BALANCE TOTAL	14,990	14,990	14,990	14,990	14,990	14,990

^{*} Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

^{**} Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

Region P Water User Group (WUG) Data Comparison to 2016 Regional Water Plan (RWP)

	20	20 PLANNING D	ECADE	2070 PLANNING DECADE		
	2016 RWP	2021 RWP	DIFFERENCE (%)	2016 RWP	2021 RWP	DIFFERENCE (%)
JACKSON COUNTY COUNTY-OTHER WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	700	1,004	43.4%	700	1,004	43.4%
PROJECTED DEMAND TOTAL (acre-feet per year)	700	710	1.4%	675	687	1.8%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
JACKSON COUNTY IRRIGATION WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	59,801	78,498	31.3%	59,801	78,498	31.3%
PROJECTED DEMAND TOTAL (acre-feet per year)	59,801	78,498	31.3%	59,801	78,498	31.3%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
JACKSON COUNTY LIVESTOCK WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	1,034	1,882	82.0%	1,034	1,882	82.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	1,034	1,882	82.0%	1,034	1,882	82.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
JACKSON COUNTY MANUFACTURING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	1,005	10,924	987.0%	1,005	11,005	995.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	670	10,924	1530.4%	820	11,005	1242.1%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
JACKSON COUNTY MINING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	73	73	0.0%	73	73	0.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	70	70	0.0%	19	19	0.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
JACKSON COUNTY MUNICIPAL WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	1,157	1,621	40.1%	1,157	1,621	40.1%
PROJECTED DEMAND TOTAL (acre-feet per year)	1,155	1,115	-3.5%	1,153	1,110	-3.7%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
LAVACA COUNTY COUNTY-OTHER WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	1,241	1,616	30.2%	1,241	1,616	30.2%
PROJECTED DEMAND TOTAL (acre-feet per year)	1,241	1,263	1.8%	1,130	1,155	2.2%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
LAVACA COUNTY IRRIGATION WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	8,357	8,692	4.0%	8,357	8,692	4.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	8,357	8,692	4.0%	8,357	8,692	4.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
LAVACA COUNTY LIVESTOCK WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	2,043	3,763	84.2%	2,043	3,763	84.2%
PROJECTED DEMAND TOTAL (acre-feet per year)	2,043	3,763	84.2%	2,043	3,763	84.2%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
LAVACA COUNTY MANUFACTURING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	705	625	-11.3%	705	625	-11.3%
PROJECTED DEMAND TOTAL (acre-feet per year)	490	563	14.9%	705	625	-11.3%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
LAVACA COUNTY MINING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	2,544	2,544	0.0%	2,544	2,544	0.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	2,544	2,544	0.0%	297	297	0.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%

^{*}WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2016 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the Needs totals.

Region P Water User Group (WUG) Data Comparison to 2016 Regional Water Plan (RWP)

	202	20 PLANNING D	ECADE	20	70 PLANNING D	ECADE
	2016 RWP	2021 RWP	DIFFERENCE (%)	2016 RWP	2021 RWP	DIFFERENCE (%)
LAVACA COUNTY MUNICIPAL WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	2,029	2,581	27.2%	2,029	2,581	27.2%
PROJECTED DEMAND TOTAL (acre-feet per year)	2,029	1,963	-3.3%	1,832	1,859	1.5%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY COUNTY-OTHER WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	767	617	-19.6%	767	617	-19.6%
PROJECTED DEMAND TOTAL (acre-feet per year)	588	455	-22.6%	767	617	-19.6%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY IRRIGATION WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	99,403	80,379	-19.1%	99,403	80,379	-19.1%
PROJECTED DEMAND TOTAL (acre-feet per year)	149,688	88,446	-40.9%	149,688	88,446	-40.9%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	50,285	8,067	-84.0%	50,285	8,067	-84.0%
WHARTON COUNTY LIVESTOCK WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	789	834	5.7%	789	834	5.7%
PROJECTED DEMAND TOTAL (acre-feet per year)	789	834	5.7%	789	834	5.7%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY MANUFACTURING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	133	34	-74.4%	133	34	-74.4%
PROJECTED DEMAND TOTAL (acre-feet per year)	95	34	-64.2%	133	34	-74.4%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY MINING WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	19	19	0.0%	19	19	0.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	18	18	0.0%	4	4	0.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY MUNICIPAL WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	2,531	2,746	8.5%	2,531	2,746	8.5%
PROJECTED DEMAND TOTAL (acre-feet per year)	2,284	2,470	8.1%	2,531	2,746	8.5%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
WHARTON COUNTY STEAM ELECTRIC POWER WUG TYPE						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	0	2,060	100.0%	0	2,060	100.0%
PROJECTED DEMAND TOTAL (acre-feet per year)	0	2,060	100.0%	0	2,060	100.0%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	0	0	0.0%	0	0	0.0%
REGION P						
EXISTING WUG SUPPLY TOTAL (acre-feet per year)	184,331	200,512	8.8%	184,331	200,593	8.8%
PROJECTED DEMAND TOTAL (acre-feet per year)	233,596	206,304	-11.7%	231,778	204,333	-11.8%
WATER SUPPLY NEEDS TOTAL (acre-feet per year)*	50,285	8,067	-84.0%	50,285	8,067	-84.0%

^{*}WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2016 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the Needs totals.

Region P Source Data Comparison to 2016 Regional Water Plan (RWP)

	202	20 PLANNING D	ECADE	20	70 PLANNING D	ECADE
	2016 RWP	2021 RWP	DIFFERENCE (%)	2016 RWP	2021 RWP	DIFFERENCE (%)
JACKSON COUNTY						
GROUNDWATERAVAILABILITY TOTAL (acre-feet per year)	76,386	90,482	18.5%	76,386	90,482	18.5%
LAVACA COUNTY						
GROUNDWATERAVAILABILITY TOTAL (acre-feet per year)	20,385	20,253	-0.6%	20,373	20,253	-0.6%
RESERVOIR* COUNTY						
SURFACE WATER AVAILABILITY TOTAL (acre-feet per year)	74,500	74,500	0.0%	74,500	74,500	0.0%
WHARTON COUNTY						
GROUNDWATERAVAILABILITY TOTAL (acre-feet per year)	99,753	77,956	-21.9%	99,753	77,956	-21.9%
REGION P						
GROUNDWATERAVAILABILITY TOTAL (acre-feet per year)	196,524	188,691	-4.0%	196,512	188,691	-4.0%
SURFACE WATER AVAILABILITY TOTAL (acre-feet per year)	74,500	74,500	0.0%	74,500	74,500	0.0%

^{*} Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

TWDB: WUG Unmet Needs Page 1 of 1 1/12/2020 10:11:56 AM

Region P Water User Group (WUG) Unmet Needs

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. In order to display only unmet needs associated with the WUG split, these surplus volumes are updated to a zero and the unmet needs water volumes are shown as absolute values.

WUG UNMET NEEDS (ACRE-FEET PER YEAR)						
2020	2030	2040	2050	2060	2070	

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Unmet Needs Summary

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs Summary report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG category level, calculated surpluses are updated to zero so that only the WUGs with unmet needs in the decade are included with the Needs totals. Unmet needs water volumes are shown as absolute values.

	NEEDS (ACRE-FEET PER YEAR)									
WUG CATEGORY	2020	2030	2040	2050	2060	2070				
MUNICIPAL	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
STEAM ELECTRIC POWER	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				

Region P Recommended Water User Group (WUG) Water Management Strategies (WMS)

								ANAGEMEI ACRE-FEET		GY SUPPLY)	,
WUG ENTITY NAME	WMS SPONSOR REGION	WMS NAME	SOURCE NAME	UNIT COST 2020	UNIT COST 2070	2020	2030	2040	2050	2060	2070
EDNA	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	33	33	33	33	33	33
EL CAMPO*	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	86	88	89	91	93	95
EL CAMPO*	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1812	0	117	190	283	301	308
GANADO	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	47	47	47	47	47	47
HALLETTSVILLE	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	48	47	46	46	46	46
HALLETTSVILLE	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1911	0	31	50	73	98	124
IRRIGATION, WHARTON*	Р	IRRIGATION CONSERVATION	DEMAND REDUCTION	\$200	\$200	15,229	15,229	15,229	15,229	15,229	15,229
MANUFACTURING, JACKSON	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	1,101	1,101	1,101	1,101	1,101
MANUFACTURING, LAVACA	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	63	63	63	63	63
MANUFACTURING, WHARTON*	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	3	3	3	3	3
MOULTON	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	36	35	34	34	34	34
MOULTON	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$2031	0	9	13	20	26	32
SHINER	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	49	48	47	46	46	46
SHINER	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1404	0	24	38	56	75	94
WHARTON COUNTY WCID 1	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	28	29	29	30	31	32
WHARTON COUNTY WCID 1	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$6000	0	10	7	4	4	4
YOAKUM*	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	16	16	16	15	15	15
YOAKUM*	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$4681	0	32	47	39	38	38
	REGION P RECOMMENDED WMS SUPPLY TOTAL 15,572 16,962 17,082 17,213 17,283 17,3										

*A single asterisk next to a WUG's name denotes that the WUG is split by two	or more planning regions.

Region P Recommended Projects Associated with Water Management Strategies

SPONSOR NAME	SPONSOR IS WWP?	ONLINE DECADE	PROJECT NAME	PROJECT DESCRIPTION	CAPITAL COST
EL CAMPO	YES	2030	MUNICIPAL CONSERVATION - EL CAMPO	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$3,671,000
EL CAMPO	YES	2030	REUSE	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; WATER TREATMENT PLANT EXPANSION	\$7,881,000
HALLETTSVILLE	YES	2030	MUNICIPAL CONSERVATION - HALLETTSVILLE	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$1,502,000
IRRIGATION, WHARTON	NO	2020	IRRIGATION CONSERVATION - ON FARM	CONSERVATION - AGRICULTURAL	\$7,239,000
IRRIGATION, WHARTON	NO	2020	IRRIGATION CONSERVATION - TAILWATER RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; RESERVOIR CONSTRUCTION	\$19,092,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2030	LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; DIVERSION AND CONTROL STRUCTURE; PUMP STATION	\$41,781,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; RESERVOIR CONSTRUCTION	\$289,977,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LNRA DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW SURFACE WATER INTAKE; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$49,900,000
MOULTON	NO	2030	MUNICIPAL CONSERVATION - MOULTON	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$410,000
SHINER	YES	2030	MUNICIPAL CONSERVATION - SHINER	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$810,000
WHARTON COUNTY WCID 1	NO	2030	MUNICIPAL CONSERVATION - WHARTON COUNTY WCID 1	CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); DATA GATHERING/MONITORING TECHNOLOGY; WATER LOSS CONTROL	\$409,000
YOAKUM	YES	2020	MUNICIPAL CONSERVATION - YOAKUM	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$85,984

REGION P RECOMMENDED CAPITAL COST TOTAL	\$422.757.984
REGION I RECOMMENDED CALLIAE COST TOTAL	7722,131,307

Region P Alternative Water User Group (WUG) Water Management Strategies (WMS)

						,		NAGEMEN ACRE-FEET		GY SUPPLY)	
WUG ENTITY NAME	WMS SPONSOR REGION	WMS NAME	SOURCE NAME	UNIT COST 2020	UNIT COST 2070	2020	2030	2040	2050	2060	2070
IRRIGATION, WHARTON*	Р	EXPAND USE OF GROUNDWATER	P GULF COAST AQUIFER SYSTEM WHARTON COUNTY	\$66	\$66	8,067	8,067	8,067	8,067	8,067	8,067
IRRIGATION, WHARTON*	Р	IRRIGATION CONSERVATION	DEMAND REDUCTION	\$0	\$0	633	633	633	633	633	633
MANUFACTURING, JACKSON	Р	DROUGHT MANAGEMENT - MANUFACTURING	DEMAND REDUCTION	\$4570	\$4570	1,096	1,096	1,096	1,096	1,096	1,096
REGION P ALTERNATIVE WMS SUPPLY TOTAL					9,796	9,796	9,796	9,796	9,796	9,796	

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Alternative Projects Associated with Water Management Strategies

SPONSOR NAME	SPONSOR IS WWP?	ONLINE DECADE	PROJECT NAME	PROJECT DESCRIPTION	CAPITAL COST
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	AQUIFER STORAGE AND RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; DIVERSION AND CONTROL STRUCTURE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$260,074,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LAKE TEXANA DREDGING	DREDGE TO RECOVER CAPACITY	\$51,377,000

REGION P ALTERNATIVE CAPITAL COST TOTAL	\$311,451,000
---	---------------

Region P Water User Group (WUG) Management Supply Factor

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. To calculate the Management Supply Factor for each WUG as a whole, <u>not split</u> by region-county-basin, the combined total of existing and future supply is divided by the total projected demand. If a WUG is split by more than one planning region, the whole WUG's management supply factor will show up in each of its planning region's management supply factor reports.

		W	UG MANAGEMEI	NT SUPPLY FACTO	OR	
WUG NAME	2020	2030	2040	2050	2060	2070
COUNTY-OTHER, JACKSON	1.4	1.4	1.5	1.5	1.5	1.5
COUNTY-OTHER, LAVACA	1.3	1.3	1.4	1.4	1.4	1.4
COUNTY-OTHER, WHARTON*	1.3	1.3	1.3	1.2	1.2	1.1
EDNA	1.5	1.5	1.5	1.5	1.5	1.5
EL CAMPO*	1.1	1.2	1.2	1.2	1.2	1.2
GANADO	1.6	1.6	1.7	1.7	1.7	1.7
HALLETTSVILLE	1.4	1.5	1.5	1.6	1.6	1.7
IRRIGATION, JACKSON	1.0	1.0	1.0	1.0	1.0	1.0
IRRIGATION, LAVACA	1.0	1.0	1.0	1.0	1.0	1.0
IRRIGATION, WHARTON*	1.0	1.0	1.0	1.0	1.1	1.1
LIVESTOCK, JACKSON	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, LAVACA	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, WHARTON*	1.1	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, JACKSON	1.0	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, LAVACA	1.1	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, WHARTON*	1.1	1.0	1.0	1.0	1.0	1.0
MINING, JACKSON	1.0	1.0	1.3	1.8	2.8	3.8
MINING, LAVACA	1.0	1.4	1.8	2.6	4.7	8.6
MINING, WHARTON*	1.0	1.0	1.3	1.8	2.8	4.4
MOULTON	1.5	1.6	1.6	1.7	1.7	1.8
SHINER	1.4	1.5	1.6	1.6	1.6	1.7
STEAM ELECTRIC POWER, WHARTON*	1.0	1.0	1.0	1.0	1.0	1.0
WHARTON COUNTY WCID 1	1.3	1.3	1.3	1.2	1.2	1.2
YOAKUM*	1.3	1.3	1.3	1.3	1.3	1.4

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

Region P Recommended Water Managment Strategy (WMS) Supply Associated with a New or Amended Inter-Basin Transfer (IBT) Permit

IBT WMS supply is the portion of the total WMS benefitting WUGs that will require a new or amended IBT permit that is not considered exempt under the Texas Water Code § 11.085.

					IBT WMS SUPPLY (ACRE-FEET PER YEAR)			
WMS NAME	SOURCE BASIN	RECIPIENT WUG BASIN	2020	2030	2040	2050	2060	2070

Region P Water User Groups (WUGs) Recommended Water Managment Strategy (WMS) Supply Associated with a New or Amended Inter-Basin Transfer (IBT) Permit and Total Recommended Conservation WMS Supply

IBT WMS supply is the portion of the total WMS benefitting the WUG basin split listed that will require a new or amended IBT permit that is not considered exempt under the Texas Water Code § 11.085. Total conservation supply represents all conservation WMS volumes recommended within the WUG's region-basin geographic split.

BENEFITTING			WMS SUPPLY (ACRE-FEET PER YEAR)				
WUG NAME BASIN	WMS SOURCE ORIGIN BASIN WMS NAME	2020	2030	2040	2050	2060	2070

Region P Sponsored Recommended Water Management Strategy (WMS) Supplies Unallocated* to Water User Groups (WUG)

			UNALLOCATED STRATEGY SUPPLY (ACRE-FEET PER YEAR)						
WMS NAME	WMS SPONSOR	SOURCE NAME	2020	2030	2040	2050	2060	2070	
DIRECT REUSE - EL CAMPO	EL CAMPO	P DIRECT NON-POTABLE REUSE	0	560	560	560	560	560	
LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	LAVACA NAVIDAD RIVER AUTHORITY	P LAVACA RIVER OFF- CHANNEL LAKE/RESERVOIR	0	23,500	0	0	0	0	
LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	LAVACA NAVIDAD RIVER AUTHORITY	P LAVACA RIVER OFF- CHANNEL LAKE/RESERVOIR	0	0	30,000	30,000	30,000	30,000	
LNRA DESALINATION - BRACKISH GROUNDWATER	LAVACA NAVIDAD RIVER AUTHORITY	P GULF COAST AQUIFER SYSTEM JACKSON COUNTY	0	0	4,800	4,800	4,800	4,800	
LNRA DESALINATION - BRACKISH SURFACE WATER	LAVACA NAVIDAD RIVER AUTHORITY	P NAVIDAD RIVER TIDAL FRESH/BRACKISH	0	0	1,652	1,652	1,652	1,652	
TOTAL UNALLOCATED STRATEGY SUPPLIES				24,060	37,012	37,012	37,012	37,012	

^{*} Strategy supplies created through the WMS that have not been assigned to a WUG will be allocated to the entity responsible for the water through an 'unassigned water volumes' entity. Only strategy supplies associated with an 'unassigned water volume' entity are shown in this report, and may not represent all strategy supplies associated with the listed WMS.

Region P Water User Group (WUG) Strategy Supplies by Water Management Strategy (WMS) Type

	STRATEGY SUPPLY (ACRE-FEET PER YEAR)								
WMS TYPE *	2020	2030	2040	2050	2060	2070			
DROUGHT MANAGEMENT	343	343	341	342	345	348			
GROUNDWATER WELLS & OTHER	0	0	0	0	0	0			
IRRIGATION CONSERVATION	15,229	15,229	15,229	15,229	15,229	15,229			
MUNICIPAL CONSERVATION	0	223	345	475	542	600			
OTHER CONSERVATION	0	1,167	1,167	1,167	1,167	1,167			
NEW MAJOR RESERVOIR	0	0	0	0	0	0			
SEAWATER DESALINATION	0	0	0	0	0	0			
AQUIFER STORAGE & RECOVERY	0	0	0	0	0	0			
CONJUNCTIVE USE	0	0	0	0	0	0			
OTHER STRATEGIES	0	0	0	0	0	0			
INDIRECT REUSE	0	0	0	0	0	0			
OTHER DIRECT REUSE	0	0	0	0	0	0			
DIRECT POTABLE REUSE	0	0	0	0	0	0			
OTHER SURFACE WATER	0	0	0	0	0	0			
GROUNDWATER DESALINATION	0	0	0	0	0	0			
TOTAL STRATEGY SUPPLIES	15,572	16,962	17,082	17,213	17,283	17,344			

^{*} WMS type descriptions can be found on the interactive state water plan website at http://texasstatewaterplan.org/ using the 'View data for' drop-down menus to navigate to a specific WMS Type page. The data used to create each WMS type value is available in Appendix 3 of the Guidelines for Regional Water Planning Data Deliverable (Exhibit D) document at http://www.twdb.texas.gov/waterplanning/rwp/planningdocu/2021/doc/current_docs/contract_docs/ExhibitD.pdf.

Region P Water User Group (WUG) Recommended Water Management Strategy (WMS) Supplies by Source Type

		STRA	TEGY SUPPLY (A	CRE-FEET PER Y	rear)	
SOURCE SUBTYPE*	2020	2030	2040	2050	2060	2070
AQUIFER STORAGE & RECOVERY	0	0	0	0	0	0
GROUNDWATER	0	0	0	0	0	0
GROUNDWATER TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
DIRECT NON-POTABLE REUSE	0	0	0	0	0	0
DIRECT POTABLE REUSE	0	0	0	0	0	0
INDIRECT NON-POTABLE REUSE	0	0	0	0	0	0
INDIRECT POTABLE REUSE	0	0	0	0	0	0
REUSE TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
ATMOSPHERE	0	0	0	0	0	0
GULF OF MEXICO	0	0	0	0	0	0
LIVESTOCK LOCAL SUPPLY	0	0	0	0	0	0
OTHER LOCAL SUPPLY	0	0	0	0	0	0
RAINWATER HARVESTING	0	0	0	0	0	0
RESERVOIR	0	0	0	0	0	0
RESERVOIR SYSTEM	0	0	0	0	0	0
RUN-OF-RIVER	0	0	0	0	0	0
SURFACE WATERTOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
REGION P TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0

^{*} A full list of source subtype definitions can be found in section 3 of the Guidelines for Regional Water Planning Data Deliverable (Exhibit D) document at http://www.twdb.texas.gov/waterplanning/rwp/planningdocu/2021/doc/current_docs/contract_docs/ExhibitD.pdf.

Region P Major Water Provider (MWP) Existing Sales and Transfers

Major Water Providers are entities of particular significance to a region's water supply as defined by the Regional Water Planning Group (RWPG), and may be a Water User Group (WUG) entity, Wholesale Water Provider (WWP) entity, or both (WUG/WWP).

Retail denotes WUG projected demands and existing water supplies used by the WUG. Wholesale denotes a WWP or WUG/WWP selling water to another entity.

LAVACA NAVIDAD RIVER AUTHORITY- WWP	WATER VOLUMES (ACRE-FEET PER YEAR)						
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070	
PROJECTED WHOLESALE CONTRACT DEMANDS	73,850	73,850	73,850	73,850	73,850	73,850	
TOTAL PROJECTED WHOLESALE CONTRACT AND RETAIL DEMANDS	73,850	73,850	73,850	73,850	73,850	73,850	
SURFACE WATER SALES TO WHOLESALE CUSTOMERS	73,850	73,850	73,850	73,850	73,850	73,850	
TOTAL WHOLESALE AND RETAIL SALES TO CUSTOMERS	73,850	73,850	73,850	73,850	73,850	73,850	

Region P Major Water Provider (MWP) Water Management Strategy (WMS) Summary

MWPs are entities of significance to a region's water supply as defined by the Regional Water Planning Group (RWPG) and may be a Water User Group (WUG) entity, Wholesale Water Provider (WWP) entity, or both (WUG/WWP). 'MWP Retail Customers' denotes recommended WMS supply used by the WUG. 'Transfers Related to Wholesale Customers' denotes a WWP or WUG/WWP selling or transferring recommended WMS supply to another entity. Supply associated with the MWP's wholesale transfers will only display if it is listed as the main seller in the State Water Planning database, even if multiple sellers are involved with the sale or water to WUGs. Unallocated water volumes represent MWP recommended WMS supply not currently allocated to a customer of the MWP.'Total MWP Related WMS Supply' will display if the MWP's WMS is related to more than one WMS supply type (retail, wholesale, and/or unallocated). Associated WMS Projects are listed when the MWP is one of the project's sponsors. Report contains draft data and is subject to change.

LAVACA NAVIDAD RIVER AUTHORITY LAVACA OFF-CHANNEL RESERVOIR							
		WATER VOLUMES (ACRE-FEET PER YEAR)					
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070	
RELATED UNALLOCATED WMS WATER VOLUMES	0	0 23,500 30,000 30,000 30,000 30,0				30,000	
WMS RELATED MWP SPONSORED PROJECTS			PROJECT DE	SCRIPTION			
LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	1	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; DIVERSION AND CONTROL STRUCTURE; PUMP STATION					
LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	CONVEYANCE/	TRANSMISSION	PIPELINE; PUMP	STATION; RESE	RVOIR CONSTRU	ICTION	

LAVACA NAVIDAD RIVER AUTHORITY LNRA DESALINATION							
		WATER VOLUMES (ACRE-FEET PER YEAR)					
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070	
RELATED UNALLOCATED WMS WATER VOLUMES	0 0 6,452 6,452 6,452					6,452	
WMS RELATED MWP SPONSORED PROJECTS			PROJECT DE	SCRIPTION			
LNRA DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW SURFACE WATEF INTAKE; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK						

Contents

Chapter	1 – Des	scription of the Lavaca Regional Water Planning Area	1-1
1.1	Introd	uction and Background	1-1
1.2	Descr	iption of the Lavaca Regional Water Planning Area	1-1
	1.2.1	Governmental Authorities in the Lavaca Planning Region	1-4
	1.2.2	General Economic Conditions	1-5
1.3	Popula	ation and Municipal Water Use in the Lavaca Region	1-6
1.4	Non-M	Nunicipal Water Use in the Lavaca Region	1-6
1.5	Lavac	a Regional Water Supply Sources and Providers	1-6
	1.5.1	Groundwater Sources	1-6
	1.5.2	Surface Water Sources	1-7
	1.5.3	Use by Source	1-7
	1.5.4	Major Water Providers	1-7
1.6	Water	Quality and Natural Resources	1-8
	1.6.1	Water Quality	1-8
	1.6.2	Recreational and Natural Resources	1-11
	1.6.3	Navigation	1-13
	1.6.4	Threats to Agricultural and Natural Resources	1-13
1.7	Existir	ng Water Plans	1-13
	1.7.1	Existing Regional and Local Water Management Plans	1-13
	1.7.2	Current Preparations for Drought	1-15
	1.7.3	Water Loss Audits	1-15

List of Tables

- Table 1–1 Property Value by County
- Table 1–2 Population and Water Usage by County for the Lavaca Regional Water Planning Area
- Table 1–3 Stream Segment Uses and Water Quality Criteria in the Lavaca River Basin 2012
- Table 1-4 Stream Segment Water Quality Concerns in the Lavaca Region
- Table 1–5 Threatened, Endangered, and Rare Species Found in Jackson, Lavaca, and Wharton Counties

List of Figures

Figure 1-1 General Location Map

Figure 1-2 Major Surface Water Sources

List of Appendices

Appendix 1A – Sources Used

Chapter 1— Description of the Lavaca Regional Water Planning Area

1.1 Introduction and Background

Sections 16.051 and 16.055 of the Texas Water Code direct the Executive Administrator of the Texas Water Development Board (TWDB) to prepare and maintain a comprehensive State Water Plan as a flexible guide for the development and management of all water resources in Texas in order to ensure that sufficient supplies of water will be available at a reasonable cost to further the State's economic growth. Section 16.056 requires the TWDB to amend the plan as needed in response to increased knowledge and changing conditions.

In February 1998, the TWDB adopted rules establishing 16 regional water planning areas and designated the initial members of the regional water planning groups representing 11 interests. Each Regional Water Planning Group (RWPG) has the option to add interest group categories and members. With technical and financial assistance from the TWDB, and in accordance with planning guidelines it set forth, the RWPGs prepared a consensus-based Regional Water Plan (RWP) for 2001. The TWDB assembled the Regional Water Plans into a new 2002 State Water Plan (SWP). Subsequent cycles of planning have resulted in water plan updates at 5-year intervals, including 2006, 2011, and 2016 Regional Water Plans (compiled by TWDB into the 2007, 2012, and 2017 State Water Plans, respectively). The fifth cycle of regional water planning has produced an "initially prepared" Regional Water Plan that was required to be submitted to the TWDB by March 3, 2020 and is to be finalized and adopted and submitted to the TWDB in October of 2020. Subsequently, by January of 2022, the TWDB will prepare the 2022 State Water Plan which will incorporate the adopted Regional Water Plans.

This chapter summarizes the results of Task 1 of the current planning cycle and describes the Lavaca Regional Water Planning Area.

1.2 Description of the Lavaca Regional Water Planning Area

The Lavaca Regional Water Planning Area is located along the southeastern Texas coast and consists of all of Lavaca and Jackson Counties, as well as Precinct 3 of Wharton County and the majority of the City of El Campo, as shown in *Figure 1-1*. The eastern portion of Wharton County, including a very small portion of El Campo, is included in the Lower Colorado Regional Water Planning Area and planning efforts are coordinated as necessary between this and other neighboring regions.

The Lavaca Region is bounded by Victoria and DeWitt Counties to the southeast, Gonzales and Fayette Counties to the northwest, Colorado County to the northeast, Matagorda County and the remainder of Wharton County to the east, and Calhoun County, Lavaca Bay, and Carancahua Bay to the south. The Lavaca Region is located in the Lavaca, Lavaca-Guadalupe Coastal, and the Colorado-Lavaca Coastal River Basins.

The Lavaca Region is located in the Gulf Coastal Plains region of Texas and contains both Gulf Coast prairies and marshes and Blackland Prairies. The Gulf Coast prairies and marshes encompass the majority of the region. These habitats contain marsh and saltwater grasses in tidal areas and bluestems and tall grasses inland. Hardwoods grow in limited amounts in the bottomlands. The upland soils consist of clays, clay loams, sandy loams, and black soils. The natural grasses make the region ideal for cattle grazing, and the productive soils and typically flat topography support the farming of rice, sorghums, corn, cotton, wheat, and hay.

Lavaca Regional Water Planning Group General Location Map Legend Fayette Counties Gonzales / / MOULTON ✓ Streams Regions Colorado Lavaca Lower Colorado HALLETTSVILLE SHINER South Central Texas OAKUM-Wharton ELCAMPO Brushy Dewitt GANADO Jackson Lake **Texana** Victoria Matagorda Calhoun 20 Miles

Figure 1-1 General Location Map

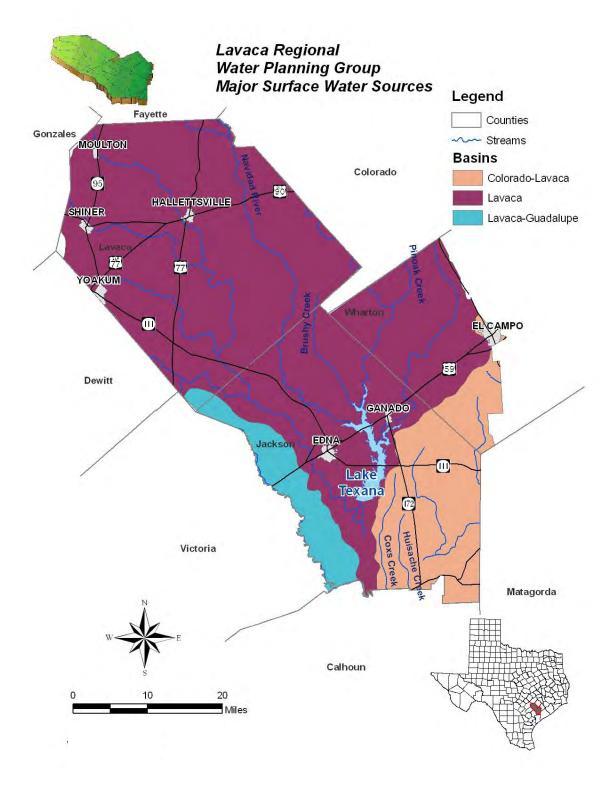


Figure 1-2
Major Surface Water Sources

The Blackland Prairies are mainly shrink-swell clays that form cracks in dry weather. A large amount of timber grows along the streams, and even though it was originally grasslands, most of the area has been cultivated with productive grasses. The land is used as croplands and grasslands and the grasslands are used as pastures. According to the USGS ecoregion description, the major crops supported by the Blackland Prairies are cotton, grain sorghum, corn, wheat, pecans, soybeans, and hay.

The counties have hot and humid summers which are occasionally relieved by thunderstorms. The average growing seasons are 311 days in Jackson County, 270 days in Lavaca County, and 291 days in Wharton County. The mean rainfall is approximately 43.6 inches annually for the region. Average temperatures for the region vary, from lows of 41 degrees F in January to highs of 94 degrees F in July. Jackson County encompasses 857 square miles (mi²); Lavaca County encompasses 970 mi²; and Wharton County encompasses 1,094.4 mi², of which approximately half is in the planning area.¹

1.2.1 Governmental Authorities in the Lavaca Planning Region

The primary governmental entities in the region are municipal and county governments. Jackson and Lavaca Counties are included on the Golden Crescent Regional Planning Commission, which was established in 1968. This commission also includes the counties of Calhoun, DeWitt, Goliad, Gonzales, and Victoria, which are located in the South Central Texas Regional Water Planning Area (Region L). Member cities within Jackson and Lavaca Counties include Edna, Ganado, Hallettsville, Moulton, Shiner, and Yoakum. The Commission assists in developing opportunities for intergovernmental coordination to increase economic opportunities for the region as well as other regional concerns such as environmental resources and transportation. The Jackson County Soil and Water Conservation District, Jackson County Navigation District, Jackson County Hospital District, Lavaca County Soil and Water Conservation District, and the Lavaca-Navidad River Authority (LNRA) are additional special districts created under Texas Law. The Jackson Countywide Drainage District and the Jackson County Rural Fire and Emergency Services Districts are also included in the Lavaca Region.

Wharton County is a member of the Houston-Galveston Area Council of Governments (H-GAC), which was established in 1966 and includes 12 other counties located to the east and north of Wharton County. H-GAC is focused on economic development for the region, as well as on environmental issues such as evaporation and air quality, solid waste, geographic information systems and demographic information, and social and nutrition services to senior citizens. El Campo is also a representing city of the H-GAC.

In addition to these entities, there are several regulatory authorities that influence long-range water planning in the Lavaca Region. The South Texas Watermaster (STWM) monitors the regional water uses in seven south central Texas river basins, including the Lavaca River Basin. The STWM plays a role in allocation of water supplies by user in the event of drought conditions. Field investigations also play a role in locating illegal diversions of water. With regard to the state, TWDB, Texas Commission on Environmental Quality (TCEQ), and Texas Parks & Wildlife Department (TPWD) are responsible for gathering information on water supply and quality. LNRA manages the surface water supplies in Jackson County. There are also soil and water conservation districts in the region.

The Lavaca Region also lies within Groundwater Management Area 15. Groundwater Management Areas (GMA) were created to provide for organized planning of groundwater resources and are responsible for working with Groundwater Conservation Districts (GCDs) within the GMA boundaries to define "Desired Future Conditions" for the GMA. Desired Future Conditions are the quantified condition of groundwater resources within a groundwater management area that would occur at one or more specific future times. Groundwater Conservation Districts (GCD) meet collectively within the Groundwater Management Area and determine Desired Future Conditions (DFCs), which then are utilized to model groundwater resources and establish appropriate levels of groundwater use to

¹ Source: Texas State Historical Association. *Texas Almanac* 2018-2019.

realize the DFCs. The Lavaca Region includes the Coastal Bend Groundwater Conservation District (GCD) in Wharton County, and the Texana GCD in Jackson County. The primary focus of these districts is to preserve and protect groundwater supplies in their respective counties for future generations, and the districts are responsible for working with GMA 15. The original management plans for the Coastal Bend and Texana districts were certified by TWDB on September 28, 2004. Subsequently, an updated groundwater management plan for the Coastal Bend GCD was approved by TWDB on November 4, 2009, on November 10, 2014, and then again on April 10, 2018. An updated groundwater management plan for the Texana GCD was approved by TWDB on June 13, 2016. The Lavaca County GCD was created by the 80th Texas Legislature on May 25, 2007 but due to lack of local support, it is not currently in existence.

1.2.2 General Economic Conditions

The regional planning area is described below on a county-by-county basis. Source information is provided in *Appendix 1A*.

The economy of Jackson County includes petroleum production, plastics manufacturing, and agribusiness. The major agricultural interests in Jackson County include corn, cotton, rice, grain sorghum, and beef cattle. These agricultural products had a market value of approximately \$101.8 million in 2018.

The economy of Lavaca County includes varied manufacturing, oil and gas production, agribusiness, and tourism. The major agricultural interests in Lavaca County include cattle, forage, poultry, rice, corn, and grain sorghum, with a market value of approximately \$61.9 million in 2018.

The economy of Wharton County includes oil, agribusiness, hunting leases, varied manufacturing, and government services. The major agricultural interests in Wharton County include rice, grain sorghum, cotton, milo, corn, eggs, turf grass, beef cattle, aquaculture, and soybeans; with a market value of approximately \$373.6 million for the entire county in 2018 (the county is only partially contained in the Lavaca Region).

According the U.S. Census Bureau, the 2013-2017 median household income was approximately \$58,504 for Jackson County, \$51,708 for Lavaca County, and \$50,145 for all of Wharton County. The Texas median household income was approximately \$57,051 during the same period. Unemployment in 2017 was approximately 4.0 percent in Jackson County, 3.6 percent in Lavaca County, and 4.5 percent in Wharton County.

The value of properties within the Lavaca Region has increased substantially in recent years, as shown in *Table 1–1*.

2005 Property Value County 2013 Property Value 2018 Property Value Jackson \$1,416,741,983 \$2,459,407,498 \$2,839,195,180 Lavaca \$2,335,053,537 \$4,209,668,856 \$4,596,168,697 Wharton \$2,651,668,721 \$4,532,539,863 \$4,628,596,988

Table 1–1 Property Value by County

Source: *Texas Almanac* 2008-2009, 2013-2014, 2018-2019 (http://www.texasalmanac.com/topics/counties/home)

1.3 Population and Municipal Water Use in the Lavaca Region

A summary of population and water usage by county is shown in *Table 1–2*. The Lavaca Regional Water Planning Area (LRWPA) 2010 Census population was 49,031. Cities in the LRWPA include Hallettsville, Moulton, Shiner, and Yoakum in Lavaca County; Edna and Ganado in Jackson County; and El Campo in Wharton County, the largest city in the region.

Table 1–2 Population and Water Usage by County for the Lavaca Regional Water Planning Area

			County	
		Jackson	Lavaca	Wharton
Year 2010 Census Population		14,075	19,263	15,693
De le	Municipal	1,713	2,601	2,277
Reported ge (acre– t)	Manufacturing	470	459	5
	Mining	49	66	62
2010 R r Usago feet)	Steam Electric	0	0	0
Year 2 Water	Livestock	1,220	2,091	532
×κ	Irrigation	43,758	5,965	67,371

1.4 Non-Municipal Water Use in the Lavaca Region

According to the 2016 Water Use Survey Estimate, irrigated agriculture constitutes over 93 percent of the total water use in Jackson, Lavaca, and Wharton counties. Municipal water accounts for three percent, the second largest share of use categories in the region. Livestock use in the Lavaca Region accounted for less than two percent of 2016 use and manufacturing, steam-electric, and mining water use make up approximately 1 percent of 2016 use.

In previous plans, the prevalence of water conservation practices in the area was also studied using aerial photography and GIS. It was found that approximately 14,232 of the rice acres in the LRWPA were found to be improved with conservation practices. The majority of this acreage, over 13,000 acres, was identified in Wharton County.

1.5 Lavaca Regional Water Supply Sources and Providers

The available water supply within the region includes both groundwater and surface water. Groundwater is provided nearly exclusively by the Gulf Coast Aquifer. Primary surface water sources are the Navidad and Lavaca Rivers and Lake Texana. Additional information regarding water sources and providers in the Lavaca Region is discussed at length in *Chapter 3* of this plan.

1.5.1 Groundwater Sources

The majority of water currently used in the Lavaca Region is groundwater. In 2011, at the start of the most recent drought, the Lavaca Region pumped approximately 216,000 acre-feet of groundwater to supply domestic, agricultural, municipal, and industrial uses. This trend of primarily relying on groundwater is expected to continue in the Lavaca Region due to relatively low demand for municipal water and the rural nature of the area, which makes large scale distribution systems economically infeasible. Agricultural needs will also likely continue to be met through groundwater resources due to the lack of availability and affordability of large surface water supplies.

The Gulf Coast Aquifer is the only major aquifer in the Lavaca Region and is the predominant supply source, serving approximately 86 percent of the total supply. The Jackson Group is a minor aquifer and is located in the northwestern corner of Lavaca County, to the northwest of the Town of Moulton. There are no minor aquifers located in Jackson or Wharton Counties.

For more information about groundwater resources and availability in the Lavaca Region, see *Section* 3.3 of this plan.

1.5.2 Surface Water Sources

The major river basins that are located (at least partially) within the Lavaca Regional Water Planning Area include the Lavaca, Colorado-Lavaca, and the Lavaca-Guadalupe Basins. Approximately 90 percent of the geographic area of Lavaca Region is located within the Lavaca River Basin, which has a total drainage area of 2,318 square miles and includes the Lavaca and Navidad Rivers. Smaller tributaries in the Lavaca Region include the Arenosa, Big Rocky, Brushy, Chicolete, Clarks, Coxs, East Carancahua, Huisache, Mixon, Pinoak, Rocky, Sandy, West Carancahua, and East and West Mustang Creeks. *Figure 1-2* shows the location of the Lavaca Basin and adjacent basins. There are no major springs in the Lavaca Region.

1.5.3 Use by Source

Average groundwater pumpage for 2010 to 2012 (recent drought years) was 63,295 ac-ft/yr in Jackson County, 12,988 ac-ft/yr in Lavaca County, and 153,570 ac-ft/yr for the entirety of Wharton County (including the portion of Wharton County located in Region K). Water levels have remained relatively stable in the region, with some declines and some increases over the last several decades. Additional discussion of aguifer conditions is provided in *Section 3.2.3* of this plan.

The only reservoir in the Lavaca Regional Water Planning Area is Lake Texana. The available firm yield of Lake Texana is 74,500 ac-ft. The Lavaca and Navidad Rivers also supply some run-of-river water to the Lavaca Region, primarily for irrigation purposes. See *Chapter 3* for more information on current water supplies.

1.5.4 Major Water Providers

A major water provider is, by definition used for regional water planning purposes, a Water User Group or a Wholesale Water Provider of particular significance to the region's water supply as determined by the Regional Water Planning Group. This may include public or private entities that provide water for any water use category. As determined by the LRWPG, the Lavaca-Navidad River Authority (LNRA) is considered the only major water provider located in the Lavaca Region for this planning cycle.

The LNRA operates and maintains Lake Texana. Water transfers outside the Lavaca Region account for most of the water sales from Lake Texana. Of the 74,500 ac-ft of available firm yield and 12,000 ac-ft available on an interruptible basis, 75,068 ac-ft are dedicated for water uses outside the region. The following amounts are contracted annually:

- 178 ac-ft firm yield to the City of Point Comfort in Calhoun County
- 31,440 ac-ft firm yield to the City of Corpus Christi and surrounding areas
- 12,000 ac-ft interruptible water to the City of Corpus Christi and surrounding areas
- 41,200 ac-ft firm yield to Formosa Plastics in Calhoun County and Jackson County
- 594 ac-ft firm yield to the Calhoun County Navigation District in Calhoun County
- 56 ac-ft firm yield held in reserve

A total of 1,032 ac-ft firm yield is committed to Inteplast (manufacturing), located in Jackson County, within the LRWPA. An additional 10,400 ac-ft of firm yield has been committed to Formosa Plastics for use in Jackson County, within the LRWPA.

1.6 Water Quality and Natural Resources

A table of state, local, and regional planning information reports and data compiled for the 2021 Lavaca Regional Water Plan study is attached in *Appendix 1A*. A summary of some of this information pertaining to water planning follows.

1.6.1 Water Quality

The Lavaca River Basin contains 277 stream miles. It is primarily drained by two major rivers: the Lavaca River and the Navidad River. The Lavaca River originates in the southern portion of Fayette County and outfalls into Lavaca Bay while the Navidad River also originates in Fayette County but flows into Lake Texana, and from there continues to its confluence with the Lavaca River, approximately 8 miles downstream of the Palmetto Bend Dam.

The Lavaca River Basin is divided into 5 classified stream segments numbered 1601 through 1605. Approximately 60 percent of the Lavaca River Basin is drained by the Navidad River and its tributaries, while the Lavaca River and its tributaries drain the remaining 40 percent. Stream segment uses and water quality considerations for the Lavaca River basin are shown in *Table 1–3*.

The primary agricultural issue in the Lavaca Region is the availability of sufficient quantities of irrigation water for rice farming under drought of record conditions. Natural resources, on the other hand, are impacted from both water quantity and water quality issues. Stream segments in the Lavaca River Basin with water quality concerns are listed in *Table 1–4*. The stream segments that have water quality concerns within the Lavaca Region, as designated in the 2016 Draft Texas Water Quality Inventory conducted by TCEQ are discussed below.

The primary water quality issue for all of the surface water stream segments and the major groundwater aquifers in the LRWPA is the increasing potential for water contamination due to nonpoint source pollution. Nonpoint source pollution is precipitation runoff that, as it flows over the land, picks up various pollutants that adhere to plants, soils, and man-made objects and eventually infiltrates into the groundwater table or flows into a surface water stream. Another nonpoint source of pollution is the accidental spill of toxic chemicals near streams or over recharge zones that can send a concentrated pulse of contaminated water through stream segments and/or aquifers. Public water supply groundwater wells that currently only use chlorination water treatment, and domestic groundwater wells that may not treat the water before consumption, are especially vulnerable to nonpoint source pollution, as are the habitats of threatened and endangered species that live in and near seeps and certain stream segments. Nonpoint sources of pollution are difficult to control. There has been increased awareness of this issue which has sparked additional research and interest in the initiation of nonpoint source pollution abatement programs.

Two surface water quality indicators are dissolved oxygen (DO) and the associated biochemical oxygen demand (BOD). DO is a measure of the amount of oxygen that is available in the water for metabolism by microbes, fish, and other aquatic organisms. BOD is a measure of the amount of organic material, containing carbon and/or nitrogen, in a body of water that is available as a food source to microbial and other aquatic organisms that require the consumption of DO from the water to metabolize the organic material. The historical basin-wide concentrations of DO are indicative of relatively unpolluted waters. The primary manmade sources of BOD in bodies of water are the discharge of municipal and industrial waste, as well as nonpoint source pollution from urban and agricultural runoff. Data from the 2016 Draft Texas Water Quality Inventory conducted by TCEQ indicates that there are portions of one classified stream segments with a concern for DO, based on the State Stream Standards Criteria in the Lavaca Regional Water Planning Area (*Table 1–4*).

Table 1-3 Stream Segment Uses and Water Quality Criteria in the Lavaca River Basin 2017

	Colorado River Basin		Uses ¹		State Stream Standards Criteria ²			iteria²				
Stream Segment #	Stream Segment Name	SB 1 Planning Region	Recreation	Aquatic Life	Water Supply	Chloride Annual Avg. (mg/L)	Sulfate Annual Avg (mg/L)	TDS Annual Avg (mg/L)	DO (mg/ L)	pH Range	Fecal Coliform (30-day Geometric mean CFU/100ml)	Temp (°F)
1601	Lavaca River Tidal	Р	PCR	Н					4	6.5– 9.0	35	95
1602	Lavaca River Above Tidal	Р	PCR	Н	PS	200	100	700	5	6.5– 9.0	126	91
1602A ²	Big Brushy Creek	Р		Н					5			
1602B ²	Rocky Creek	Р		Н					5			
1603	Navidad River Tidal	Р	PCR	Н					4	6.5– 9.0	35	91
1604	Lake Texana	Р	PCR	Н	PS	100	50	500	5	6.5– 9.0	126	93
1604A ²	East Mustang Creek	Р		I					4			
1605	Navidad River Above Lake Texana	Р	PCR	Н	PS	100	50	550	5	6.5– 9.0	126	91
1605A ²	West Navidad River	Р	Description	Н				- it - de - Oele	5		Maridad Disas	

Source: Lavaca-Navidad River Authority Basin Summary Report, Lavaca-Navidad River Authority, prepared by Water Monitoring Solutions, Inc. for the Lavaca – Navidad River Authority in cooperation with the Texas Commission on Environmental Quality 2017; Water Quality Criteria accurate as of 2017.

¹ Uses: PCR = Primary Contact Recreation; H = High; I = Intermittent; PS = Public Water Supply

² Criteria: Standards set by the TCEQ do not guarantee the water to be usable for municipal, domestic, irrigation, livestock, &/or industrial uses; this causes the above screening process to be misleading for certain segments, especially for salinity.

Table 1-4 Stream Segment Water Quality Concerns in the Lavaca Region

Stream Segment #	Stream Segment	Aquatic Life Use	Nutrient Enrichment	Algal / Bacterial Growth	Sediment Contaminants	Public Water Supply	Narrative Criteria
1601	Lavaca River Tidal						
1602	Lavaca River Above Tidal		Concern ¹	Concern ¹			
1602A	Big Brushy Creek						
1602B	Rocky Creek		Concern ¹	Concern ¹			
1602C	Lavaca River Above Campbell Branch	Concern ¹					
1603	Navidad River Tidal						
1604	Lake Texana		Concern ²	Concern ²			
1604A	East Mustang Creek						
1605	Navidad River Above Lake Texana						
1605	West Navidad River						

¹Source: TCEQ 2016 DRAFT Texas Water Quality Inventory

Another set of surface water quality parameters are termed "nutrients" and includes nitrogen (Kjeldahl nitrogen, nitrite+nitrate, and ammonia nitrogen), phosphorus (phosphates, orthophosphates, and total phosphorus), sulfur, potassium, calcium, magnesium, iron, and sodium. Nutrients are monitored by the TCEQ as a part of the Clean Rivers Program (CRP); however, there are currently no government mandated standards for assessing the level of concern posed by nutrients. Currently, naturally

²Indicated by LNRA, 2017

occurring background levels reported by the USGS or data collected by the TCEQ are used to determine the level of concern for nutrients. Based on 2016 data from TCEQ and LNRA, there are three portions of stream segments, as well as Lake Texana, with a concern for nutrients in the Lavaca Regional Water Planning Area (*Table 1–4*).

Fecal coliform are usually harmless bacteria that are present in human and/or animal waste. However, the presence of this organism can be an indicator for the possible presence of disease-causing bacteria and viruses that are also found in human/animal wastes. Municipal waste is treated to remove most of the bacterial and viral contaminants so that safe levels will exist in the receiving surface water body. Therefore, when fecal coliform is detected, the most likely source of contamination is nonpoint source pollution, which can include agricultural runoff as well as runoff from failed septic systems. A wastewater treatment plant point source could also be the source of contamination if the system is not functioning properly or if overwhelmed by flood waters. In recent years, TCEQ has changed the indicator bacteria from the generic "fecal coliform" to be *Escherichia Coli* for non-tidal surface waters and *Enterococci* for tidal waters.

1.6.2 Recreational and Natural Resources

Lake Texana is the main recreational area in the Lavaca Region. There are ten public boat ramps, a 250-acre Mustang Wilderness Campground for primitive camping, a marina, picnic sites, Brackenridge Recreation Complex, which includes the Brackenridge Park campground (240 acres), Brackenridge Main Event Center Complex (180 acres), Texana Park (590 acres), kayaking, and boating. Brackenridge Recreation Complex and Lake Texana State Park are located across State Highway (SH) 111 from each other, on the west side of the SH 111 Bridge. Some of the recreational activities enjoyed at these parks are camping, boating, fishing, and picnicking. The area has good nature-viewing opportunities including birding, and sometimes alligators can be found in park coves. Hunting and fishing are very popular recreational activities throughout the entire Lavaca Region. Deer and waterfowl hunting are the most common. The Gulf Coastal Plains support a wide variety of animal species. The threatened, endangered, or rare species within Jackson, Lavaca, and Wharton Counties are shown in *Table 1-5*.

LNRA operates Lake Texana to provide freshwater inflows for the bay and estuary in order to reduce high salinity events in Lavaca Bay and to protect coastal habitats. LNRA has an agreement with the Texas Parks and Wildlife Department and the TCEQ for a freshwater release program.

The Texas Parks & Wildlife Department (TPWD) currently manages 47 Wildlife Management Areas (WMAs) in the state with a total of 714,049 acres. WMAs were established as sites to perform research on wildlife populations and habitat, conduct education on sound resource management, and to provide public hunting, hiking, camping, bird watching and a host of other outdoor recreational opportunities. The D.R. Wintermann WMA lies within Region P, encompassing 246 acres.

Table 1–5 Threatened, Endangered, and Rare Species Found in Jackson, Lavaca, and Wharton Counties

Thro	eatened
American Peregrine Falcon	Falco peregrinus anatum
Bald Eagle	Haliaeetus leucocephalus
Blue sucker	Cycleptus elongatus
Cagle's map turtle	Graptemys caglei
Green sea turtle	Chelonia mydas
Loggerhead sea turtle	Caretta caretta
Louisiana black bear	Ursus americanus luteolus
Peregrine Falcon	Falco peregrinus
Reddish Egret	Egretta rufescens
Smooth pimpleback	Quadrula houstonensis
Sooty Tern	Sterna fuscata
Texas fawnsfoot	Truncilla macrodon
Texas horned lizard	Phrynosoma cornutum
Texas pimpleback	Quadrula petrina
Texas scarlet snake	Cemophora coccinea lineri
Texas scarie: strake	Gopherus berlandieri
Fimber rattlesnake	Crotalus horridus
White-faced Ibis	Plegadis chihi
White-tailed Hawk	Buteo albicaudatus
Wood Stork	
	Mycteria americana
	angered
Attwater's Greater Prairie-Chicken	Tympanuchus cupido attwateri
Houston toad	Anaxyrus houstonensis
nterior Least Tern	Sterna antillarum athalassos
Kemp's Ridley sea turtle	Lepidochelys kempii
Red wolf	Canis rufus
Smalltooth sawfish	Pristis pectinata
West Indian manatee	Trichechus manatus
Whooping Crane	Grus americana
	Rare
American eel	Anguilla rostrata
Arctic Peregrine Falcon	Falco peregrinus tundrius
Awnless bluestem	Bothriochloa exaristata
Brown Pelican	Pelecanus occidentalis
Crayfish	Cambarellus texanus
Green beebalm	Monarda viridissima
Henslow's Sparrow	Ammodramus henslowii
ndianola beakrush	Rhynchospora indianolensis
Marsh-elder dodder	Cuscuta attenuata
Mountain Plover	Charadrius montanus
Plains spotted skunk	Spilogale putorius interrupta
Red Knot	Calidris canutus rufa
Sharpnose shiner	Notropis oxyrhynchus
Shinner's sunflower	Helianthus occidentalis ssp plantagineus
Snowy Plover	Charadrius alexandrinus
South Texas spikesedge	I Eta a a la ancia de la constanta de la const
	Eleocharis austrotexana
Southern Crawfish Frog	Lithobates areolatus areolatus
Southern Crawfish Frog Sprague's Pipit	Lithobates areolatus areolatus Anthus spragueii
Southern Crawfish Frog Sprague's Pipit Fexas diamondback terrapin	Lithobates areolatus areolatus
Southern Crawfish Frog Sprague's Pipit Fexas diamondback terrapin Fexas tauschia	Lithobates areolatus areolatus Anthus spragueii
Southern Crawfish Frog Sprague's Pipit Fexas diamondback terrapin	Lithobates areolatus areolatus Anthus spragueii Malaclemys terrapin littoralis
Southern Crawfish Frog Sprague's Pipit Fexas diamondback terrapin Fexas tauschia	Lithobates areolatus areolatus Anthus spragueii Malaclemys terrapin littoralis Tauschia texana
Southern Crawfish Frog Sprague's Pipit Fexas diamondback terrapin Fexas tauschia Fhreeflower broomweed	Lithobates areolatus areolatus Anthus spragueii Malaclemys terrapin littoralis Tauschia texana Thurovia triflora

Source: Texas Parks & Wildlife Department, Wildlife Division, Non-game and Rare Species and Habitat Assessment programs. County Lists of Texas' Special Species (Jackson, Lavaca, and Wharton Counties, updated September 2018).

1.6.3 Navigation

Navigation within the Lavaca Regional Water Planning Area is generally recreational in nature, with boaters and fishermen utilizing rivers and streams as well as Lake Texana. There is also heavy recreational use in the bays and estuaries at the southern end of the Region. The strategies considered in the current list of potential water management strategies for the 2021 Lavaca Regional Water Plan are not anticipated to adversely impact navigation in the Region.

1.6.4 Threats to Agricultural and Natural Resources

The Regional Water Plan Guidelines (31 TAC §357.30(7)) require that planning groups identify threats to the State's agricultural and natural resources due to issues with water quantity or water quality problems related to supply. Any potential threat to agricultural resources would be of particular concern for the Lavaca Region, as irrigated agriculture is by far the largest water user in the Region. Irrigation in the Region relies almost exclusively on groundwater. Groundwater conditions have been favorable and should continue to be favorable within the Lavaca Region for the pumping of substantial quantities of good quality water. There is the potential for agriculture in some portions of the Region to experience shortages under drought conditions coupled with peak production, with the likely result being temporary use of groundwater resources beyond the average recharge rate. Chapter 5 discusses a number of potential water management strategies that can help address these water shortages for agriculture.

Natural resources in the Region, particularly streams and riparian habitat, can also be impacted by drought conditions. Flows for many streams in the Region show a high seasonal variability and flows in some streams may be drastically reduced or eliminated under prolonged dry conditions. Irrigation return flows play an important role in maintaining streamflows during moderately dry conditions. While observations of streamflow during a recent drought event indicate that irrigation returns and streamflow are both minimal under exceptional drought conditions, it is likely that for moderately dry conditions the increased amount of groundwater entering a stream through irrigation return flows would help to sustain habitat that would otherwise be water-stressed. *Chapter 5* discusses how threats to natural resources can be managed while meeting water shortages in the region.

1.7 Existing Water Plans

1.7.1 Existing Regional and Local Water Management Plans

Lavaca-Navidad River Authority (LNRA) has published a *Land Management Plan* and a *Water Resource Management Plan*, which addresses use and development of the LNRA property and the organization's water rights and includes future water development strategies. These plans were developed in accordance with Texas Water Code Section 11.173(b). In addition, each of LNRA's major water customers has a TCEQ-approved water conservation and drought contingency plan. LNRA, TCEQ, and USGS cooperative program has routinely collected water quality monitoring data in Lake Texana since 1988. Through this program, the USGS and LNRA have been collecting annual pesticide monitoring data since 1992 at stations on Lake Texana. The Texas State Soil and Water Conservation Board (TSSWCB) has a water quality management plan on file for LNRA and has developed management plans and studies to control nonpoint source pollution from agriculture and silviculture (LNRA 1997).

"Lake Texana has excellent water quality. The LNRA intends to maintain the present condition of the lake and has instituted management practices designed to monitor and protect current water quality and wildlife diversity. Streamflows will continue to be monitored by LNRA and USGS at various locations in the Lavaca-Navidad Basin. Lavaca River streamflows are monitored near Hallettsville and Edna, while upstream of Lake Texana, flow monitoring stations are maintained near Hallettsville, Speaks, Morales, and Strane Park on the Navidad mainstem and

on its three major tributaries; Sandy, West Mustang Creek, and East Mustang Creek" (Land and Water Resource Management Plan for Lake Texana and Associated Project Lands 1997).

LNRA's water quality monitoring program includes contracts with the USGS and the Guadalupe-Blanco River Authority, which provides laboratory analyses of water samples. This program was developed under the auspices of the Clean Rivers Program (CRP), a statewide effort administered by the TCEQ to encourage the assumption of responsibility for water quality monitoring by local entities already managing water supplies, and the management of water quality on a river basin basis, rather than by political subdivisions whose interests may cut across multiple river basins or be restricted to portions of basins. Locations, parameters, and details of sample collection, handling, and analytical methodologies for the CRP are detailed in the Quality Assurance Project Plan (QAPP) prepared by LNRA which is filed with, and approved by, TCEQ every two years.

LNRA has designated a Lavaca Basin CRP Steering Committee to advise LNRA on water quality issues and priorities. Since FY2005, LNRA has been conducting the following water quality monitoring under the Clean Rivers Program QAPP:

- 20 parameters including field data (e.g. dissolved oxygen, water temperature, pH, specific conductivity, salinity, flow) and conventional water chemistry analyses including total suspended solids (TSS), sulfate, chloride, ammonia and nitrate + nitrite nitrogen, total phosphate, total alkalinity, total organic carbon (TOC), turbidity, total hardness
- E. coli bacterial analyses in Lake Texana and in the Lavaca River
- Chlorophyll-a analysis in Lake Texana

Water sampling sites are fixed and include: Lake Texana and its inflows (West and East Mustang Creeks, Sandy Creek, Navidad River), the Lavaca River both above tidal and below the Palmetto Bend spillway to Lavaca Bay, and Rocky Creek.

In addition to CRP monitoring, LNRA contracts with the United States Geological Survey (USGS) to do additional flow and water quality monitoring in the Lavaca Basin. Streamflows at multiple gaging stations (Lavaca River near Edna and Hallettsville, Dry Creek near Edna, Providence City, Sublime Sandy Creek near Louise, West Mustang Creek near Ganado, East Mustang Creek near Louise, and the Navidad River near Speaks, Morales, and Strane Park) are monitored directly by radio telemetry into LNRA's computer-based hydrologic data collection system. USGS monitors in Dry Creek and in Lake Texana and its four inflows for metals and organics (pesticides) in both the water column and in the bottom sediments.

LNRA has developed a Geographic Information System (GIS) electronic database to store geographic and attribute data for the Lavaca Basin. This system uses base maps of aerial photographs or USGS topographic maps and overlays data upon these electronic maps in layers. This system is computer-based, and updates/changes can be made relatively easily. Hard-copy maps may be printed as needed. Information layers in the LNRA GIS include:

- Wastewater treatment plants with attributes such as capacity, type, date of permit renewal, contact information, etc.
- City and town information
- Soils
- Gas and oil wells
- Gas and oil pipelines
- Water quality sampling sites

- Rivers, streams, roads, county lines
- Water permit holders
- Cultural resources
- Land use
- Parks and trails
- Observation wells
- Piezometers
- Boat ramps
- Threatened species locations
- Injection disposal wells
- Confined animal feeding operations (CAFOs)
- Precipitation and stream flow gages

LNRA is notified of TCEQ discharge permit applications and EPA NPDES applications for point source discharges and industrial stormwater runoff permits. These are reviewed by LNRA, and appropriate actions are taken (i.e., submission of written comments, negotiation with applicants, requests for hearings and party status) to assure protection of Lake Texana water quality.

Master plan information is not available for the cities in the Lavaca Region. These cities are relatively small, there is relatively low municipal usage, and there is very little expected growth in municipal usage. The Texana and Coastal Bend GCDs create their own groundwater management plans, as described in *Section 1.2.1*.

1.7.2 Current Preparations for Drought

The Lavaca-Navidad River Authority developed a Water Conservation Plan and Drought Contingency Plan in 1995 and they have been updated multiple times. Most recently, both plans were updated April 2014 in accordance with the TCEQ guidance for the Lavaca River Basin including Lake Texana. The goals of the Water Conservation Plan are to reduce the quantity of water required through implementation of efficient water supply and water use practices, without eliminating any use. The Drought Contingency Plan provides procedures for both voluntary and mandatory actions to temporarily reduce water usage during a water shortage crisis. The drought of record period for the Lavaca Region is December 1952 through April 1957. More details related to drought preparation and response are discussed in *Chapter 7* of this report.

Multiple smaller entities within the Lavaca Regional Water Planning Area also maintain Water Conservation and Drought Contingency Plans in accordance with TCEQ requirements. A survey of these entities by LRWPG indicates that none of these entities implemented drought restrictions in 2011.

1.7.3 Water Loss Audits

House Bill 3338, passed by the 78th Texas Legislature (2003), requires public utilities providing potable water to file water audits with the TWDB once every five years giving the most recent year's water loss. TWDB subsequently commissioned a study of available loss data. For the first phase of water auditing, a number of issues have been identified with the data provided, and work to correct inconsistencies is ongoing. Year 2015-2018 water loss audit information was provided to the LRWPG by TWDB. Nine public utilities in the LRWPA submitted water loss audit data as part of the required

2015 submittal to TWDB. Limited data was submitted in 2016-2018, so the 2015 data is used for this report. Total loss rates for the utilities within the LRWPA were found to vary from 5.9 to 34.3 percent, with Edna and La Ward (part of County-Other) having the lowest reported percentage, and Moulton having the highest. Losses may vary annually and could currently be higher or lower.

Total losses are not limited to loss from known leaks, although for some utilities' leakage is responsible for a majority of lost water. Total loss also includes meter inaccuracy, unmetered or unauthorized water use, unidentified line leaks, and storage overflows. Real loss accounts for reported breaks and leaks, and unreported loss. Real loss rates for the utilities within the LRWPA were found to vary from 5.9 to 34.3 percent, with Edna having the lowest reported percentage, and Moulton having the highest.

Table 1-6 below summarizes the 2015 water audit data available for the Lavaca Regional Water Planning Area, which includes nine submitted water audits.

Table 1-6: Water Loss Audit Summary for the Lavaca Region

Region P				Billed Metered	
9 Audits Submitted				1,359,814,492	
			Billed Consumption	83.6%	Revenue Water
			1,359,814,492	Billed Unmetered	1,359,814,492
			83.6%	0	83.6%
		Authorized Consumption		0.0%	
		1,406,128,409		Unbilled Metered	
		86.5%		22,675,557	
			Unbilled Consumption	1.4%	
			46,313,917	Unbilled Unmetered	
			2.8%	23,638,360	
	System Input Volume			1.5%	
	1,625,622,369			Unauthorized Consumption	
				4,064,056	Non-revenue Water
				0.3%	265,807,877
			Apparent Loss	Customer Meter Accuracy Loss	16.4%
			86,055,652	80,021,596	
			5.3%	4.9%	
		Water Loss		Systematic Data Handling Discrepency	
		219,493,960		1,970,000	
		13.5%		0.1%	
				Reported Breaks and Leaks	
				24,014,990	
			Real Loss	1.5%	
			133,438,309	Unreported Loss	
			8.2%	109,423,319	
				6.7%	

Source: 2015 Summary of Water Loss Audit Data by Gallons and Percentage by Region with Statewide Totals

The LRWPG recognizes the value of advanced metering infrastructure (AMI) and leak detecting technologies in providing more accurate water accountability.

APPENDIX 1A

Sources Used

Document	Description/Importance
Texas State Historical Association. <i>Texas Almanac: 2008-2009, 2013-2014, 2018-2019.</i>	Provides background information and statistics on Texas and each county.
TWDB. 2017 State Water Plan.	The official water plan for Texas. Describes current use and supply, identifies water management measures and environmental concerns, and offers recommendations.
U.S. Census Bureau. Total Population Estimates for Texas Counties and Places. Census 2010.	Resource for population estimates for Texas counties and places in various years.
U.S. Census Bureau. 2013-2017 American Community Survey 5-Year Estimates.	Resource for economic characteristics in Texas counties.
Texas Workforce Commission. Labor Force Statistics for Texas Counties 2000-Present (2017). http://www.txcip.org/tac/census/morecountyinfo.php?MORE =1042	Resource for unemployment rates in Texas counties.
Lavaca-Navidad River Authority. Lavaca-Navidad River Authority Basin Summary Report, Texas Clean Rivers Report 2017. http://www.lnra.org/docs/water-quality-program/fy2017-lnra-basin-summary-report-final.pdf?sfvrsn=0	Summarizes Stream Segment Uses and Water Quality Criteria in the Lavaca River Basin in 2017.
Texas Clean Rivers Program and TCEQ. 2016. Draft 2016 Texas Water Quality Inventory.	Summarizes the water quality issues for each segment of the Texas river basins.
Lavaca-Navidad River Authority. Lavaca-Basin Summary Report FY 2007. http://www.lnra.org/docs/water-quality-program/final2007.pdf	Provides background information in the Lavaca River Basin.
Texas Parks and Wildlife Department, Wildlife Division, Nongame and Rare Species and Habitat Assessment programs. County Lists of Texas' Special Species. [Lavaca County, Jackson County, and Wharton County: 2018].	Lists endangered, threatened, and rare species for each county.

Contents

Chapter	2 – Pre	sentation of Population and Water Demands	2-1
2.1	Introduction		2-1
	2.1.1	Scope of Work	2-1
	2.1.2	Background	2-1
	2.1.3	Description of the Region	2-1
2.2	Methodology and Projections		2-2
	2.2.1	General	2-2
	2.2.2	Population Projections	2-3
	2.2.3	Municipal Water Demand Projections	2-3
	2.2.4	Irrigation Water Demand Projections	2-4
	2.2.5	Steam-Electric Water Demand Projections	2-5
	2.2.6	Manufacturing Water Demand Projections	2-5
	2.2.7	Mining Water Demand Projections	2-6
	2.2.8	Livestock Water Demand Projections	2-6
2.3	Major Water Providers		2-6

List of Tables

- Table 2-1 Lavaca Region Water User Group Population by Individual Water Utility or Rural County
- Table 2-2 Water Demand by Water User Group, County, and Basin
- Table 2-3 Gallons Per Capita Per Day (GPCD) Values
- Table 2-4 Lavaca Region Water Demands on Lavaca-Navidad River Authority (Major Water Provider)
- Table 2-5 Lavaca-Navidad River Authority Water Sales Agreements

List of Appendices

- Appendix 2A Sample Correspondence to Water User Groups
- Appendix 2B Population and Water Demand Data Reports from Texas Water Development Board (DB22)
- Appendix 2C Region P Municipal Water Demand Savings Due to Plumbing Codes and Water-Efficient Appliances

This page intentionally left blank.

Chapter 2 – Presentation of Population and Water Demands

2.1 Introduction

2.1.1 Scope of Work

This chapter presents the results of Task 2A and 2B of the project scope, which addresses updated population and water demand data for the region and outlines the guidelines and methodology used for the update. Also, to provide consistency and facilitate the compilation of the different regional plans, TWDB required the incorporation of this data into a standardized online database referred to as TWDB DB22. This information is contained within the following tables.

- Table 2-1 Lavaca Region Water User Group Population by Utility and Rural County
- Table 2-2 Water Demand by Water User Group, County, and Basin
- Table 2-4 Lavaca Region Water Demands on LNRA (Major Water Provider)

2.1.2 Background

Senate Bill 1 (SB 1), 75th Texas Legislature, established a new approach to the preparation of the State Water Plan, requiring local consensus on regional plans first. Each regional planning group works with the Texas Water Development Board (TWDB) to develop a regional water plan per TWDB guidelines. Each regional planning group of the state, including the Lavaca Regional Water Planning Group (Lavaca RWPG) prepared and submitted regional plans in 2001, 2006, 2011, and 2016. The Lavaca Regional Water Planning Group contracted with AECOM to prepare the 2021 Lavaca Regional Water Plan.

One primary goal of the regional water planning process is to identify water supply development strategies that will be reliable during times of drought for all users in the State. Quantifying existing and future water demands is the initial step in the planning effort. Each regional planning group works with the Texas Water Development Board (TWDB) to develop population and water demand projections for the 50-year planning horizon, and this chapter documents the methodology and results of this effort by the Lavaca RWPG.

2.1.3 Description of the Region¹

The Lavaca Region is comprised of Jackson County, Lavaca County, and Precinct 3 of Wharton County, including the majority of the City of El Campo. The eastern portion of Wharton County is included in the Lower Colorado Regional Water Planning Area (Region K). The Lavaca Region had a population of 49,000 in 2010. As a rural area with a large agriculture sector, the water demand in the Lavaca Region is largely associated with agricultural irrigation. See *Figure 1-1* (in *Chapter 1* of this document) for a map of Lavaca Regional Water Planning Area.

¹ Chapter 1: Description of the Lavaca Regional Water Planning Area

2.2 Methodology and Projections²

The following methodology for generation of population and water demand projections was developed in accordance with TWDB guidance and relevant scope items for the 2021 Regional Water Planning effort.

2.2.1 General

The Texas Water Development Board (TWDB) distributed draft population, municipal water demand, and mining water demand projections via a December 2016 communication for review by the Lavaca Regional Water Planning Group (Lavaca RWPG). A second TWDB communication in June 2017 accompanied the TWDB's draft irrigation, steam-electric power, manufacturing, and livestock water demand. These communications also included a summary of the projection methodologies and specific steps a regional planning group must follow in requesting revisions to the projections, if necessary. Once submitted to TWDB by the regional planning groups, the projection revision requests were also reviewed by the Texas Commission on Environmental Quality, Texas Parks and Wildlife Department, and the Texas Department of Agriculture prior to being approved by TWDB in spring 2018.

TWDB rules require that projection analyses be performed for each identified municipal and non-municipal water user group (WUG). Municipal Water User Groups are defined as:

- a. Privately-owned utilities that provide an average of more than 100 acre-feet per year for municipal use for all owned water systems;
- b. Water systems serving institutions or facilities owned by the state or federal government that provide more than 100 acre-feet per year for municipal use;
- c. All other Retail Public Utilities not covered in (a) and (b) that provide more than 100 acre-feet per year for municipal use;
- d. Collective Reporting Units, or groups of Retail Public Utilities that have a common association and are requested for inclusion by the RWPG; and
- e. Municipal and domestic water use, referred to as County-Other, not included in (a)-(d)

Non-municipal water user groups include manufacturing, irrigation, steam-electric power generation, mining, and livestock water use, and are also referred to within each county (i.e., Jackson County Mining, Jackson County Manufacturing, etc.) The planning process also designates Wholesale Water Providers (WWP), which are persons or entities having contracts to sell any volume of water wholesale. In addition to Wholesale Water Providers, a new requirement is for the regions to determine the Major Water Providers (MWP) in the region. Major Water Providers are defined as a Water User Group or Wholesale Water Provider of particular significance to the region's water supply, as determined by the regional planning group. The Lavaca RWPG has designated the Lavaca-Navidad River Authority (LNRA) as the only Major Water Provider within the Lavaca Region. Associated water commitments for the LNRA are identified within the plan and discussed in detail in *Section 2.3* of this chapter.

The Lavaca RWPG analyzed all TWDB-provided draft population and water demand projections and requested input from the utilities and counties in the region regarding population and water demand projections. The Lavaca RWPG considered changes where appropriate and justifiable by TWDB requirements, finally requesting TWDB revisions to the draft municipal, irrigation, manufacturing, steam-electric, and livestock demand projections. No revisions were requested to the TWDB draft projections for population or for mining demands. The detailed methodologies and resulting finalized

² TWDB Exhibit C General Guidelines for Fifth Cycle of Regional Water Plan Development

population and demand projections of this process are discussed in the following sections of this chapter.

2.2.2 Population Projections

Population changes, along with daily water use per person, directly drive municipal water demand changes. Thus, establishing accurate population estimates and projections is a primary goal in the regional water planning process. The Lavaca Region is relatively rural compared to more densely populated areas of the state, and municipal water demand is a smaller share of the total water demand for the Lavaca Region. The population projections in this plan were developed in accordance with TWDB guidelines, utilizing the 2010 US Census data and growth projections established by the Office of the State Demographer.

Previous regional and state water plans have been aligned with political boundaries, such as city limits, rather than water utility service areas for municipal demands. As part of the current planning process, TWDB rule changes now defines municipal water user group (WUG) planning as being utility-based, and the emphasis of the development of draft projections for the 2021 Regional Water Plans (RWPs) was on the transition of the 2017 State Water Plan (SWP) population projections and the associated water demand projections from political boundaries to utility service area boundaries. As with other projections during this planning effort, TWDB staff distributed draft population data and projections for planning group review.

The population projections indicate that the population of the Lavaca Region will increase approximately 10 percent from 50,489 in the year 2020 to 55,522 in the year 2070. Population in Jackson County is projected to increase 7.5 percent over the planning horizon from 14,606 in 2020 to 15,699 people in 2070. Wharton County is split between two regional water planning areas, with the western portion of Wharton County located in the Lavaca Region and the eastern portion considered part of the Lower Colorado Regional Water Planning Area. The Lavaca Region portion of Wharton County is expected to see a 24 percent population increase, from 16,620 in 2020 to 20,560 in 2070. State Demographer projections in Lavaca County indicate the population may slightly decrease in the future, so for the purposes of this plan, Lavaca County population was held constant in the planning horizon at 19,263 people in each decade.

It was identified during a Lavaca RWPG meeting that there was some concern that areas of Lavaca County are increasing in population, which is not shown in the draft projections. It was discussed that there was not sufficient data to support a revision request during this planning cycle. The next round of planning will incorporate the 2020 U.S. Census count, which may provide support to show population growth in Lavaca County for the planning horizon. For this planning cycle, available water supplies and water management strategies can be identified to meet anticipated water needs.

After the review, the Lavaca RWPG agreed that no revision requests would be submitted to the TWDB regarding the draft population projections. The draft TWDB population projections were formally approved by the Lavaca RWPG at the October 2, 2017 meeting with no recommended revisions. The population projections were formally adopted by the TWDB and the projections were incorporated into the TWDB online database (DB22). Population projections are included in *Table 2-1* at the end of the chapter and are also provided in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

2.2.3 Municipal Water Demand Projections

After population is established for each water user group, the second key variable in the TWDB's municipal water demand projections is per capita daily use, which represents the average number of gallons of water used per person per day (also noted commonly as gallons per capita daily and

abbreviated as GPCD). Municipal water demand projections are the product of population projections and per capita daily use projections for each water user group.

The per capita daily use estimate is unique for each municipal reporting entity and generally determined using responses to the TWDB's 2011 Water Use Survey. The year 2011 is generally considered a "dry-year" for much of the State of Texas and this dataset is assumed to be representative of water use during times of drought. In projecting per capita daily use for future decades of the planning horizon, the TWDB reduced per capita use assuming future water efficiency savings due to federal standards of plumbing fixtures and appliances.

For this planning cycle, the draft municipal water demand projections incorporated GPCD values that were carried over from the 2017 State Water Plan. These values were based on city boundaries. The TWDB also provided, for information purposes, historical GPCD estimates that reflected the new utility boundaries. The Lavaca RWPG agreed that the utility boundary GPCD values better represent the new utility-based planning, and requested to the TWDB a revision that the utility boundary GPCD values be used for calculating the municipal water demand projections.

Municipal water demand for the Lavaca Region is projected to increase slightly over the planning horizon, due to a moderate increase in population projections coupled with a gradual projected decline in per capita use. The resulting Lavaca Region municipal demand projections range from 7,976 acre-feet per year in 2020 to 8,174 acre-feet per year in 2070.

These municipal water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented for each municipal water user group by county, river basin, and decade in *Table 2-2*. The GPCD values used to calculate municipal water demand projections are provided in *Table 2-3*. Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

Embedded within the municipal water demand projections are estimated savings due to plumbing codes and water-efficient appliances, as determined by the TWDB. These estimated savings, in acrefeet of water, are summarized in a table provided in *Appendix 2C*.

2.2.4 Irrigation Water Demand Projections

Agricultural water use within the Lavaca Region is by far the greatest use in the area, with these demands making up more than 90 percent of the total demand in the region. As such, it is important to the Lavaca RWPG that the irrigation water demands are planned for as accurately as possible during times of drought.

For this planning cycle, the methodology the TWDB used to develop the draft irrigation water demand projections was to take the average irrigation water use estimate by county for the years 2010-2014 and hold it constant for the 2020-2070 planning decades.

The Lavaca RWPG agreed that for the Lavaca Regional Water Planning Area, a three-year period from 2011-2013 better represented the drought / dry-year period than the five-year period from 2010-2014. Based on local knowledge, the intensity of the drought did not begin until 2011. At the October 2, 2017 Lavaca RWPG meeting, the Lavaca RWPG approved to request that the TWDB revise the irrigation demand projections for the region to reflect the average irrigation water use during 2011-2013 for all three counties (Jackson, Lavaca, and Wharton).

These revised irrigation water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented by county, river basin, and decade in *Table 2-2*. Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

2.2.5 Steam-Electric Water Demand Projections

For this planning cycle, the methodology the TWDB used to develop the draft steam-electric water demand projections is for the 2020 projections to be based on the highest water use volume from 2010-2014, plus new planned facility demands, and minus scheduled retiring facility demands. The draft projections were kept constant from 2020-2070.

The draft projections for the Lavaca Region included two facilities in Wharton County that came online in 2016 and 2017, The Lavaca RWPG identified that one of the facilities is located in the Region K portion of Wharton County, rather than in the Lavaca Region portion of Wharton County. At the October 2, 2017 Lavaca RWPG meeting, the Lavaca RWPG agreed to request that the TWDB move the demand for that facility to Region K.

These revised steam-electric water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented by county, river basin, and decade in *Table 2-2*. Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

2.2.6 Manufacturing Water Demand Projections

For regional water planning purposes, manufacturing water use is considered to be the cumulative water demand by county and river basin for all industries within specified industrial classifications (SIC) as calculated by the TWDB.

For this planning cycle, the methodology the TWDB used to develop the draft manufacturing water demand projections is for the 2020 projections to be based on the highest water use volume from 2010-2014, using data from the annual water use survey. The most recent 10-year projections for employment growth from the Texas Workforce Commission were used as a proxy for increasing demand by manufacturing sectors between 2020 and 2030. The manufacturing water demands were then held constant from 2030-2070.

In reviewing the draft projections, the Lavaca RWPG discussed two revisions. At the October 2, 2017 Lavaca RWPG meeting, the Lavaca RWPG agreed to request that the TWDB make the following revisions:

- The Lavaca-Navidad River Authority (LNRA) informed the LRWPG that they had recently
 executed a water contract with an existing manufacturing customer for 10,400 AF of water in
 Jackson County. This demand will begin in 2020, and carry through to 2070. This additional
 demand of 10,400 AF was added on to the draft projection demand in all decades for Jackson
 County.
- On July 31st, TWDB staff sent an email containing a spreadsheet called SupportingData-ManufacturingAdditionalWaterUse.xlsx. The email explained the spreadsheet as "Unaccounted manufacturing water use data estimated through additional survey of wholesale water providers and groundwater conservation districts and analysis of establishment and employment data by industry from the U.S. County Business Patterns. This additional water use estimate for each county can be used to supplement the draft manufacturing demand projections." The spreadsheet showed 34 AF of potentially unaccounted for water use in Wharton County within Region P. This additional demand of 34 AF was added on to the draft projection demand in all decades for Wharton County.

These revised manufacturing water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented by county, river basin, and decade in *Table 2-2*.

Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

2.2.7 Mining Water Demand Projections

The mining water demand projections from the 2017 State Water Plan were carried over as the draft mining water demand projections for this planning cycle. During the last planning cycle, the TWDB mining water demand projections were developed through a TWDB-contracted study with the Bureau of Economic Geology. The study estimated current mining water use and projected that use across the planning horizon utilizing data collected from trade organizations, government agencies, and other industry representatives. Individual projections were made for sectors including oil and gas aggregates, coal and lignite, and other mining activities. These projections were then summed for each county.

At the October 2, 2017 Lavaca RWPG meeting, the Lavaca RWPG agreed to approve the draft mining water demand projections without requesting any revisions. These unchanged mining water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented by county, river basin, and decade in *Table 2-2*. Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22).

2.2.8 Livestock Water Demand Projections

The TWDB draft livestock water demand projections utilized an average of TWDB's 2010-2014 livestock water use estimates for the 2020 projections. Water use estimates apply a water use coefficient for each livestock category to county level inventory estimates from the Texas Agricultural Statistics Service. The rate of change for projections from the 2016 Regional Water Plans was then applied to the new base. In the case of the Lavaca Region, the livestock water demand was constant from 2020-2070.

At the October 2, 2017 LRWPG meeting, the Lavaca RWPG discussed the TWDB methodology for the calculation of the historical livestock water use estimates. Overall, the RWPG was comfortable with the methodology, with the exception of the water rate per head for fed/other cattle. The TWDB methodology used 15 GPCD. The RWPG had concerns that 15 GPCD did not sufficiently take into consideration the number of pregnant/lactating cattle and their increased water needs, as well as the hot, humid temperatures the region experiences. The LRWPG approved to request that the TWDB use 30 GPCD to calculate the water demands for fed/other cattle for all three counties. The request nearly doubled the livestock water demand for the region as compared to the draft projections.

These revised livestock water demand projections were adopted by the TWDB for use in the 2021 Lavaca Regional Water Plan and are presented by county, river basin, and decade in *Table 2-2*. Data is also provided in a different format in *Appendix 2B* "Population and Water Demand Data Reports from Texas Water Development Board (DB22)."

2.3 Major Water Providers

The sole Major Water Provider (MWP) in the Lavaca Regional Water Planning Area, as determined by the Lavaca RWPG, is the Lavaca-Navidad River Authority (LNRA), which holds rights to the firm yield of Lake Texana. Lavaca Region demands on LNRA are given in *Table 2-4* at the end of the chapter. The majority of the water supplied by LNRA goes to meet demands outside of the Lavaca Region. All existing contracts for water from LNRA are shown in *Table 2-5*. *Chapter 5* will consider

potential water management strategies to increase LNRA's water supplies, which may provide water for existing and future customers in and outside of the region.

Table 2-1
Lavaca Region Water User Group Population by Individual Water Utility or Rural County

Region	Water User Group	County Name	P2020	P2030	P2040	P2050	P2060	P2070	Region Split Pop. ⁽¹⁾	County Split Pop. ⁽²⁾
Р	EDNA	JACKSON	5,747	5,949	6,034	6,105	6,150	6,177		
Р	GANADO	JACKSON	2,080	2,153	2,184	2,209	2,224	2,236		
Р	COUNTY-OTHER	JACKSON	6,779	7,017	7,118	7,201	7,253	7,286		
		JACKSON Total	14,606	15,119	15,336	15,515	15,627	15,699		
Р	HALLETTSVILLE	LAVACA	2,820	2,820	2,820	2,820	2,820	2,820		
Р	MOULTON	LAVACA	874	874	874	874	874	874		
Р	SHINER	LAVACA	2,054	2,054	2,054	2,054	2,054	2,054		
Р	YOAKUM	LAVACA	3,701	3,701	3,701	3,700	3,701	3,701	Р	Р
Р	COUNTY-OTHER	LAVACA	9,814	9,814	9,814	9,815	9,814	9,814		
		LAVACA Total	19,263	19,263	19,263	19,263	19,263	19,263		
Р	EL CAMPO	WHARTON	12,096	12,660	13,111	13,502	13,863	14,183	Р	
Р	WHARTON COUNTY WCID 1	WHARTON	1,076	1,146	1,201	1,248	1,293	1,331		
Р	COUNTY OTHER	WHARTON	3,448	3,880	4,226	4,525	4,800	5,046	Р	
		WHARTON Total	16,620	17,686	18,538	19,275	19,956	20,560	P	
		LRWPA TOTAL	50,489	52,068	53,137	54,053	54,846	55,522		

¹⁾ If "P" is present in the column titled "Region Split Pop.", the Water User Group is located in more than one region, and the projections listed in the row represent only the Water User Group's population projections within that particular region, not the Water User Group's total population projections.

²⁾ If "P" is present in the column "County Split Pop.", the Water User Group is located in more than one county, and the projections listed in the row represent only the Water User Group's population projections within that particular county, not the Water User Group's total population projections.

Table 2-2 Water Demand by Water User Group, County, and Basin

WIIC Name	WILLO County	WIIO Booin		V	later Dema	nd (ac-ft/y	r)	
WUG Name	WUG County	WUG Basin	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	JACKSON	COLORADO-LAVACA	234	232	227	225	226	227
COUNTY-OTHER	JACKSON	LAVACA	426	421	411	409	410	411
COUNTY-OTHER	JACKSON	LAVACA-GUADALUPE	50	50	49	48	48	49
EDNA	JACKSON	LAVACA	878	880	869	869	874	877
GANADO	JACKSON	LAVACA	237	236	232	231	231	233
IRRIGATION	JACKSON	COLORADO-LAVACA	22,372	22,372	22,372	22,372	22,372	22,372
IRRIGATION	JACKSON	LAVACA	45,136	45,136	45,136	45,136	45,136	45,136
IRRIGATION	JACKSON	LAVACA-GUADALUPE	10,990	10,990	10,990	10,990	10,990	10,990
LIVESTOCK	JACKSON	COLORADO-LAVACA	415	415	415	415	415	415
LIVESTOCK	JACKSON	LAVACA	1,289	1,289	1,289	1,289	1,289	1,289
LIVESTOCK	JACKSON	LAVACA-GUADALUPE	178	178	178	178	178	178
MANUFACTURING	JACKSON	COLORADO-LAVACA	10,549	10,627	10,627	10,627	10,627	10,627
MANUFACTURING	JACKSON	LAVACA	146	147	147	147	147	147
MANUFACTURING	JACKSON	LAVACA-GUADALUPE	229	231	231	231	231	231
MINING	JACKSON	COLORADO-LAVACA	10	10	8	6	4	3
MINING	JACKSON	LAVACA	39	41	31	22	14	10
MINING	JACKSON	LAVACA-GUADALUPE	21	22	16	12	8	6
COUNTY-OTHER	LAVACA	GUADALUPE	4	4	4	4	4	4
COUNTY-OTHER	LAVACA	LAVACA	1,258	1,212	1,174	1,154	1,150	1,150
COUNTY-OTHER	LAVACA	LAVACA-GUADALUPE	1	1	1	1	1	1
HALLETTSVILLE	LAVACA	LAVACA	641	628	617	611	610	610
IRRIGATION	LAVACA	LAVACA	8,692	8,692	8,692	8,692	8,692	8,692
LIVESTOCK	LAVACA	GUADALUPE	37	37	37	37	37	37
LIVESTOCK	LAVACA	LAVACA	3,650	3,650	3,650	3,650	3,650	3,650
LIVESTOCK	LAVACA	LAVACA-GUADALUPE	76	76	76	76	76	76

Table 2-2
Water Demand by Water User Group, County, and Basin (Continued)

			Water Demand (ac-ft/yr)						
WUG Name	WUG County	WUG Basin					•		
			2020	2030	2040	2050	2060	2070	
MANUFACTURING	LAVACA	LAVACA	563	625	625	625	625	625	
MINING	LAVACA	LAVACA	2,544	1,860	1,416	977	537	297	
MOULTON	LAVACA	LAVACA	179	175	171	170	169	169	
SHINER	LAVACA	LAVACA	485	475	467	463	462	462	
YOAKUM	LAVACA	LAVACA	658	641	627	619	618	618	
COUNTY-OTHER	WHARTON	COLORADO	23	25	26	28	30	31	
COUNTY-OTHER	WHARTON	COLORADO-LAVACA	99	107	113	121	128	134	
COUNTY-OTHER	WHARTON	LAVACA	333	359	381	406	429	452	
EL CAMPO	WHARTON	COLORADO	313	320	325	331	339	347	
EL CAMPO	WHARTON	COLORADO-LAVACA	1,918	1,958	1,989	2,028	2,078	2,125	
EL CAMPO	WHARTON	LAVACA	55	56	57	58	59	61	
IRRIGATION	WHARTON	COLORADO-LAVACA	4,858	4,858	4,858	4,858	4,858	4,858	
IRRIGATION	WHARTON	LAVACA	83,588	83,588	83,588	83,588	83,588	83,588	
LIVESTOCK	WHARTON	COLORADO-LAVACA	184	184	184	184	184	184	
LIVESTOCK	WHARTON	LAVACA	650	650	650	650	650	650	
MANUFACTURING	WHARTON	COLORADO-LAVACA	34	34	34	34	34	34	
MINING	WHARTON	COLORADO-LAVACA	6	6	5	3	2	1	
MINING	WHARTON	LAVACA	12	13	9	7	5	3	
STEAM-ELECTRIC	WHARTON	LAVACA	2,060	2,060	2,060	2,060	2,060	2,060	
WHARTON COUNTY WCID 1	WHARTON	LAVACA	184	190	195	200	207	213	

Table 2-3
Gallons Per Capita Per Day (GPCD) Values

WILC Nome	WILC County	Gallons Per Capita Per Day (GPCD)								
WUG Name	WUG County	2020	2030	2040	2050	2060	2070			
COUNTY-OTHER	JACKSON	93.6	89.4	86.2	84.5	84.2	84.2			
EDNA	JACKSON	136.3	132.0	128.6	127.1	126.8	126.8			
GANADO	JACKSON	101.8	97.9	94.8	93.2	92.9	92.9			
COUNTY-OTHER	LAVACA	114.9	110.7	107.3	105.4	105.1	105.1			
HALLETTSVILLE	LAVACA	202.9	198.8	195.3	193.4	193.1	193.1			
MOULTON	LAVACA	182.6	178.3	174.6	173.4	173.1	173.1			
SHINER	LAVACA	210.8	206.6	203.1	201.2	200.8	200.8			
YOAKUM	LAVACA	158.7	154.6	151.2	149.4	149.1	149.1			
COUNTY-OTHER	WHARTON	117.7	113.0	109.8	109.5	109.2	109.1			
EL CAMPO	WHARTON	168.7	164.6	161.4	159.8	159.5	159.5			
WHARTON COUNTY WCID 1	WHARTON	152.4	148.1	144.9	143.4	143.1	143.1			

Table 2-4
Lavaca Region Water Demands on Lavaca-Navidad River Authority (Major Water Provider)

WUG Name	WUG County	Water Demand (ac-ft/yr)							
WOG Name		2020	2030	2040	2050	2060	2070		
Manufacturing	Jackson	10,874	10,955	10,955	10,955	10,955	10,955		

Table 2-5
Lavaca-Navidad River Authority Water Sales Agreements

Customer / Use*	Supply Volume (ac-ft/yr)
Calhoun County Navigation District	594
Held in reserve	56
City of Corpus Christi (firm supply)	31,440
City of Corpus Christi (interruptible supply)	12,000
City of Point Comfort	178
Formosa Plastics Corporation	41,200
Inteplast Corporation	1,032
TOTAL	86,500

^{*}An additional 4,500 ac-ft/yr of firm yield is used for environmental flows

APPENDIX 2A Sample Correspondence to Water User Groups

AECOM 9400 Amberglen Blvd Austin, TX 78729 www.aecom.com 512 454 4797 tel 512 454 8807 fax

February 27, 2017

Subject: Lavaca Regional Water Planning Area (Region P)

Draft Projected Population and Water Demands for 2021 Regional Water Plan
Please Review and Respond

Dear Water User Group Representative:

The Texas Water Development Board (TWDB) has developed and released for review the **draft population and municipal water demand projections** intended for use in developing the 2021 Region P Water Plan. The Lavaca Regional Water Planning Group (Region P) is currently reviewing the draft projections for the region and is **seeking input from local utilities** to either verify the projections appear accurate or request that the TWDB consider revising the numbers.

As part of the 2021 Regional Water Plan, the consultant team is currently performing tasks related to the allocation of water supply and demand for Water User Groups (WUGs) in our region to determine projected future water shortages. A WUG consists of a demand center to which water resources can be allocated. Municipal WUGs are associated with populations within and outside of water utility service areas, and the projections of these populations are used to estimate future water demands. This utility-based planning method is slightly different from previous planning cycles, where city limits were also used to determine population areas. As a result, please note that the draft population and municipal demand projections provided by TWDB in the attached table should represent your entire water utility service area. For city water utilities, this may be less than or greater than the population within the city limits.

The draft population projections that have been provided by the TWDB for the 2021 Region P Water Plan use the 2010 Census data as a base, which the State Demographer and TWDB staff have projected out into the future. The associated municipal water demand projections rely on per capita water use as reported in the 2011 Water Use Survey to the TWDB, which have then been projected out to 2070. Addiitionally, the per capita water use values have been modified for anticipated plumbing code efficiency savings, which can explain why water demands might decrease over time.

The attached table lists all of the municipal WUGs located within Region P in alphabetical order. Rural areas that did not meet the criteria for being defined as an individual WUG are listed as "County-Other" in the table. If a WUG is located in more than one county and/or region, each of the county/region components and a summed total are shown to provide the entire picture.

We are asking that you review the population and demand projections for your WUG and respond with either:

• The numbers represent reasonable projections and require no revision, or

You would like to revise your projections and can provide information to support your request.

If no revisions are requested, a quick call or email to let us know you've reviewed the numbers and have no changes would be very appreciated. My contact information is at the end of this letter.

If you believe adjustments to the population and/or water demand projections may be warranted, please contact me so we can disuss your entity and what documentation might be needed by TWDB to back up a modification. Please contact me at your earliest convenience, preferably no later than May 1, 2017.

In addition, if after reviewing the water demand numbers, you have concerns regarding whether your current water supplies are able to meet your future water demands, Region P would be very glad to talk with you about what types of water management strategies would be appropriate to recommend for your WUG in the 2021 Region P Water Plan. Having a strategy or project recommended in a Region Water Plan can help in the process of applying for certain types of State funding.

You may contact me with any additional questions you have regarding the draft projections or regional water planning. I may be reached directly at (512) 457-7798 or at jaime.burke@aecom.com. For additional information, please also visit Region P's website at http://www.lnra.org/water/lavacaregional-water-planning-group and the TWDB's regional water planning webpage http://www.twdb.texas.gov/waterplanning/rwp/index.asp.

Thank you for taking the time to help support the regional water planning process in Texas.

Sincerely,

Jaime Burke, P.E. Project Manager

AECOM

Consultant for the Lavaca Regional Water Planning Group (Region P)

Direct 512-457-7798

jaime.burke@aecom.com

f Buke

Enclosure – Table containing TWDB draft projections for all municipal WUGs in Region P

Copy: File

APPENDIX 2B

Population and Water Demand Data Reports from Texas Water Development Board (DB22)

Region P Water User Group (WUG) Population

			WUG POP	JLATION		
	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	2,236	2,315	2,348	2,375	2,392	2,403
COLORADO-LAVACA BASIN TOTAL	2,236	2,315	2,348	2,375	2,392	2,403
EDNA	5,747	5,949	6,034	6,105	6,150	6,177
GANADO	2,080	2,153	2,184	2,209	2,224	2,236
COUNTY-OTHER	4,064	4,206	4,267	4,317	4,349	4,368
LAVACA BASIN TOTAL	11,891	12,308	12,485	12,631	12,723	12,781
COUNTY-OTHER	479	496	503	509	512	515
LAVACA-GUADALUPE BASIN TOTAL	479	496	503	509	512	515
JACKSON COUNTY TOTAL	14,606	15,119	15,336	15,515	15,627	15,699
COUNTY-OTHER	33	33	33	33	33	33
GUADALUPE BASIN TOTAL	33	33	33	33	33	33
HALLETTSVILLE	2,820	2,820	2,820	2,820	2,820	2,820
MOULTON	874	874	874	874	874	874
SHINER	2,054	2,054	2,054	2,054	2,054	2,054
YOAKUM	3,701	3,701	3,701	3,700	3,701	3,701
COUNTY-OTHER	9,776	9,776	9,776	9,777	9,776	9,776
LAVACA BASIN TOTAL	19,225	19,225	19,225	19,225	19,225	19,225
COUNTY-OTHER	5	5	5	5	5	5
LAVACA-GUADALUPE BASIN TOTAL	5	5	5	5	5	5
LAVACA COUNTY TOTAL	19,263	19,263	19,263	19,263	19,263	19,263
EL CAMPO	1,658	1,735	1,797	1,851	1,900	1,944
COUNTY-OTHER	175	197	214	230	244	256
COLORADO BASIN TOTAL	1,833	1,932	2,011	2,081	2,144	2,200
EL CAMPO	10,148	10,621	11,000	11,327	11,631	11,899
COUNTY-OTHER	750	844	919	984	1,044	1,098
COLORADO-LAVACA BASIN TOTAL	10,898	11,465	11,919	12,311	12,675	12,997
EL CAMPO	290	304	314	324	332	340
WHARTON COUNTY WCID 1	1,076	1,146	1,201	1,248	1,293	1,331
COUNTY-OTHER	2,523	2,839	3,093	3,311	3,512	3,692
LAVACA BASIN TOTAL	3,889	4,289	4,608	4,883	5,137	5,363
WHARTON COUNTY TOTAL	16,620	17,686	18,538	19,275	19,956	20,560
REGION P TOTAL POPULATION	50,489	52,068	53,137	54,053	54,846	55,522

Region P Water User Group (WUG) Demand

		wı	JG DEMAND (AC	RE-FEET PER YEA	R)	
	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	234	232	227	225	226	227
MANUFACTURING	10,549	10,627	10,627	10,627	10,627	10,627
MINING	10	10	8	6	4	3
LIVESTOCK	415	415	415	415	415	415
IRRIGATION	22,372	22,372	22,372	22,372	22,372	22,372
COLORADO-LAVACA BASIN TOTAL	33,580	33,656	33,649	33,645	33,644	33,644
EDNA	878	880	869	869	874	877
GANADO	237	236	232	231	231	233
COUNTY-OTHER	426	421	411	409	410	411
MANUFACTURING	146	147	147	147	147	147
MINING	39	41	31	22	14	10
LIVESTOCK	1,289	1,289	1,289	1,289	1,289	1,289
IRRIGATION	45,136	45,136	45,136	45,136	45,136	45,136
LAVACA BASIN TOTAL	48,151	48,150	48,115	48,103	48,101	48,103
COUNTY-OTHER	50	50	49	48	48	49
MANUFACTURING	229	231	231	231	231	231
MINING	21	22	16	12	8	6
LIVESTOCK	178	178	178	178	178	178
IRRIGATION	10,990	10,990	10,990	10,990	10,990	10,990
LAVACA-GUADALUPE BASIN TOTAL	11,468	11,471	11,464	11,459	11,455	11,454
JACKSON COUNTY TOTAL	93,199	93,277	93,228	93,207	93,200	93,201
COUNTY-OTHER	4	4	4	4	4	4
LIVESTOCK	37	37	37	37	37	37
GUADALUPE BASIN TOTAL	41	41	41	41	41	41
HALLETTSVILLE	641	628	617	611	610	610
MOULTON	179	175	171	170	169	169
SHINER	485	475	467	463	462	462
YOAKUM	658	641	627	619	618	618
COUNTY-OTHER	1,258	1,212	1,174	1,154	1,150	1,150
MANUFACTURING	563	625	625	625	625	625
MINING	2,544	1,860	1,416	977	537	297
LIVESTOCK	3,650	3,650	3,650	3,650	3,650	3,650
IRRIGATION	8,692	8,692	8,692	8,692	8,692	8,692
LAVACA BASIN TOTAL	18,670	17,958	17,439	16,961	16,513	16,273
COUNTY-OTHER	1	1	1	1	1	1
LIVESTOCK	76	76	76	76	76	76
LAVACA-GUADALUPE BASIN TOTAL	77	77	77	77	77	77
LAVACA COUNTY TOTAL	18,788	18,076	17,557	17,079	16,631	16,391
EL CAMPO	313	320	325	331	339	347
COUNTY-OTHER	23	25	26	28	30	31
COLORADO BASIN TOTAL	336	345	351	359	369	378
EL CAMPO	1,918	1,958	1,989	2,028	2,078	2,125
COUNTY-OTHER	99	107	113	121	128	134
MANUFACTURING	34	34	34	34	34	34
MINING	6	6	5	3	2	1
LIVESTOCK	184	184	184	184	184	184
IRRIGATION	4,858	4,858	4,858	4,858	4,858	4,858

TWDB: WUG Demand Page 2 of 2 7/26/2018 10:22:21 AM

Region P Water User Group (WUG) Demand

		W	UG DEMAND (AC	RE-FEET PER YEA	AR)	
	2020	2030	2040	2050	2060	2070
COLORADO-LAVACA BASIN TOTAL	7,099	7,147	7,183	7,228	7,284	7,336
EL CAMPO	55	56	57	58	59	61
WHARTON COUNTY WCID 1	184	190	195	200	207	213
COUNTY-OTHER	333	359	381	406	429	452
MINING	12	13	9	7	5	3
STEAM ELECTRIC POWER	2,060	2,060	2,060	2,060	2,060	2,060
LIVESTOCK	650	650	650	650	650	650
IRRIGATION	83,588	83,588	83,588	83,588	83,588	83,588
LAVACA BASIN TOTAL	86,882	86,916	86,940	86,969	86,998	87,027
WHARTON COUNTY TOTAL	94,317	94,408	94,474	94,556	94,651	94,741
REGION P TOTAL DEMAND	206,304	205,761	205,259	204,842	204,482	204,333

APPENDIX 2C

Region P Municipal Water Demand Savings Due to Plumbing Codes and Water-Efficient Appliances

Appendix 2C

Passive Conservation Savings for Municipal WUGs in Region P by County - in ACFT (for 2021 RWP)

Regio	n County	EntityName	2020	2030	2040	2050	2060	2070
Р	JACKSON	COUNTY-OTHER, JACKSON	71.68	106.74	133.79	149.22	152.74	153.52
Р	JACKSON	EDNA	62.19	93.29	117.54	129.25	132.27	132.92
Р	JACKSON	GANADO	21.39	31.71	39.58	44.09	45.17	45.43
Р	LAVACA	COUNTY-OTHER, LAVACA	100.59	145.77	183.69	204.49	208.10	208.10
Р	LAVACA	HALLETTSVILLE	28.62	41.70	52.75	58.79	59.83	59.83
Р	LAVACA	MOULTON	9.19	13.45	17.07	18.19	18.51	18.51
Р	LAVACA	SHINER	21.24	30.85	38.95	43.35	44.08	44.08
Р	LAVACA	YOAKUM	38.39	55.55	69.52	77.13	78.48	78.48
Р	WHARTON	COUNTY-OTHER, WHARTON	39.74	65.28	86.15	93.92	101.19	106.66
Р	WHARTON	EL CAMPO	126.14	190.45	243.20	275.41	287.59	294.70
Р	WHARTON	WHARTON COUNTY WCID 1	11.58	17.84	23.06	26.00	27.39	28.25
P Tot	al		530.75	792.64	1,005.32	1,119.84	1,155.34	1,170.48

Contents

Chapter	[.] 3 – Analysis of Current Water Supplies	3-1
3.1	Introduction	3-1
3.2	Identification of Groundwater Sources	3-1
	3.2.1 Groundwater Aquifers	3-1
	3.2.2 Groundwater Use Overview	3-4
	3.2.3 Aquifer Conditions	3-4
	3.2.4 Groundwater Quality	3-6
	3.2.5 Water Level Monitoring Program for the LRWPA	3-6
	3.2.6 Subsidence Effects	3-6
	3.2.7 Public Supply Groundwater Usage	3-7
	3.2.8 Agricultural Groundwater Usage	3-7
3.3	Groundwater Availability for the Central Gulf Coast Aquifer System	3-7
3.4	Identification of Surface Water Sources	3-9
	3.4.1 Available Surface Water	3-9
3.5	Major Water Providers	3-11
3.6	Inter-Regional Coordination	3-12
3.7	Water Supply Allocations	3-12

List of Tables

- Table 3-1 Modeled Available Groundwater (MAG) Volumes for the Gulf Coast Aquifer System in the Lavaca Region (ac-ft/yr)
- Table 3-2 Lavaca Region Groundwater Availability for the Gulf Coast Aquifer System (ac-ft/yr)
- Table 3-3 Permitted Diversions from LRWPA Rivers and Streams

List of Figures

- Figure 3-1 Groundwater Aquifers
- Figure 3-2 Static Water Levels in West Wharton County (Well 66-53-406)
- Figure 3-3 Static Water Levels in West Wharton County near Louise, TX (Well 66-61-302)

List of Appendices

- Appendix 3A TWDB DB22 Reports
- Appendix 3B Modified TCEQ Lavaca River WAM Run 3
- Appendix 3C TCEQ Active Water Rights

This page intentionally left blank.

Chapter 3 – Analysis of Current Water Supplies

3.1 Introduction

The available water supply within the region includes both groundwater and surface water. Groundwater is provided from the Gulf Coast Aquifer System. Primary surface water sources are the Navidad and Lavaca Rivers and Lake Texana.

Much of the regional water demand is supplied by groundwater. Approximately 86 percent of the existing water supplies come from groundwater. The Gulf Coast Aquifer System is the predominant supply source.

Surface water supplies are obtained from Lake Texana and run-of-river (ROR) flows from the Lavaca and Navidad Rivers and some creeks. In addition, the portion of the Garwood Irrigation District within the Lavaca Region receives some surface water supplies from the Colorado River in Region K. The majority of the Lavaca Regional Water Planning Area (LRWPA) is located in the Lavaca River Basin. Surface water supplies account for approximately 14 percent of the total existing water supplies. The only reservoir in the Lavaca Region is Lake Texana, and there are no major springs in the LRWPA.

This chapter summarizes the results of Task 3 and describes the resources available to the LRWPA and their allocation to WUGs throughout the LRWPA. Also, to provide consistency and facilitate the compilation of the different regional plans, TWDB required the incorporation of this data into a standardized online database referred to as TWDB DB22. DB22 reports that contain this information are identified below and are located in *Appendix 3A* accompanying this chapter.

- Table 3A-1 Region P Source Availability
- Table 3A-2 Region P Water User Group (WUG) Existing Water Supply
- Table 3A-3 Region P Source Water Balance (Availability WUG Supply)

Some of the information contained within this chapter is based on information published in *Chapter 1* – *Description of the Lavaca Regional Water Planning Area*. For a complete and detailed list of sources, see references for *Chapter 1*.

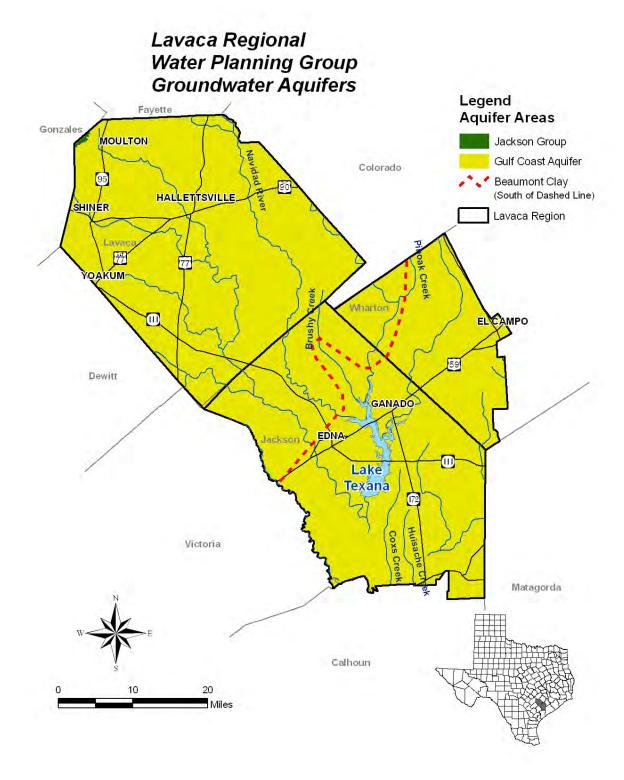
3.2 Identification of Groundwater Sources

3.2.1 Groundwater Aquifers

The only major aquifer in the Lavaca Region is the Gulf Coast Aquifer System. This aquifer accounts for nearly all of the groundwater supply to the LRWPA. The Jackson Group, a minor aquifer in northwest Lavaca County, provides small amounts of supply for domestic and livestock uses.

The Gulf Coast Aquifer System consists of four general water-producing units. The shallowest is the Chicot aquifer, followed by the Evangeline and Jasper aquifers and then the Catahoula Sandstone. These formations are composed of interbedded layers of sand, silt, and clay, with minor amounts of small gravel in some locations. Shale can also be present at deeper depths, below the base of the Evangeline aquifer where the Burkeville confining zone exists and separates the Evangeline aquifer from the Jasper aquifer. The aquifer beds vary in thickness and composition and are normally discontinuous over extended distances.

The Chicot and Evangeline aquifers provide large amounts of freshwater. The aquifers contain freshwater to depths that range from 1,400 to 1,700 feet in the portion of Wharton County in the LRWPA, according to Report 270.


Recharge to the aquifers is principally from the infiltration of precipitation and streamflow. Average annual rainfall in the LRWPA ranges from about 34 to 46 inches per year. The eastern portion of the region experiences the upper end of the average annual rainfall amounts.

The geographic coverage of the Gulf Coast Aquifer System within the Lavaca Region is shown in *Figure 3-1*. The area includes the Jasper, Evangeline, and Chicot aquifer formations. The Gulf Coast Aquifer System parallels the coast, covers the Lavaca Region, and also extends outside the LRWPA to the northeast and southwest.

The Jackson Group, a minor aquifer, is located in the northwestern portion of Lavaca County. The aquifer provides small amounts of water to domestic and livestock wells in the very northwestern reaches of the LRWPA. Only a small part of the Jackson Group occurs in the very northwestern part of Lavaca County northwest of the Town of Moulton.

There are no minor aquifers present in Jackson or Wharton Counties for which estimates of groundwater availability have previously been provided, as groundwater in the two counties is pumped from the Gulf Coast Aquifer System. Data and text from TWDB and U.S. Geological Survey reports for Wharton and Jackson Counties do not reference minor aquifers in these two counties.

Figure 3-1 Groundwater Aquifers

3.2.2 Groundwater Use Overview

Groundwater in the region is pumped for domestic, agricultural, municipal, and industrial uses. According to the Texas Water Development Board historical groundwater pumpage estimates, in 2011, at the start of the most recent drought, the Lavaca Region pumped approximately 216,000 ac-ft of groundwater for these purposes. Agricultural irrigation accounts for approximately 92 percent of the groundwater pumped in the region. Wells used for agricultural irrigation tend to be deeper than the more shallow wells used for pumping water for livestock purposes. Municipal and public usage, which includes usage for cities, communities, parks, campgrounds, and water districts, represents approximately 5 percent of the groundwater pumped. Approximately 3 percent of groundwater pumped in the LRWPA is for industrial and mining needs, including manufacturing and other industrial uses.

3.2.3 Aquifer Conditions

Groundwater conditions have been historically favorable and will likely continue to be favorable within the Lavaca Region for the pumping of substantial quantities of good quality water. That being said, recent drought years have shown that unusual increases in pumping for extended periods in neighboring regions could potentially impact domestic wells in the Lavaca Region.

The Gulf Coast Aquifer System was deposited in a manner that resulted in substantial thicknesses of sand that contain fresh (good quality) groundwater. The aquifer has about 200 to 450 feet of sand that contains freshwater in Lavaca County. Sand thickness tends to be greater in the southeastern part of the county. In Jackson and Wharton Counties within the LRWPA, the Gulf Coast Aquifer System contains about 300 to 700 feet of freshwater sands in most of the area. In the southern part of Jackson County, north of Lavaca Bay, a limited area of the aquifer has 0 to 200 feet of sand that contains freshwater of less than 1,000 milligrams per liter (mg/L) total dissolved solids (TDS).

A Central Gulf Coast Groundwater Availability Model (GAM) was developed for the Central Gulf Coast Aquifer System in the LRWPA, and the model is described in a report prepared by TWDB entitled *Groundwater Availability Model of the Central Gulf Coast Aquifer System: Numerical Simulations through 1999.* The model divides the Gulf Coast Aquifer into four layers that are the Chicot aquifer, Evangeline aquifer, Burkeville Confining System, and the Jasper aquifer. The main layers of the model that provide substantial amounts of water are the Chicot, Evangeline, and Jasper aquifers. For modeling purposes, the Catahoula Sandstone in northwestern Lavaca County is considered to be hydraulically connected to the Jasper aquifer. Further to the southeast, the Catahoula contains a greater percentage of fine-grained material and functions as a confining layer below the Jasper aquifer.

Based on the GAM, the estimated transmissivity for the Chicot aquifer in the LRWPA ranges from less than 15,000 gallons per day per foot (gpd/ft) near the outcrop up to 220,000 gpd/ft near southern Wharton County and eastern Jackson County. The Evangeline aquifer transmissivity ranges from less than 7,500 gpd/ft near the outcrop up to 85,000 gpd/ft in eastern Wharton County. The Central Gulf Coast GAM estimates that the transmissivity for the Jasper aquifer ranges from about 250 gpd/ft in eastern Lavaca County to 7,500 gpd/ft in eastern Wharton County. Pumping test data from a City of Hallettsville (Lavaca County) public supply well completed in the Jasper aquifer show transmissivity values ranging from 4,500 gpd/ft to 10,000 gpd/ft. The transmissivity values for the Chicot and Evangeline aquifers indicate that they are capable of transmitting large quantities of water to wells. The transmissivity values calculated from the City of Hallettsville well indicate that the Jasper aquifer is capable of transmitting moderate quantities of water to wells.

The development of large quantities of groundwater within the LRWPA has resulted in potentiometric head decline in the Gulf Coast Aquifer System. Data in TWDB Report 289, combined with water level changes since about 1970, indicate that the potentiometric head in the Chicot aquifer has declined approximately 20 feet, and up to possibly 80-120 feet since 1900 as a result of the pumping that has

occurred in the area. For the Evangeline aquifer, approximately 20 to possibly 100 feet of potentiometric head decline has occurred since 1900 as the result of the withdrawals of groundwater. The depth interval screened by the large capacity wells in the Lavaca Region normally ranges from about 300 to 600 feet, with some wells' screening depths as deep as 1,200 to 1,400 feet. Static water levels measured in the wells normally range from about 50 to 120 feet. This illustrates that there is a substantial amount of available drawdown in the wells that will continue to sustain the overall pumpage in the LRWPA.

Static (non-pumping) water levels have been measured in wells in Wharton and adjoining counties for decades to help monitor the response of the aquifer to pumpage. The wells screen the Chicot and/or Evangeline aquifers. Water levels have remained relatively stable in the region, with some declines and some increases over the last several decades.

Figure 3-2 and Figure 3-3 below show the static water level since 2010 for Well 66-53-406 and Well 66-61-302, respectively, in the western part of Wharton County. During the most recent drought (2011-2014), the potential that a prolonged drought combined with potential continued increased pumping in neighboring regions could result in larger water level declines was a cause of concern. These figures show that while water levels in the aquifer in western Wharton County did drop during the drought, the aquifer has recharged itself since 2014 and by 2017-2018 was back to levels similar to those before the drought occurred. In addition, the figures show the seasonal variation in water level on an annual basis.

Figure 3-2
Static Water Levels in West Wharton County (Well 66-53-406)

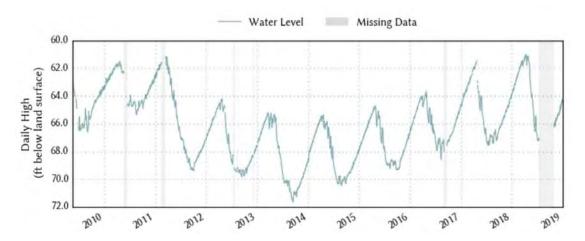
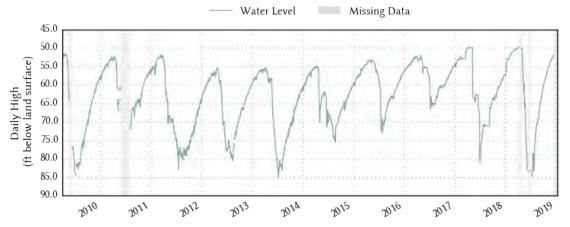



Figure 3-3
Static Water Levels in West Wharton County near Louise, TX (Well 66-61-302)

3.2.4 Groundwater Quality

Water samples have been collected from wells for water chemistry analysis for over 40 years within the LRWPA. Groundwater in the LRWPA is generally of good quality, although test results for some wells have shown tested constituents above the maximum contaminant level. In general, the areas with groundwater quality issues occur in Lavaca County where water demand is lower than the estimates of available groundwater supply. In Jackson and Wharton Counties, data show that the groundwater for large capacity production is of good quality, has not been adversely impacted by past pumping, and should not be adversely impacted by estimated future pumping.

3.2.5 Water Level Monitoring Program for the LRWPA

A Water Level Monitoring Program for the LRWPA was developed as part of the 2006 planning cycle. The Water Leveling Monitoring Program was designed to assess changes in groundwater pumping conditions that occur through the irrigation season. An objective of the study was to estimate the effects that increases in pumpage during the irrigation season could have on water levels in wells and on the pumping rates and pumping lifts of wells. The irrigation and public supply wells located in the study area provide data that reflect the response of the aquifer to the pumping. This information has relevance to the overall pumping costs that agriculture has to shoulder in providing water for irrigated crops and how water levels and pumping rates could change if there were a significant change in groundwater pumping in the region.

A number of conclusions were drawn from data collected as part of the program between its inception in 2001 through the spring of 2005. Results indicated that pumping rates of the large capacity irrigation wells can decline a few hundred gallons per minute during the irrigation season due to static water level decline and resulting in increased pumping lift. In turn, the increased pumping lift through the irrigation season can result in an estimated 10 to 15 percent increase in the cost of pumping water. The data show that the seasonal fluctuations in static water levels in wells were greater in 2002 and 2003 than in 2004 because there was less precipitation and probably higher amounts of pumping in the growing seasons of 2002 and 2003 than during the growing season of 2004. Within the study area, there was a small rise in the static water levels in wells from 2001 through the spring of 2005. The small rise in static water levels probably is the result of less groundwater pumping, particularly in 2004. The static water level fluctuations during the irrigation season normally are greater in the deeper wells that are pumped at higher rates and less in the shallower wells that normally do not have as high pumping rates or total pumped volume.

3.2.6 Subsidence Effects

Land surface subsidence is best described as follows: the artesian pressure within the confining layers of the aquifer keeps the clays fully saturated and at the same pressure as the aquifer sand layers above and below the clay layers. As water is pumped from the sands the pressure is reduced in them and the pressure in the clays begins decreasing as small amounts of water flow from clays to the sands. As water flows from the clays, the clay matrix compresses slightly. This, in turn, results in a small amount of subsidence of the land surface.

Data show that small amounts of land surface subsidence have resulted from the withdrawal of groundwater that helps to support the economic viability of the Lavaca Region. Available data indicate subsidence of up to 1.5 feet in the southeastern part of Jackson County with lesser subsidence in other areas for 1900 through the mid-1970s. Subsidence since the 1970s is estimated to have been relatively minor in the LRWPA.

¹ TWDB Report 289, Digital Models for Simulation of Groundwater Hydrology of the Chicot and Evangeline Aquifers Along the Gulf Coast of Texas (May 1985)

3.2.7 Public Supply Groundwater Usage

The Lavaca Region relies on groundwater to provide all of the municipal water supply. This accounts for approximately 4.2 percent, or 8,416 ac-ft of the existing supplies in the LRWPA. Within the LRWPA, Jackson County accounts for approximately 21.7 percent, or 1,827 ac-ft of the region's municipal groundwater usage; Lavaca County accounts for 38.3 percent, or 3,226 ac-ft; and Wharton County accounts for 40.0 percent, or 3,363 ac-ft. There are eleven major municipal users scattered throughout the LRWPA. The major municipal users in Jackson County are Edna, Ganado, and the County-Other category with approximately 48, 13, and 39 percent of the county's municipal groundwater usage, respectively. Municipal users represent water utilities with an annual usage of at least 100 ac-ft/yr or approximately 33 million gallons per year, while County-Other represents water utilities with a usage of less than 100 ac-ft/yr, as well as property owners, parks, campgrounds, and other areas supplied by domestic wells. The major municipal users in Lavaca County are Hallettsville, Moulton, Shiner, Yoakum, and County-Other with approximately 20, 6, 15, 20, and 39 percent of the county's municipal groundwater usage, respectively. The major municipal users in Wharton County are El Campo, Wharton County WCID 1, and County-Other with approximately 75, 6 and 19 percent of the county's municipal groundwater usage, respectively.

3.2.8 Agricultural Groundwater Usage

According to data obtained from the TWDB, pumpage in Wharton County within the LWRPA has averaged more than 80,000 ac-ft/yr since 1967. From 1984 through 2003, pumpage within the region averaged about 99,000 ac-ft/yr with the principal usage being the irrigation of rice. The pumpage for rice irrigation is distributed throughout the region within Wharton County. The location of the region boundary in Wharton County is shown in *Figure 3-1*. This figure also shows the eastern portion of Jackson County which immediately adjoins Wharton County to the southwest.

In 2011, groundwater pumped for agricultural practices, principally irrigation, accounted for approximately 95 percent or 194,150 ac-ft of the groundwater pumped in the Lavaca Region. In terms of the region's total agricultural groundwater pumpage, Jackson County accounted for about 45 percent; Lavaca County, 5 percent; and Wharton County, 50 percent of the groundwater pumped. Agricultural pumpage represents water that is used for livestock purposes and irrigation of crops. Groundwater used for irrigation represented approximately 99 percent of the groundwater pumped for agriculture in the LRWPA. The main crop is rice with smaller acreages of cotton, grain sorghum, soybeans, turfgrass, aquaculture, and corn.

The LRWPA's agricultural irrigated areas are scattered throughout Wharton and Jackson Counties and are concentrated in the southeastern part of Lavaca County. Groundwater pumpage accounted for about 97 percent of the water supplied for irrigated agriculture in 2011. The remainder of the water was provided by surface water from creeks and rivers. Surface water was used in combination with groundwater to irrigate some areas in southern and western Jackson County, and surface water from the Colorado River was used to irrigate about 1,500 acres in the northwestern part of Wharton County.

Projected agricultural irrigation demands for the 2020 through 2070 planning horizon are 78,498 ac-ft/yr for Jackson County, 8,692 ac-ft/yr for Lavaca County, and 88,446 ac-ft/yr for the portion of Wharton County within the LRWPA.

3.3 Groundwater Availability for the Central Gulf Coast Aquifer System

Available groundwater is the volume of groundwater that can be withdrawn from an individual aquifer in accordance with the principle by which the aquifer is being managed or an assumed management approach. That managing principle, typically stated as a sustainability goal, can be stated in various ways, and the mechanism through which availabilities are being stated throughout Texas is evolving.

Before the advent of Groundwater Management Areas (GMAs) (HB 1763, 79th Legislature), an aquifer, or portion of an aquifer, may or may not have had a governmental entity managing the way that aquifer was being managed. If an aquifer, or portion of an aquifer, was managed, it was by a Groundwater Conservation District whose jurisdiction can coincide with the boundary or boundaries of one or more counties or an aquifer. Most aquifers span multiple counties, and in that case the entire aquifer can be managed by one or more GCDs, with some portions not managed at all. GMAs are a different concept in that every county in the State is in one or more of sixteen GMAs, for the most part the major aquifers are not split across multiple GMAs, and the goal is to manage entire aquifer systems across political subdivisions in a consistent way.

The Lavaca Region is within GMA 15. The Groundwater Conservation Districts (GCD) within GMA 15 worked together to determine the desired future condition (DFC) of the Central Gulf Coast Aquifer System. Desired future conditions are essentially management goals for each aquifer. The DFCs for the Central Gulf Coast Aquifer System, adopted by GMA 15 on April 29, 2016, are summarized as follows:

- No more than 13 feet of average drawdown by 2069 relative to 2000 conditions. (all counties)
- Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 15 feet in December 2069 from estimated year 2000 conditions for Jackson County.
- Drawdown of the Gulf Coast Aquifer System shall not exceed an average of 18 feet in December 2069 from estimated year 2000 conditions for Lavaca County.
- Drawdown shall not exceed an average of 15 feet in Chicot and Evangeline Aquifers in December 2069 from estimated year 2000 conditions for Wharton County.

The Texas Water Development Board (TWDB) took the DFC for the aquifer and ran a groundwater availability model (GAM) that converted the DFC into a volume. This volume is considered the modeled available groundwater or MAG. The MAG, which is considered the maximum amount of groundwater available for the regional water planning process from a particular aquifer, is documented in TWDB reports, with the GMA 15 Central Gulf Coast Aquifer System MAG being documented in TWDB report GR 16-025_MAG, dated March 22, 2017. The report provides the MAG values for the Lavaca Region by county and basin, as shown in *Table 3-1*.

Table 3-1 Modeled Available Groundwater (MAG) Volumes for the Gulf Coast Aquifer System in the Lavaca Region (ac-ft/yr)

Pagion	County	Basin			Year		
Region	County	Dasili	2020	2030	2040	2050	2060
		Colorado-Lavaca	28,025	28,025	28,025	28,025	28,025
P	Jackson	Lavaca	49,582	49,582	49,582	49,582	49,582
F		Lavaca-Guadalupe	12,875	12,875	12,875	12,875	12,875
		County Total	90,482	90,482	90,482	90,482	90,482
	Lavaca	Guadalupe	41	41	41	41	41
P		Lavaca	19,811	19,811	19,811	19,811	19,811
F		Lavaca-Guadalupe	401	401	401	401	401
		County Total	20,253	20,253	20,253	20,253	20,253
		Colorado	873	873	873	873	873
P	Mhartan	Colorado-Lavaca	14,091	14,091	14,091	14,091	14,091
	Wharton	Lavaca	62,992	62,992	62,992	62,992	62,992
		County Total	77,956	77,956	77,956	77,956	77,956

In the GR16-025 MAG report, MAG values were determined for the years between 2000 and 2069. In the report, the MAG values are shown by Groundwater Conservation District / County out to 2069, but are only shown through 2060 for the MAG values by County and River Basin. *Table 3-1* shows these County/ River Basin MAG values through 2060. The regional water planning period is 2020 – 2070, though, so availability numbers must be shown for 2070 as well. Thus, the 2069 MAG values are used for the 2070 regional water planning decade. In the report, the MAG values for the year 2069 for the Groundwater Conservation Districts in Jackson County and Wharton County are the same as for 2060, but the MAG values for Lavaca County, which has no Groundwater Conservation District, decreases slightly from 2060 to 2069. *Table 3-2* below, shows the resultant availability numbers for the Gulf Coast Aquifer System within the Lavaca Region, which are used for planning purposes. As can be seen in the table, the 2070 availability for the Lavaca River Basin within Lavaca County decreases slightly from 2060 to 2070.

Year Region County **Basin** 2020 2030 2040 2050 2060 2070 Colorado-Lavaca 28,025 28,025 28,025 28,025 28,025 28,025 49,582 49,582 49,582 49,582 49,582 49,582 Lavaca Ρ Jackson Lavaca-Guadalupe 12,875 12,875 12,875 12,875 12,875 12,875 County Total 90,482 90,482 90,482 90,482 90,482 90,482 Guadalupe 41 41 41 41 41 41 19.811 19.811 19.811 19.811 Lavaca 19.811 19.797 Ρ Lavaca Lavaca-Guadalupe 401 401 401 401 401 401 County Total 20,253 20,253 20,253 20,253 20,253 20,239 Colorado 873 873 873 873 873 873 Colorado-Lavaca 14,091 14,091 14,091 14,091 14,091 14,091 Ρ Wharton 62,992 62,992 62,992 62,992 62,992 62,992 Lavaca County Total 77.956 77.956 77.956 77.956 77.956 77.956

Table 3-2 Lavaca Region Groundwater Availability for the Gulf Coast Aquifer System (ac-ft/yr)

3.4 Identification of Surface Water Sources

The LRWPA is located in the Lavaca, Colorado-Lavaca Coastal, and Lavaca-Guadalupe Coastal River Basins. Approximately 90 percent of the LRWPA is located in the Lavaca River Basin. A portion of the surface water supply is obtained from ROR water out of the Lavaca and Navidad Rivers. These are the two main rivers in the LRWPA. The remaining surface water from sources within the region is obtained from Lake Texana, the only reservoir in the region. Please refer to *Figure 1-2* for the location of major surface water sources. Surface water sources outside of the region include the Colorado River in Region K. A portion of the Garwood Irrigation District is located within the Lavaca Region and receives some surface water supplies from the Colorado River in Region K.

3.4.1 Available Surface Water

Surface water availability was estimated for the 2021 RWP using a modified version of the 2014 TCEQ Water Availability Model (WAM) for the river basins within the LRWPA. The WAMs use the Water Rights Analysis Package (WRAP), developed at Texas A&M University, to simulate authorized diversions under current and future conditions using historical rainfall and evaporation data. Despite the more recent drought, the Drought of Record (DOR) for this region of Texas occurred in the 1950s and is reflected in the historical dataset. Water diversions are modeled according to the parameters of each particular water right and taken in priority order, so that the most senior water rights are satisfied

before junior rights are allowed to divert water. Output files are compared by reviewing the statistical frequency of meeting diversion amounts or target instream flow levels. The reliable yield of a water right is the least amount of water diverted among all of the calendar years modeled. For reservoirs, an additional step is required to determine firm yield. Water stored in reservoirs allows diversions to continue during periods of drought; however, diverting at high rates rapidly depletes storage. To find the optimal target for a reservoir, an iterative process is used, modeling the permit first at its full-authorized diversion, and then at reduced target diversions until a yield is identified that is met throughout the simulation period.

There were originally eight WAM scenarios (referred to as model runs) simulated under the TCEQ program. The Guidelines for Regional Water Planning require the use of WAM Run 3, the full-authorized diversion of current water rights with no return flows, when determining the supply available to the region. This is a very conservative approach, since diversions for municipal and manufacturing use typically return up to 60 percent of that water to streams as treated wastewater effluent. However, the majority of water rights do not address return flows to source streams, implying a right to full consumptive use.

In previous planning cycles, the LRWPG has used the TCEQ Lavaca River WAM Run 3 to determine the firm yield of Lake Texana. This cycle, the LRWPG requested TWDB approval to use a modified version of the TCEQ Lavaca River WAM Run 3. The modified model was based on a review of the TCEQ Lavaca River WAM Run 3 performed by Freese & Nichols, Inc. (FNI) in 2016. The review discovered a few issues with the model related to the SB3 pulse flows, consistency with standard Run 3 assumptions, and consistency with water right permit terms. FNI proposed revisions to address the issues, and prepared a memo to TCEQ detailing the revisions. The LRWPG agreed that the revisions create a more accurate model. TWDB approved the LRWPG's request to use the modified model for determining surface water availability in the Lavaca Region. *Appendix 3B* contains the LRWPG hydrologic variance request to TWDB, which includes a description of the modified TCEQ Lavaca WAM Run 3. Appendix 3B also includes the approval letter from TWDB at the front of the appendix.

Run-of-river water from the Lavaca and Navidad Rivers is used primarily for irrigation purposes. No surface water is currently being used within the region for municipal purposes, and only a small amount is used for industrial purposes. *Table 3-3* shows the permitted diversions within the LRWPA. However, these permitted diversion rights in the LRWPA have 0 ac-ft/yr of firm yield under DOR conditions, so there is no supply shown for these diversions in the 2021 Lavaca RWP. Individual water right appropriations of rivers and creeks in the LRWPA are included in *Appendix 3C*.

Stream	Permitted Authorization (ac-ft/yr)					
Lavaca River	4,547.5					
Navidad River	2,050.0					
West Mustang	3,155.0					
East Mustang	3,313.0					
Sandy Creek	3,023.0					
Pinoak Creek	5,007.0					
Goldenrod Creek	2,950.0					
Sutherland Branch	400.0					
Arenosa Creek	10.0					
Rocky Creek	33.0					
Stage Stand Creek	640.0					
Lunis Creek	100.0					
Porters Creek	3,306.0					
Total	33,534.5					

Table 3-3 Permitted Diversions from LRWPA Rivers and Streams

Lake Texana is the only reservoir in the LRWPA. It was developed as part of the Palmetto Bend Reclamation Project in 1968. Lake Texana had an original firm yield of 79,000 ac-ft. Of this amount, 4,500 ac-ft of water was reserved for required releases for the bays and estuaries. This brings the available firm yield to 74,500 ac-ft. Projected sedimentation was incorporated into the model runs for 2020-2070, in determining the firm yield of Lake Texana.

The surface water availability for the Colorado River water rights in Region K was determined using the Region K Cutoff Model, which is an approved, modified version of the TCEQ Colorado River WAM. The total availability for the irrigation portion of the Garwood Irrigation Division water right is 100,000 ac-ft. Sixteen percent of the Garwood Irrigation Division is within the Lavaca Region. Therefore, the amount of available surface water from the Colorado River for the Lavaca Region during the DOR is 16,000 ac-ft. The Arbuckle Reservoir, a new source in the 2021 Region K Water Plan, provides additional reliability for the Colorado River during DOR conditions.

3.5 Major Water Providers

The only MWP in the LRWPA is the Lavaca-Navidad River Authority (LNRA), which holds rights to the firm yield of Lake Texana. 31,440 ac-ft of this water is contracted for use by Corpus Christi and its surrounding service area. Another 41,200 ac-ft is contracted for industrial use to Formosa Plastic Corporation, 1,032 ac-ft to Inteplast Corporation, and 594 ac-ft to Calhoun County Navigational District, and 178 ac-ft to the City of Point Comfort. The Inteplast Corporation contract and an expected 10,400 ac-ft of the Formosa Plastic Corporation contract are the only uses of water from Lake Texana that are used within the LRWPA. As additional existing and potential customers develop plans to establish facilities within the LRWPA, LNRA will look at options for creating additional water supplies to meet those new demands. *Chapter 5* discusses the potential water management strategies that could create additional water supplies for LNRA.

A volume of water equal to 4,500 ac-ft is set aside from the firm yield of Lake Texana for environmental flows. Additionally, LNRA releases water from reservoir storage to meet pass through requirements as set forth in an agreement with Texas Parks and Wildlife Department (TPWD). This agreement stipulates freshwater release rates for bay and estuary inflows that are based on historical mean and median monthly streamflows in the Lavaca Basin.

In addition to the firm yield rights listed above, LNRA has a total of 12,000 ac-ft/yr of interruptible water supply from Lake Texana. The majority of this supply is contracted to the City of Corpus Christi. Although this amount is not reliable in DOR conditions, these supplies are available for typical conditions.

3.6 Inter-Regional Coordination

The LRWPG understands that continued coordination with neighboring regional water planning groups is essential to maintaining consistency among the different regions and insuring that supplies and management strategies are properly developed. Based on the coordination that has occurred to date, implementation of water management strategies currently planned for Regions L and N are not expected to impact supplies in the LRWPA.

3.7 Water Supply Allocations

Water supply allocations by WUG, county, and basin are shown in *Appendix 3A*. Existing water supplies determined for WUGs and the major water provider, LNRA, are legally and physically available under DOR conditions. The methodology used for allocating existing water supplies in the 2021 Lavaca RWP involved making minor updates to the existing supply allocation from the 2016 Lavaca RWP, based on the limited growth in the region and the limited impacts on water supplies the recent drought has had. No shortages are projected for Jackson County or Lavaca County. For the Lavaca Region portion of Wharton County, shortages are projected for irrigation in the Lavaca Basin (8,067 ac-ft/yr shortage.) These projected shortages remain constant across the planning horizon

APPENDIX 3A TWDB DB22 Reports

Region P Source Availability

GROUNDWATERSOURCE TYPE			SOURCE AVAILABILITY (ACRE-FEET PER YEAR)						
SOURCE NAME	COUNTY	BASIN	SALINITY *	2020	2030	2040	2050	2060	2070
GULF COAST AQUIFER SYSTEM	JACKSON	COLORADO- LAVACA	FRESH	28,025	28,025	28,025	28,025	28,025	28,025
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA	FRESH/ BRACKISH	49,582	49,582	49,582	49,582	49,582	49,582
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA- GUADALUPE	FRESH	12,875	12,875	12,875	12,875	12,875	12,875
GULF COAST AQUIFER SYSTEM	LAVACA	GUADALUPE	FRESH	41	41	41	41	41	41
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA	FRESH	19,811	19,811	19,811	19,811	19,811	19,811
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA- GUADALUPE	FRESH	401	401	401	401	401	401
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO	FRESH	873	873	873	873	873	873
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO- LAVACA	FRESH	14,091	14,091	14,091	14,091	14,091	14,091
GULF COAST AQUIFER SYSTEM	WHARTON	LAVACA	FRESH	62,992	62,992	62,992	62,992	62,992	62,992
GROUNDWATERSOURCE AVAILABILITY TOTAI			188,691	188,691	188,691	188,691	188,691	188,691	

SURFACE WATER SOURCE TYPE				SOURCE AVAILABILITY (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY *	2020	2030	2040	2050	2060	2070
TEXANA LAKE/RESERVOIR	RESERVOIR**	LAVACA	FRESH	74,500	74,500	74,500	74,500	74,500	74,500
SURFACE WATER SOURCE AVAILABILITY TOTAL			74,500	74,500	74,500	74,500	74,500	74,500	
PEGION B. SOLIDCE AVAILABILITY TOTAL			262 101	262 101	262 101	262 101	262 101	262 101	

^{*} Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

** Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

Region P Water User Group (WUG) Existing Water Supply

	SOURCE		EXISTING SUPPLY (ACRE-FEET PER YEAR)					
WUG NAME	REGION	SOURCE DESCRIPTION	2020	2030	2040	2050	2060	2070
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	331	331	331	331	331	331
MANUFACTURING	Р	TEXANA LAKE/RESERVOIR	10,549	10,627	10,627	10,627	10,627	10,627
MINING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	10	10	10	10	10	10
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	415	415	415	415	415	415
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	22,372	22,372	22,372	22,372	22,372	22,372
		COLORADO-LAVACA BASIN TOTAL	33,677	33,755	33,755	33,755	33,755	33,755
EDNA	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	1,281	1,281	1,281	1,281	1,281	1,281
GANADO	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	340	340	340	340	340	340
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	602	602	602	602	602	602
MANUFACTURING	Р	TEXANA LAKE/RESERVOIR	146	147	147	147	147	147
MINING	P	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	41	41	41	41	41	41
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	1,289	1,289	1,289	1,289	1,289	1,289
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	45,136	45,136	45,136	45,136	45,136	45,136
		LAVACA BASIN TOTAL	48,835	48,836	48,836	48,836	48,836	48,836
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	71	71	71	71	71	71
MANUFACTURING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	50	50	50	50	50	50
MANUFACTURING	P	TEXANA LAKE/RESERVOIR	179	181	181	181	181	181
MINING	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	22	22	22	22	22	22
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM JACKSON COUNTY	178	178	178	178	178	178
IRRIGATION P GULF COAST AQUIFER SYSTEM JACKSON COUNTY			10,990	10,990	10,990	10,990	10,990	10,990
		LAVACA-GUADALUPE BASIN TOTAL	11,490	11,492	11,492	11,492	11,492	11,492
		JACKSON COUNTY TOTAL	94,002	94,083	94,083	94,083	94,083	94,083
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	4	4	4	4	4	4
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	37	37	37	37	37	37
		GUADALUPE BASIN TOTAL	41	41	41	41	41	41
HALLETTSVILLE	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	846	846	846	846	846	846
MOULTON	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	234	234	234	234	234	234
SHINER	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	641	641	641	641	641	641
YOAKUM*	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	860	860	860	860	860	860
COUNTY-OTHER	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	1,611	1,611	1,611	1,611	1,611	1,611
MANUFACTURING	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	625	625	625	625	625	625
MINING	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	2,544	2,544	2,544	2,544	2,544	2,544
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	3,650	3,650	3,650	3,650	3,650	3,650
IRRIGATION	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	8,692	8,692	8,692	8,692	8,692	8,692
	1	LAVACA BASIN TOTAL	19,703	19,703	19,703	19,703	19,703	19,703
COUNTY-OTHER	P	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	1	1	1	1	1	1
LIVESTOCK	Р	GULF COAST AQUIFER SYSTEM LAVACA COUNTY	76	76	76	76	76	76
		LAVACA-GUADALUPE BASIN TOTAL	77	77	77	77	77	77
	T	LAVACA COUNTY TOTAL	19,821	19,821	19,821	19,821	19,821	19,821
EL CAMPO*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	347	347	347	347	347	347
COUNTY-OTHER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	31	31	31	31	31	31
	T	COLORADO BASIN TOTAL	378	378	378	378	378	378
EL CAMPO*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	2,125	2,125	2,125	2,125	2,125	2,125
COUNTY-OTHER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	134	134	134	134	134	134
MANUFACTURING*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	34	34	34	34	34	34
MINING*	P	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	6	6	6	6	6	6
LIVESTOCK*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	184	184	184	184	184	184
IRRIGATION*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	4,858	4,858	4,858	4,858	4,858	4,858

 $[\]hbox{*A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.}$

Region P Water User Group (WUG) Existing Water Supply

	SOURCE		EXISTING SUPPLY (ACRE-FEET PER YEAR)					
WUG NAME	REGION	SOURCE DESCRIPTION	2020	2030	2040	2050	2060	2070
		COLORADO-LAVACA BASIN TOTAL	7,341	7,341	7,341	7,341	7,341	7,341
EL CAMPO*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	61	61	61	61	61	61
WHARTON COUNTY WCID 1	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	213	213	213	213	213	213
COUNTY-OTHER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	452	452	452	452	452	452
MINING*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	13	13	13	13	13	13
STEAM ELECTRIC POWER*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	2,060	2,060	2,060	2,060	2,060	2,060
LIVESTOCK*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	650	650	650	650	650	650
IRRIGATION*	К	COLORADO RUN-OF-RIVER	16,000	16,000	16,000	16,000	16,000	16,000
IRRIGATION*	Р	GULF COAST AQUIFER SYSTEM WHARTON COUNTY	59,521	59,521	59,521	59,521	59,521	59,521
		LAVACA BASIN TOTAL	78,970	78,970	78,970	78,970	78,970	78,970
		WHARTON COUNTY TOTAL	86,689	86,689	86,689	86,689	86,689	86,689
	REGION P EXISTING WATER SUPPLY TOTA				200,593	200,593	200,593	200,593

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Source Water Balance (Availability - WUG Supply)

GROUNDWATERSOURCE TYPE				SOURCE WATER BALANCE (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY*	2020	2030	2040	2050	2060	2070
GULF COAST AQUIFER SYSTEM	JACKSON	COLORADO- LAVACA	FRESH	4,897	4,897	4,897	4,897	4,897	4,897
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA	FRESH/ BRACKISH	893	893	893	893	893	893
GULF COAST AQUIFER SYSTEM	JACKSON	LAVACA- GUADALUPE	FRESH	1,564	1,564	1,564	1,564	1,564	1,564
GULF COAST AQUIFER SYSTEM	LAVACA	GUADALUPE	FRESH	0	0	0	0	0	0
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA	FRESH	108	108	108	108	108	108
GULF COAST AQUIFER SYSTEM	LAVACA	LAVACA- GUADALUPE	FRESH	324	324	324	324	324	324
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO	FRESH	842	842	842	842	842	842
GULF COAST AQUIFER SYSTEM	WHARTON	COLORADO- LAVACA	FRESH	6,279	6,279	6,279	6,279	6,279	6,279
GULF COAST AQUIFER SYSTEM	WHARTON	LAVACA	FRESH	83	83	83	83	83	83
GROUNDWATERSOURCE WATER BALANCE TOTAL			14,990	14,990	14,990	14,990	14,990	14,990	

SURFACE WATER SOURCE TYPE				SOURCE WATER BALANCE (ACRE-FEET PER YEAR)					
SOURCE NAME	COUNTY	BASIN	SALINITY*	/* 2020 2030 2040 2050 2060					2070
TEXANA LAKE/RESERVOIR	RESERVOIR**	LAVACA	FRESH	0	0	0	0	0	0
SURFACE WATER SOURCE WATER BALANCE TOTAL				0	0	0	0	0	0
SURFACE WATER SOURCE WATER BALANCE TOTAL				0	0	0	0	0	

REGION P SOURCE WATER BALANCE TOTAL	14.990	14.990	14.990	14.990	14.990	14.990

^{*} Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

^{**} Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

APPENDIX 3B Modified TCEQ Lavaca River WAM Run 3

P.O. Box 13231, 1700 N. Congress Ave. Austin, TX 78711-3231, www.twdb.texas.gov Phone (512) 463-7847, Fax (512) 475-2053

July 20, 2018

The Honorable Phillip Spenrath Region P RWPG Chair c/o Lavaca-Navidad River Authority P.O. Box 429 Edna, TX 77957

RE:

Region P Regional Water Planning Group (RWPG) request for approval to modify surface water availability hydrologic assumptions for development of the 2021 Region P Regional Water Plan (RWP)

Dear Judge Spenrath:

The Texas Water Development Board (TWDB) has reviewed your request dated June 21, 2018 for approval of alternative water supply assumptions to be used in determining surface water availability. This letter confirms that the TWDB approves the use of the proposed Freese & Nichols, Inc modified version of the Texas Commission on Environmental Quality (TCEQ) Lavaca Water Availability Model (WAM) RUN3 for existing supply analysis.

Region P also requested to use the modified Lavaca WAM RUN3 for water management strategy evaluations. While the use of these modified conditions may be reasonable for planning purposes, WAM RUN3 would be utilized by the TCEQ for analyzing permit applications. It is acceptable to use modified conditions for water management strategy supply evaluations only if the yield produced is more conservative for surface water appropriations than WAM RUN3. However, TWDB is of the understanding that the modified conditions would result in greater yields than WAM RUN3. Strategy evaluations involving new surface water appropriations must be based on WAM RUN3.

While the TWDB authorizes this modification to evaluate existing water supplies for development of the 2021 Region P RWP, it is the responsibility of the RWPG to ensure that the resulting estimates of water availability are reasonable for drought planning purposes and will reflect conditions expected in the event of actual drought conditions; and in all other regards will be evaluated in accordance with the contract Exhibit C, Second Amended General Guidelines for Fifth Cycle of Regional Water Plan Development.

The Honorable Judge Phillip Spenrath July 20, 2018 Page 2

If you have any questions, please do not hesitate to contact Elizabeth McCoy, project manager for Region P, at 512-475-1852 or via email at elizabeth.mccoy@twdb.texas.gov.

Sincerely,

Jeff Walker

Executive Administrator

c: Mr. Patrick Brzozowski, Lavaca-Navidad River Authority

Ms. Karen Gregory, Lavaca-Navidad River Authority

Ms. Jaime Burke, AECOM, Inc. Ms. Elizabeth McCoy, TWDB

LAVACA REGIONAL WATER PLANNING GROUP

P.O. Box 429

Phone: 361-782-5229

Edna, Texas 77957 Fax: 361-782-5310

EXECUTIVE COMMITTEE

Phillip S. Spenrath

Chairman Counties June 21, 2018

Neil Hudgins

Vice-Chairman GCDs

Mr. Jeff Walker

Executive Administrator

Patrick Brzozowski Secretary Texas Water Development Board

model will be used per TWDB requirements.

River Authorities P.O. Box 13231

1700 North Congress Avenue

Jim Coleman Electric Service Austin, Texas 78711-3231

Marie Day Industries

Jack Maloney Municipalities Subject: Request by the Lavaca Regional Water Planning Group (Region P) to use a modified TCEQ WAM Run 3 for surface water availability modeling in the 2021 Lavaca Regional Water Plan development (Hydrologic Variance Request)

On June 18, 2018, the Lavaca Regional Water Planning Group (Region P) authorized submitting this request to you for approval to use a modified version of the TCEQ Lavaca WAM Run 3 Model

(version date of 9/2/2014) in determining availability of surface water resources for development

both surface water supply availability and for evaluating water management strategies. For water

accepted by TCEQ during the current planning cycle, the unmodified TCEQ Lavaca WAM Run 3

of the 2021 Lavaca Regional Water Plan (RWP). This request to use the modified model is for

management strategies requiring a new water right appropriation, if the modified model is not

Ed Weinheimer

Dear Mr. Walker:

Small Businesses

MEMBERS

John Butschek
Municipalities

Tom Chandler Water Utilities

Steve Cooper Agricultural

Robert Martin Agricultural

Bart J. McBeth Agricultural

Richard J. Ottis Industries

Com. Edward Pustka

This request is based on a review of the Lavaca River WAM Run 3 model, version date of 9/2/2014, which Freese & Nichols, Inc. (FNI) performed in 2016. The WAM had been updated by TCEQ in 2014 to include new code for modeling the Senate Bill 3 (SB3) environmental flows. During the review, FNI observed a few issues with the model related to the SB3 pulse flows, consistency with standard Run 3 assumptions, and consistency with water right permit terms. FNI proposed revisions to address the issues and prepared a memo to TCEQ detailing the revisions. The FNI memo is included as Attachment A to the request. Region P agrees that these revisions create a more accurate model.

Robert Shoemate Environmental

Dennis Simons Counties TCEQ has reviewed the proposed revisions from FNI, but they have not yet made the revisions to the TCEQ model and adopted it. A summary of the proposed revisions to the TCEQ Lavaca WAM Run 3 includes:

Gary Skalicky

Agriculture

 Several changes to the existing code used to model SB3 pulse flow requirements in the Lavaca WAM.

Michael Skalicky Water Districts

2. Addition of missing SB3 pulse flow code for the Navidad River at Strane Park near Edna.

David Wagner Public

- Revisions to Lake Texana SV SA records
 - These records will also then update for 2020-2070 sedimentation for regional water planning analysis, as required by TWDB guidelines.
- 4. Addition of a synthetic primary control point to correct a naturalized flow calculation.
- 5. Revisions to modeling of Lake Texana interruptible diversions
 - 3 authorizations split out rather than lumped under one diversion
 - Include annual diversion limit (simplifies the coding)
 - Pattern change to allow more water to be diverted in the last three months of the year (if available)
- Revisions to Stage 2 of the Palmetto Bend Project location and SV SA records to model it as described in COA 16-2095.

The FNI modified model and the TCEQ WAMRun 3 were both adjusted for 2020-2070 sedimentation and run to see how the surface water available supply results compared for the two model versions.

There was no change to the firm availability of the interruptible water rights – they remained at 0 acrefeet/ year for both model versions for all decades.

In the FNI modified model, the firm yield of Lake Texana was 74,500 acre-feet/year for all decades. In the TCEQ WAM Run 3, the firm yield of Lake Texana was 74,500 acre-feet/year for the 2020 decade but decreases each decade down to 73,290 acre-feet/year by 2070, due to sedimentation. Overall, the use of the modified model increases the firm yield availability of Lake Texana in the 2030-2070 decades.

Region P believes the modifications to the TCEQ Lavaca WAM Run 3 listed above create a more accurate model for use in analyzing surface water availabilities. We respectfully request to use this modified version of the TCEQ Lavaca WAM Run 3 Model (version date of 9/2/2014) in determining availability of surface water resources for development of the 2021 Lavaca Regional Water Plan (RWP). We appreciate your consideration of this request. Should you have any questions regarding this submittal, please contact our Consultant, Jaime Burke, via phone at (512) 457-7798 or via email at jaime.burke@aecom.com.

Sincerely,

Phillip Spenrath, Chairman

Lavaca Regional Water Planning Group

Enclosures: Attachment A – FNI Memo to TCEQ

C: Ms. Elizabeth McCoy, TWDB (electronically)

Region P Hydrologic Variance Request Attachment A

MEMORANDUM

Innovative approaches
Practical results
Outstanding service

10497 Town and Country Way, Suite 600 • Houston, Texas 77024 • 713-600-6800 • fax 713-600-6801www.freese.com

TO: Kathy Alexander, TCEQ

CC: Patrick Brzozowski, Bill Dugat, Doug Caroom

FROM: Philip Taucer, Jon Albright

SUBJECT: Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs

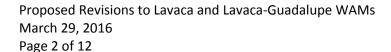
DATE: March 29, 2016

PROJECT: LVA15590

Freese and Nichols, Inc. (FNI) has performed a review of the most recent available Run 3 Water Availability Models (WAMs) for the Lavaca River Basin and Lavaca-Guadalupe Coastal Basin. The Lavaca WAM, with a version date of 9/2/2014, was obtained from the TCEQ website and includes new code for modeling of Senate Bill 3 (SB3) environmental flows. TCEQ provided FNI with a draft WAM Run 3 for the Lavaca-Guadalupe Coastal Basin, with a version date of 7/30/2015. The results of the model review indicated a number of opportunities to enhance the model. The identified issues are related primarily to SB3 pulse flows, consistency with standard Run 3 assumptions, and consistency with water right permit terms. Proposed revisions to address these issues are discussed in greater detail in the sections below.

Revisions of Existing Senate Bill 3 WRAP Code

FNI proposes several changes to the existing code used to model SB3 pulse flow requirements in the Lavaca WAM. During a review of model results, it was observed that the target volume of small pulses for the Lavaca River near Edna occasionally differed from expected values. It was determined that the CI record which sets the duration for this pulse differed from the values specified in *Title 30, Texas Administrative Code, Chapter 298 (30 TAC §298)* for the Fall season. The following revision is proposed:


CILESPND	6	6	7	7	7	7
CI	4	4	6	6	6	6

A similar issue was identified with the CI record setting the large pulse duration for Sandy Creek near Ganado. The following revision is proposed:

CISGLPND	8	8	10	10	10	10
CT	7	7	7	7	7	8

It was also observed that the target volume of the annual pulse for all SB3 locations in the model intermittently differed from expected values. It was determined that a TO record within the annual pulse calculation for each SB3 location was referencing records for the large pulse. The proposed revision for the Lavaca River near Edna is shown below. Similar charges are also recommended for the other three SB3 locations.

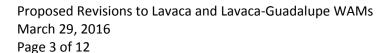
BF-LEB-AP1		XMONTH20110301	WRFKLE03	
CONT	DAYSPY	ADD	2	TO
	LEAPND	SUB	2	TO

Additions to Senate Bill 3 WRAP Code: Lavaca WAM

The existing Lavaca WAM does not include SB3 pulse flow code for the Navidad River at Strane Park near Edna (USGS Gage 08164390) as described by 30 TAC §298.330(e)(16). While the exclusion of SB3 code for this point does not appear to impact regulated flows in the existing model due to the junior priority of the SB3 code, there is the potential for impacts to future appropriations with a more junior priority date. FNI has generated additional code to model the SB3 pulse flow requirements at this location. The proposed code closely follows the approach applied by the existing Lavaca WAM for the other SB3 locations. The following changes were made to the model code:

1. Control point connectivity in the DAT file was modified to add a new control point (GSNE1) at the SB3 location as well as associated dummy control points for pulse flow calculations.

**CP RF50	2 DV501	7	GS500	-1
CP RF502	GSNE1	7	GS500	-1
CP GSNE1	NESUBS	7	GS500	-1
CPNESUBS	NEBASE	7	GS500	-1
CPNEBASE	NESPUL	7	GS500	-1
CPNESPUL	NELPUL	7	GS500	-1
CPNELPUL	NEAPUL	7	GS500	-1
CPNEAPUL	DV501	7	GS500	-1


2. FD and WP records for these additional control points were also added to the DIS file. The drainage area reflected on the WP records was set to match the contributing area listed for USGS Gage 08164390. Remaining properties listed on the WP records were copied from control point RF502.

FD GSNE1	GS500	1	GS550	GS1000
FDNESUBS	GS500	1	GS550	GS1000
FDNEBASE	GS500	1	GS550	GS1000
FDNESPUL	GS500	1	GS550	GS1000
FDNELPUL	GS500	1	GS550	GS1000
FDNEAPUL	GS500	1	GS550	GS1000
WP GSNE1	579.00	70.73	39.69	1.0
WPNESUBS	579.00	70.73	39.69	1.0
WPNEBASE	579.00	70.73	39.69	1.0
WPNESPUL	579.00	70.73	39.69	1.0
WPNELPUL	579.00	70.73	39.69	1.0
WPNEAPUL	579.00	70.73	39.69	1.0

3. UC records for pulse volumes were also added.

* *	NE UCs								
UC	NESUB	61	56	172	167	172	167	=	1401
UC		74	74	131	135	131	61		
UC	NEDRY	861	784	1107	1071	1107	1071	=	12883
UC		1476	1476	1012	1045	1012	861		
UC	NEAVG	2152	1961	2152	2083	2152	2083	=	26833
UC		2890	2890	2083	2152	2083	2152		
UC	NEWET	4366	3978	4366	4225	4366	4225	=	53038
UC		5165	5165	4225	4366	4225	4366		

4. Other changes associated with the addition of this SB3 location included addition of dummy CP and CI records to facilitate calculations as well as the WR and IF records used to set pulse targets. These changes are not included in this section due to their length, but are included in **Attachment A**.

5. Hydrologic conditions for SB3 pulse flow modeling are determined through the HIS file included with the existing Lavaca WAM. Per 30 TAC §298.320(d), the seasonal hydrologic conditions in the Lavaca River Basin are a function of reservoir elevation in Lake Texana at the end of the preceding season. However, an estimate of hydrologic condition based on the SV and SA records and modeled storage from the existing WAM results in hydrologic conditions which differ from the HIS file in approximately 40 percent of seasons. Because the SB3 code is currently the most junior in the model, this assumption does not appear to impact regulated flows in the existing model. However, modeled hydrologic conditions could impact future appropriations with a more junior priority date. TCEQ may wish to consider use of an updated HIS file generated from modeled reservoir storage from the WAM, inclusive of any other model revisions incorporated by TCEQ. Alternately, the model code could be modified to dynamically calculate hydrologic condition without the need for an HIS file.

Additions to Senate Bill 3 WRAP Code: Lavaca-Guadalupe WAM

The existing Lavaca-Guadalupe WAM does not include SB3 pulse flow code for Garcitas Creek near Inez (USGS Gage 08164600) as described by 30 TAC §298.330(e)(20). While the exclusion of SB3 code for this point does not appear to impact regulated flows in the existing model due to the junior priority of the SB3 code, there is the potential for impacts to future appropriations with a more junior priority date. FNI has generated additional code to model the SB3 pulse flow requirements at this location. The proposed code closely follows the approach applied by the existing Lavaca WAM for SB3 locations. The following changes were made to the model code:

1. Control point connectivity in the DAT file was modified to add dummy control points for pulse flow calculations.

**CPGS120	0 CB1190		1		
CPGS1200	GSGC1	1			
CP GSGC1	GCSUBS	7		GS1200	-1
CPGCSUBS	GCBASE	7		GS1200	-1
CPGCBASE	GCSPUL	7		GS1200	-1
CPGCSPUL	GCLPUL	7		GS1200	-1
CPGCLPUL	GCAPUL	7		GS1200	-1
CPGCAPUL	CB1190	7		GS1200	-1
CPDAYSPY	OUT	2	ZERO	ZERO	

2. FD and WP records for these additional control points were also added to the DIS file. The parameters on the WP records were set to match the contributing area listed for control point GS1200, the primary control point which represents USGS Gage 08164600.

```
FD GSGC1 GS1200
FDGCSUBS GS1200
FDGCBASE GS1200
FDGCSPUL GS1200
FDGCLPUL GS1200
FDGCAPUL GS1200
          97.36
WP GSGC1
                  63.90
                         38.35
          97.36
                  63.90
WPGCSUBS
                         38.35
                                   1.0
WPGCBASE
          97.36
                  63.90
                          38.35
                                   1.0
WPGCSPUL 97.36 63.90
                         38.35
                                   1.0
WPGCLPUL 97.36 63.90
                         38.35
                                   1.0
WPGCAPUL
         97.36
                 63.90
                         38.35
```


Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016 Page 4 of 12

3. UC records for pulse volumes were also added.

**	GC UCs								
UC	GCSUB	61	56	61	60	61	60	=	723
UC		61	61	60	61	60	61		
UC	GCDRY	123	112	123	119	123	119	=	1145
UC		61	61	60	61	60	123		
UC	GCAVG	246	224	246	238	246	238	=	2291
UC		123	123	119	123	119	246		
UC	GCWET	430	392	430	417	430	417	=	3856
TIC		184	184	179	184	179	430		

- 4. Because a HIS file is not included as part of the existing Lavaca-Guadalupe WAM, hydrologic conditions were assumed to mirror the Lavaca River Basin; therefore, the HIS file for the Lavaca WAM was applied for the Lavaca-Guadalupe WAM as well. Because the SB3 code is currently the most junior in the model, this assumption does not appear to impact regulated flows in the existing model. However, modeled hydrologic conditions could impact future appropriations with a more junior priority date. Potential alternative approaches which TCEQ may wish to consider include using a basin-specific HIS file generated from modeled naturalized flows or modification of model code to dynamically calculate hydrologic condition without the need for an HIS file.
- 5. Other changes associated with the addition of this SB3 location included addition of dummy CP and CI records to facilitate calculations as well as the WR and IF records used to set pulse targets. These changes are not included in this section due to their length, but are included in **Attachment B**.

Revisions to Lake Texana SVSA Records

The SV and SA records included in the Lavaca WAM for Lake Texana do not follow the standard Run 3 assumption of original surveyed area and capacity. While the reservoir began impounding flows in 1980, the SVSA records primarily reflect measurements from a year 2000 survey of the lake by the Texas Water Development Board (TWDB). TWDB data is used up to the conservation elevation of 44 feet above mean sea level (ft msl), with an additional pair of area and capacity values corresponding to the authorized storage of 170,300 ac-ft at an assumed elevation of 45 ft msl. In addition to departing from Run 3 assumptions, this potentially introduces inconsistencies into a) the modeling of reservoir operation, as bay and estuary release requirements for the lake as specified in Certificate of Adjudication (COA) 16-2095B are contingent on a percentage of storage capacity, b) the frequency and reliability of interruptible diversions from Lake Texana and c) with the operation of upstream junior irrigators that can only divert when Texana is above 43 feet.

FNI recommends use of the authorized area and capacity dataset from the Texas Department of Water Resources (TWDR) year 1984 operational analysis of Lake Texana to improve consistency with standard Run 3 assumptions. In order to confirm the reasonableness of the TDWR dataset as a representation of original reservoir conditions, the survey data and calculated sedimentation rate from TWDB's year 2010 *Volumetric and Sedimentation Survey of Lake Texana* report were used to estimate year 1980 reservoir storage. The calculated original storage based on the sedimentation in the 2010 survey is approximately 171,100 ac-ft at elevation 44 ft msl, which is very close to the authorized storage capacity of 170,300 ac-ft.

Updated model code was developed to implement this revised storage data. The following changes

Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016 Page 5 of 12

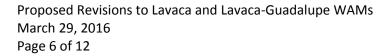
were made to the model code:

1. The SV and SA records from the existing WAM were replaced with values representing TDWR data.

SVTEXANA	0	480	2950	9190	21420	40060	64210	94790	132820	170300	180840
SATEXANA	0	190	790	1700	3190	4270	5390	6840	8370	10370	10880

2. A minor adjustment was made to the WS record for the non-interruptible diversion from Lake Texana to reflect updated storage parameters. The TDWR storage-area tables did not have the corresponding elevations. By back-calculating the incremental elevation between storage/area values for the 9th and 10th entries in the SV/SA records, it was determined that the elevation corresponding with storage 132,820 ac-ft was 4 feet lower than the elevation at 170,300 ac-ft. Assuming that the maximum storage is at elevation 44 feet, then the elevation at 132,820 ac-ft was at 40 feet. With these two points, the storage at elevation 43 feet could be calculated (160,930 acre-feet).

```
WRDV221A 74500 TA19720515 1 1 C2095_1 TEXANA1 WSTEXANA 160930
```


3. Adjustments were made to DI records to reflect updated storage parameters.

```
** DROUGHT INDEX RECORDS for B&E when below 78.18% conservation
DT
   1 0 1 TEXANA
           0 10000 100000 133140 133141 170301
IS
          100
                      100 100
               100
                                    0
ΙP
** DROUGHT INDEX RECORDS for B&E when above 78.18% conservation
DΤ
     2 0 1 TEXANA
IS
            0
                10000 100000 133140 133141 170301
                      0
                                    100
ΙP
            0
                0
                               0
                                           100
** DROUGHT INDEX RECORDS water rights that have the 43 ft msl restriction.
DI
      3 0 1 TEXANA
IS
            0 10000 100000 160930 160931 170300
                  0
                         0
                               0
                                    100
```

Addition of Synthetic Primary Control Point

The original Lavaca WAM uses flows at control point GS500 (USGS Gage 08164500, Navidad River near Ganado) to estimate flows at control point EP000, the mouth of the Lavaca River. As a result, in approximately 26 percent of the months the naturalized flow at the mouth was less than the combined naturalized flow from the upstream primary control points GS500, GS300 (USGS Gage 08164000, Lavaca River near Edna) and WGS800 (USGS Gage 08164503, West Mustang Creek near Ganado). A summary of naturalized flows for these points from the existing Lavaca WAM is included in *Attachment C*. Because the naturalized flow calculation for EP000 is solely based on GS500, whenever flow at GS500 is zero, flow at EP000 is also modeled as zero even though there are flows shown from the Lavaca River and West Mustang Creek. It does not seem reasonable to assume that these flows are lost prior to entering the bay. These observations indicate that the naturalized flow methodology applied for EP000 in the existing model is not a reliable approach.

WRAP is unable to directly calculate incremental flows below multiple primary control points. Therefore, FNI recommends addressing this issue by treating EP000 as a primary model control point

with naturalized flows synthesized externally from naturalized flows at the other primary control points. FNI calculated new naturalized flows at EP000 using the total flow at GS500, GS300, and WGS800 multiplied by the ratio of the drainage areas found in the DIS file (2,322.46 divided by 822.05 + 1058.52+ 167.53 equals 1.134). This is consistent with the method used by WRAP to calculate naturalized flows at secondary control points between primary control points. This is also consistent with a number of other WAMs which have synthetic flows at the outlet point of the model.

The following proposed code changes implement the new naturalized flows at the mouth.

1. A modified CP record changes EP000 from a secondary to a primary control point.

CP EP000 OUT GS300

The following IN records were added to the INF file.

IN EPOOO

 $1940 \quad 2090.7 \quad 26948.5 \quad 5332.9 \quad 3707.4 \quad 7929.7 \quad 23720.6639742.9 \quad 7358.4 \quad 4238.2 \quad 41153.7728331.6347518.9 \quad 4238.2 \quad 423$ IN EP000 1941119749.2 72502.6221902.4269463.5438255.8291206.0139189.6 51369.0 18366.7 67584.4 65360.1 25033.9 1942 10873.5 14823.0 15068.6174049.1 15590.5 13164.0221570.7 14218.5 43974.3 15073.0 25871.1 15765.1 1943 30324.2 10251.7 59369.1 9478.6 30296.5 16451.4 24444.6 1944192479.2 43633.8307243.9 19213.7178756.1 20630.3 11070.0 9659.1 7135.7 5978.3 50465.5 76706.4 IN EP000 7742.1 36672.3 IN EPOOO 7857.2 33994.9 81711.6 IN EP000 1945 82422.6 27362.0 20095.6210268.9 11194.8 15455.9 9637.9 43345.7 12651.5 16381.5 5450.9 17978.3 1946 48893.2115426.4 69399.5 28169.3 71036.8234881.2 34622.0 88200.0226323.3184951.0145143.6 IN EP000 EP000 1947154774.4 16801.3 38700.4 26285.7110784.0 9493.2 8734.9 7708.8 3264.7 IN EP000 1948 24928.4 55144.5 45498.8 9122.1151905.6 6450.6 12879.7 803.1 9609.7 2468.3 4834.1 IN EPOOO 1949 5213.7 53345.4 28429.2218539.8 29374.6 6545.3 17822.1 15598.8 11826.1191600.5 11652.3105499.5 IN EP000 1950 45526.4 34829.1 7269.0 27761.3 11201.0 75919.3 6830.1 342.3 8421.1 2466.8 2947.3 1693.2 2992.1 6635.2 4229.2 3836.5 86156.3 IN EP000 1951 2251.9 0.0 36705.4 9784.6 4859.0 5277.3 88717.3219581.3 1272.4 10829.9 4978.0 1466.3 7287.6 1879.6 52075.0 87359.8 2339.5 6572.5 53183.7 75035.9 IN EP000 1953 12117.8 13125.6 5145.4 6476.6161518.8 5872.3 5267.8 IN EP000 1954 1952 6 2317.7 1726 7 7664.9 12569.4 261.3 1796.8 206.7 1351.5 2709.7 2318.0 5037.7 99206.5 19019.4 1514.7103160.7 15006.1 20370.2 14653.6 IN EP000 1955 1690.8 2756.9 2335.8 IN EP000 640.3 2882.3 2916.2 3186.9 0.0 73.4 EP000 0.9 14443.7122317.2250494.9140918.8126944.7 3055.9 171.3 45338.0358842.1207530.9 19566.8 1958135682.4188849.9 23429.6 12069.5 68970.9 2500.0 20515.6 1000.7 70343.1 38097.8 21122.1 42542.4 1959 22238.7238171.0 17788.6305689.5 61885.7 76755.8 11524.5 22639.8 18217.5 92510.7 66779.8 65386.0 IN EP000 IN EP000 IN EP000 1960 59319.2 65915.7 16462.4 27904.0 38350.7349034.7 60992.7138141.0 22064.1482953.4181637.3132192.7 1961198123.5292766.8 27028.5 18377.4 15580.0285187.3126135.2 11538.7464724.2 21677.3160588.1 17203.4 IN EP000 IN EP000 1962 15002.3 16393.5 11177.0 90558.7 21379.0 43665.1 18479.3 1535.0 27730.0 8287.5 5637.8 19793.0 1963 26036.7 43530.2 6719.4 1964 5777.1 26369.1 18700.1 4849.4 8928.6 8537.3 6686.5 27990.2 5252.2 53428.0 6460.8 402.1 1914.7 2698.9 2753.1 48196.4 13189.9 IN EPOOO 2698.9 11397.9 20413.1 IN EP000 6901.4 1965 90378.1123659.3 10040.4 11646.4315458.4 98309.8 11985.0 2479.3 11670.5 26637.4171274.1 61713.6 IN EP000 IN EP000 1966 37240.7 72822.2 38400.9111372.3193786.9 43374.0 23390.3 17586.8 13956.1 8786.1 4237.3 IN EP000 1967 4355.9 3486.5 3476.6 14801.6 11547.7 1248.3 4021.8 19288.6394597.4143305.0 13450.2 1968305217.7 29962.2 29329.6 36123.0255916.9518567.1 59057.9 1969 31532.4222380.2146490.6224752.8269762.7 17396.5 6318.4 8982.4 29754.6 22864.0 18104.6 54656.8 2849.1 17209.1 26800.1 16911.4 58847.9 IN EPOOO IN EP000 IN EP000 1970 58130.4 10424.1109639.7 18254.2246297.4 70845.1 19730.1 4315.2107681.7126512.2 10030.1 4215.4 6386.1 4739.3 7928.5 8050.4 6141.6 4443.0 93715.6243004.1103831.3 11636.5116313.2 IN EP000 IN EP000 1972 65627.5107044.4 36413.9 11194.7546948.0 79854.1 32928.9 19686.1 15013.3 10059.1 10215.5 $1973 \ 19070.7 \ 40148.1209229.9478659.4 \ 92606.4965679.3 \ 72542.7 \ 41403.8130105.4300523.6 \ 51277.0 \ 23646.9 \ 1974245445.4 \ 36674.6 \ 22707.2 \ 34417.9110405.7126901.7 \ 14974.3 \ 23001.3407122.6 \ 34066.7169927.2 \ 65183.6 \ 51277.0 \ 23646.9 \$ IN EPOOO IN EP000 IN EP000 1975 36303.3 28911.2 13747.2 90101.3326517.0124750.9 80591.8 26107.5 26662.0 17822.1 IN EP000 $1976 \quad 7298.4 \quad 6679.1 \quad 7103.1 \ 81499.4128432.6 \ 76227.6 \ 66206.3$ 3237.2 9048.0113943.6 61646.5409538.6 IN EP000 1977 58199.4179226.4 22486.5197443.5 33108.4 74756.9 17937.5 1978 73279.9 46725.7 12182.9 37054.7 2787.8 39600.0 15851.0 2904.3 6001.7 6004.2 38806.0 1189.7504590.6 22795.3 33865.3 16854.2 IN EPOOO 1979328344.8154065.5 78472.6222374.2379935.2155362.5 36208.6 8093.1 11959.2 IN EP000 8068.9270814.4 6017.8 1980214429.4 37071.7 11002.6 10382.5154725.0 7463.9 13796.8 9100.2 33266.1 2121.1 IN EP000 1981 9053.4 6998.0 11409.7 35901.3 68242.0416622.0 76587.9 58141.3476075.5 81384.2347454.1 26581.1 IN EP000 1982 9603.4 82802.1 25832.0 27558.2520352.9 19251.3 20748.4 1958.7 7943.3 12730.0192815.5 16414.4 1983 73316.0205624.4185353.8 34821.1 62308.9 16195.3111186.2 13388.4130033.5179570.7116676.8 IN EP000 IN EP000 1984 73694.9 28969.0 22098.1 16338.4 13780.0 14631.0 20879.0 4491.0 1289.5209596.7 20092.9 15504.7 1985 97135.0 62613.3199652.5311015.9 43615.0 22521.4 38716.4 11019.5 16835.8 34831.3234181.9 IN EP000 1986 5231.9 7476.6 2692.6 11351.7 13537.6222155.7 18822.5 1987 62688.7147733.4 46920.7 16782.0 70739.9641075.9 54200.7 IN EP000 6647.8 20944.3 46198.1 35759.8205256.1 IN EPOOO 9430 1 5010.2 1650.7 92411.3 88231.4 1988 10869.3 2616.8 23180.7 24584.8 18234.0 13524.9 23770.9 IN EP000 7784.3 95.3 14043.5 1834.1 12217.9 1989111586.8 17773.5 12246.6 5264.7130619.7 14957.8 IN EP000 7438.9 2644.6 0.0 4063.1 5210.9 1990 3278.0 31669.1 65935.9 51452.6 33591.2 26.9 25582.4 3156.9 1991171119.6 61208.7 16555.0302089.4 34939.3 37368.7 48253.2 IN EP000 8537.6 33876.8 2490.7 6802.8376359.2 1992334581.3883200.3133695.2419298.4456711.8246171.7 31863.9 IN EP000 9491.1 9644.1 8018.2 68756.1 61189.6 1993 80669.9124668.1125973.9110964.4451581.3674427.7 44156.1 21405.6 2708.0 29939.2 IN EP000 6379.5 43800.5 9577.9 2141.5 38242.6 40219.6237854.3 73967.3 12097.1 27520.4 20486.4 1147303 14445.0116565.0 IN EP000 9865.1202807.3 46508.2124490.0 27104.2 48545.2 18165.1 10761.5 IN EP000 IN EP000 1996 8009.8 3691.9 10633.4 9639.6 13425.4 68185.9 17246.4 15949.2 99096.7 1835.9 15087.5 19054.0

Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016 Page 7 of 12

3. The following records were changed in the DIS file.

On Lavaca: FD 20955 EP000 WGS800 GS300 GS500 FD CB220 EP000 WGS800 GS300 GS500 EP000 FD DV211 GS300 WGS800 GS500 1 FD DV212 EP000 1 GS300 WGS800 GS500 FD DV213 EP000 GS300 WGS800 GS500 1 FD DV214 EP000 1 GS300 WGS800 GS500 FD DV215 EP000 1 GS300 WGS800 GS500 FD DV216 EP000 1 GS300 WGS800 GS500 FD WQ002 EP000 1 GS300 WGS800 GS500 On Navidad: FD CB230 EP000 2 WGS800 GS500 GS300 FDDV221A EP000 WGS800 GS500 GS300 FDDV221B EP000 2 WGS800 GS500 GS300 FDRSRTRN EP000 2 WGS800 GS500 GS300 FD WQ004 EP000 2 WGS800 GS500 GS300 Below confluence of Lavaca and Navidad: FD CB210 EP000 3 GS300 WGS800 GS500 FD DV201 EP000 3 GS300 WGS800 GS500 EP000 FD GS100 3 GS300 WGS800 GS500 EP000 EP000 FD GS200 3 GS300 WGS800 GS500 FD W0001 3 GS300 WGS800 GS500 FD WQ003 EP000 GS300 WGS800 GS500

Revisions to Modeling of Lake Texana Interruptible Diversions

The 12,000 acre-feet per year of interruptible supply from Lake Texana consists of three separate authorizations:

- 500 acre-feet per year from the original 75,000 acre-feet per year authorized from Lake Texana in the unamended certificate with a priority date of May 15, 1972. Amendment D changed this supply to interruptible because the implementation of bay and estuary pass-through requirements in Amendment B reduced the firm yield of the reservoir from 79,000 acre-feet per year to 74,500 acre-feet per year. So 500 acre-feet per year of the original authorization was changed to interruptible. It appears that the priority date of this authorization was not changed.
- 4,000 acre-feet per year authorized in Amendment B with a priority date of May 15, 1982. This is the remaining 4,000 acre-feet per year of the 4,500 acre-foot total reduction in firm yield mentioned in the previous bullet. Amendment D makes this interruptible without changing the priority date.
- 7,500 acre-feet per year authorized in Amendment D with a priority date of July 1, 2002.

According to Special Condition 5.B. of Amendment D, the 12,000 acre-feet of the interruptible water can only be diverted when the lake level is above 43 feet. The upper tier of the bay and estuary pass-through requirements must be met at all times for interruptible water to be diverted, as specified in Bay and Estuary Release Schedule 4.A.1 of Amendment B, and repeated in Special Condition 5.A. of Amendment D.

In the current TCEQ WAM, the interruptible authorization is modeled as a single 12,000 acre-feet per year diverted at a July 2, 2002 priority date. The reason for the change in the priority date of the authorization is not documented, but it may be due to the implementation of the LNRA Water Management Plan and the 1996 *Compromise Settlement Agreement* between LNRA and upstream water right holders, which is included in the

Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016 Page 8 of 12

Water Management Plan. The compromise agreement allows upstream diverters to take water when Lake Texana is above 43 feet. Changing the priority date allows the upstream diverters to take water when Texana is above 43 feet but below 170,300 acre-feet. The proposed modifications to the interruptible code split out the three authorizations so that their origin can be clearly linked to the water rights. The junior priority date of all authorizations has been maintained, but it has been changed to the July 1, 2002 date found in Amendment D.

Two other revisions have been proposed for the interruptible modeling. The first uses the annual diversion limit in Field 10 of the SO Record to limit annual diversions rather than diverting more water than needed to a dummy control point and returning unused water to the reservoir. The annual diversion limit option was not available when the Lavaca WAM was developed. The proposed technique is simpler and more robust than the previous version. The second change uses a pattern that allows more water to be diverted in the last three months of the year if interruptible targets have not been met earlier in the year. The annual limits on the SO record prevent over-use of water.

Like the previous modeling, the 43-foot limit is established by making storage below 43 feet inactive (Field 7 of the WS Record) and bay and estuary limits are implemented using a drought index tied to 78.18 percent of the storage in Lake Texana.

The following changes were made to the model code:

1. A new UC record was added to set monthly interruptible diversion targets. A monthly limit of 2,880 ac-ft has been retained from the old model for the first nine months of the year. This has been increased for the last three months so that the full amount of interruptible water may be diverted if it was not available earlier in the year.

UC	INTW	288	288	288	288	288	288
UC		288	288	288	480	480	480

2. The 500 ac-ft/yr of interruptible water originating from firm authorization in the original permit is modeled using the following code. Please note that a separate water right record that fills Lake Texana at the 2002 priority date has been commented out because the proposed revisions no longer rely on diverting more water from the reservoir than is needed to meet interruptible targets. The annual diversion target is set to divert 120 ac-ft/month during the first nine months of the year and 200 ac-ft/month in the last three months of the year. Field 10 of the SO record limits annual diversions to 500 ac-ft/yr. The 160,930 ac-ft limit in the WS record prevents the reservoir from dropping below 43 ft msl because of this diversion. If Lake Texana is below 78.18 percent, the reference to Drought Index 2 on the WR record sets the diversion target to zero target to zero.

* *	500	ac-ft at	from original	autho:	riza	tion, set	to 2002	priority	to reflect	subordination
**										
WRDV2	21A	1680	INTW20020701	l 1	1	1.0	NOUT	2	72_INTERU	P TEXANA
WSTEX	ANA	170300				160930				
SO									500	

3. The 4,000 ac-ft/yr of interruptible water authorized by Amendment B is modeled using the following code. The annual diversion target is set to divert 960 ac-ft/month during the first nine months of the year and 1,600 ac-ft/month in the last three months of the year. Field 10 of the SO record limits annual diversions to 4,000 ac-ft/yr. The 160,930 ac-ft limit in the WS record prevents the reservoir from dropping below 43 ft msl because of this diversion. If Lake Texana is below 78.18 percent, the reference to Drought Index 2 on the WR record sets

Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016 Page 9 of 12

the diversion target to zero.

```
** 4,000 ac-ft from 1982 authorization, set to 2002 priority to reflect subordination

**

WRDV221A 13440 INTW20020701 1 1 1.0 NOUT 2 82_INTERUP TEXANA

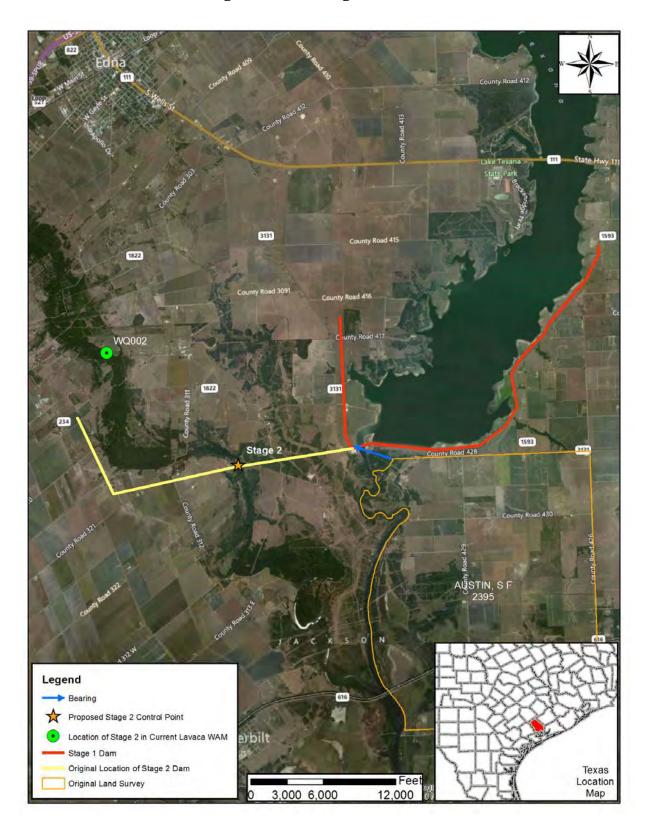
WSTEXANA 170300 160930

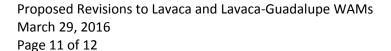
SO 4000
```

4. The following code models the 7,500 ac-ft/yr of interruptible water authorized in Amendment D. The annual diversion target is set to divert 1,920 ac-ft/month during the first nine months of the year and 3,200 ac-ft/month in the last three months of the year. Field 10 of the SO record limits annual diversions to 7,500 ac-ft/yr. The 160,930 ac-ft limit in the WS record prevents the reservoir from dropping below 43 ft msl because of this diversion. If Lake Texana is below 78.18 percent, the reference to Drought Index 2 on the WR record sets the diversion target to zero.

```
** 7,500 ac-ft from Amendment D.

**


WRDV221A 26880 INTW20020701 1 1 1.0 NOUT 2 02_INTERUP TEXANA
WSTEXANA 170300 160930
SO 7500
```


Revisions to Stage 2 Location and SVSA Records

In the existing Lavaca WAM, Stage 2 of the Palmetto Bend project does not appear to be modeled at the location or capacity authorized in COA 16-2095, as amended. The location description in the permit states that "Station 129+60 on the centerline, being a point common to the Stage 1 and Stage 2 Dams, bears N 71°27'W, 3333 feet from the northwest corner of the Stephen F. Austin Survey, Abstract No. 5, Jackson Co. Texas." This point is at the tip of the blue arrow in *Figure 1*, approximately where the proposed Stage 2 dam intersects the existing Stage 1 dam. *Figure 1* also shows the proposed location of the Stage 2 dam from the 1963 report *Plan of Development for Palmetto Bend Project Texas (1963 Report)*. The existing WAM has Stage 2 modeled at control point WQ002, also shown on *Figure 1*, which is upstream of the location described in the permit. COA 16-2095A authorizes the storage of 93,340 ac-ft in Stage 2. In the existing WAM, the storage for the project is 62,454 ac-ft. The storage in the existing WAM appears to be the location and storage for an alternative version of Stage 2 described in the 1991 report *Cost Update for Palmetto Bend Stage 2 and Yield Enhancement Alternative for Lake Texana and Palmetto Bend Stage 2*. FNI was unable to find any indication that the permit was amended to reflect either the upstream location or the reduced storage.

Figure 1. Model Stage 2 Reservoir Location

In order to model Stage 2 as described and authorized in COA 16-2095, FNI proposes:

- a) Adding a new control point STG_II where the dam described in the 1963 Report intersects the Lavaca River
- b) Moving the location of the dam to the new control point
- c) Using the storage-area relationship found in the 1963 Report.

The Stage 2 dam, as proposed in the 1963 Report, would also impound water flowing down Dry Creek, a tributary located between the Lavaca and Navidad Rivers. The dam is upstream of the confluence of Dry Creek and the Navidad River, cutting off a portion of the Dry Creek drainage area. The drainage area for the new control point STG II includes the portion of the Dry Creek drainage area above the dam.

FNI estimated the drainage area of control point STG_II to be 865 square miles based on the incremental drainage area between control point DV211 and the dam (including the Dry Creek drainage area above the dam). This is less than the 929 square miles in the 1963 Report. The 1963 Report also has a drainage area of 887 square miles for the Lavaca River near Edna, TX (USGS Gage 08164000). This was the gage drainage area reported by the USGS at the time. The USGS subsequently revised the gage drainage area to 817 square miles. The Lavaca WAM has a drainage area of 822.0499 square miles for the Edna gage (control point GS300). Applying the delta between the Lavaca WAM drainage area for GS300 (822 square miles) and the Edna gage drainage area in the 1963 Report (887 square miles) to the Stage 2 drainage area in the 1963 Report (929 square miles) results in a drainage area of 864 square miles; this is very close to the recommended drainage area of 865 square miles.

In order to implement the proposed changes, the following revisions were made to the model:

1. A new control point (STG_II) was added to the DAT file.

```
** FNI change - add new control point for Stage 2 authorized location
**CP DV211 CB220
                                             GS300
                                  7
                                                       - 2
CP DV211 STG_II
                                             GS300
                                  7
CPSTG_II
        CB220
                                            GS300
                                                     -2
** FNI change - this control point is above Stage 2 authorized location
**CPTWW217 CB220
                                              GS300 -1
CPTWW217 STG_II
                                           GS300
** end FNI change
```

2. Associated revisions were also made to the DIS file. Note that this code assumes a primary control point at EP000.

```
** new control point STG_II for authorized location
FDSTG_II EP000 1 GS300 WGS800 GS500

** FNI change - new control point at authorized location for Stage 2
WPSTG_II 865.00 1.0
```

3. Modeling of diversion and storage was revised. The only changes to the existing code for these records are the control point and the storage amount.

```
** FNI change - move to authorized location at new control point STG_II and store full amount authorized in water right

**
WRSTG_II 7150 119720515 1 1 0.00 61602095_3 TEXANA2
WSSTAGE2 93340
```


Proposed Revisions to Lavaca and Lavaca-Guadalupe WAMs March 29, 2016

Page 12 of 12

* *							
WRSTG_II WSSTAGE2 **		219720515	1	1	0.00		61602095_4 TEXANA2
WRSTG_II	18122	BAYES119931006	1	1	1.0	20955	2095_5

4. New SV and SA records for the downstream location from the 1963 Report were added.

	* *	FNI ch	ange												
	* *	Stage	2 SVSA	from 1	963 Defi	nite Pla	n Report	Palmetto	Bend	Project	Texas				
	* *	elev	0		5 1	.0 1	.5 2	0 25		30	35	40	44	47	50
5	SVS	rage2	0	13	3 56	3 138	8 416	8 11301	243	20 43	358 6	58338	93344	116279	147046
5	SAST	rage2	0	5	3 11	.9 21	.1 90	1 1952	32	56 4	359	5633	6870	8420	11234
	de de														

References

HDR Engineering, Inc. 1991. Regional Planning Water Study Cost Update for Palmetto Bend Stage 2 and Yield Enhancement Alternative for Lake Texana and Palmetto Bend Stage 2, prepared for the Lavaca Navidad River Authority.

Texas Department of Water Resources. 1984. Lavaca Navidad River Authority Bay and Estuary Releases.

Texas Water Development Board. 2011. *Volumetric and Sedimentation Survey of Lake Texana: January – March 2010 Survey.*

Unites States Department of the Interior Bureau of Reclamation, Region 5. 1963. *Plan of Development for Palmetto Bend Project, Texas*, revised October 1963.

PROPOSED SB3 CODE FOR THE	ATTACHMENT A E NAVIDAD RIVER AT	STRANE PARK NEAR EDNA

DAT File Revisions

UC Records

**	FNI	change -	add UCs	for Navi	dad Rv a	t Strane	Pk nr E	dna	
* *	NE UC	!s							
UC	NESUB	61	56	172	167	172	167	=	1401
UC		74	74	131	135	131	61		
UC	NEDRY	861	784	1107	1071	1107	1071	=	12883
UC		1476	1476	1012	1045	1012	861		
UC	NEAVG	2152	1961	2152	2083	2152	2083	=	26833
UC		2890	2890	2083	2152	2083	2152		
UC	NEWET	4366	3978	4366	4225	4366	4225	=	53038
UC		5165	5165	4225	4366	4225	4366		
* *	FNI	change er	nd						

CP Records

CPFKNE20

OUT

```
** FNI change - edit connectivity for Navidad Rv at Strane Pk nr Edna
**CP RF502 DV501
                                                     GS500
                                                                 -1
CP RF502 GSNE1
                                                     GS500
                                                                -1
CP GSNE1 NESUBS
                                                     GS500
                                                                -1
CPNESUBS NEBASE
                                        7
                                                     GS500
                                                                -1
                                        7
CPNEBASE NESPUL
                                                     GS500
                                                                -1
                                        7
                                                     GS500
CPNESPUL NELPUL
                                                                -1
                                        7
CPNELPUL NEAPUL
                                                     GS500
                                                                -1
                                                     GS500
CPNEAPUL
          DV501
                                                                -1
** FNI change end
** FNI change - add points for Navidad Rv at Strane Pk nr Edna
**** NE Base Flows CPS
CPNESEVT
            OUT
                                       2
                                            NONE
                                                     NONE
CPNESVD1
            OUT
                                       2
                                            NONE
                                                     NONE
CPNESVT2
            OUT
                                       2
                                            NONE
                                                     NONE
                                                     NONE
CPNESVT3
            OUT
                                       2
                                            NONE
CPNEBDRY
            OUT
                                       2
                                            NONE
                                                     NONE
CPNEBAVG
            OUT
                                       2
                                            NONE
                                                     NONE
CPNEBWET
                                            NONE
                                                     NONE
            OUT
** NE Pulse CPS
                                        2
CPNESPND
             OUT
                                             ZERO
                                                      ZERO
CPNELPND
             OUT
                                             ZERO
                                                     ZERO
                                        2
CPNEAPND
             OUT
                                             ZERO
                                                     ZERO
CPFKNE01
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE02
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE03
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE04
             OUT
                                        2
                                             NONE
                                                     NONE
                                        2
CPFKNE05
             OUT
                                             NONE
                                                     NONE
                                        2
             OUT
                                             NONE
                                                     NONE
CPFKNE06
CPFKNE07
                                        2
                                             NONE
                                                     NONE
             OUT
                                        2
CPFKNE08
             OUT
                                             NONE
                                                     NONE
CPFKNE09
             OUT
                                        2
                                             NONE
                                                     NONE
                                        2
CPFKNE10
             OUT
                                             NONE
                                                     NONE
                                        2
CPFKNE11
             OUT
                                             NONE
                                                     NONE
                                        2
CPFKNE12
             OUT
                                             NONE
                                                     NONE
                                        2
                                             NONE
                                                     NONE
CPFKNE13
             OUT
CPFKNE14
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE15
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE16
             OUT
                                        2
                                             NONE
                                                     NONE
             OUT
                                        2
                                                     NONE
CPFKNE17
                                             NONE
CPFKNE18
             OUT
                                        2
                                             NONE
                                                     NONE
CPFKNE19
             OUT
                                        2
                                             NONE
                                                     NONE
```

Attachment A A-1

NONE

2

NONE

CPFKNE21	OUT	2	NONE	NONE
CPFKNE22	OUT	2	NONE	NONE
CPNEAPFA	OUT	2	NONE	NONE
CPNEAPFB	OUT	2	NONE	NONE
** FNI chang	e end			

CI Records

** FNI (change -	add data	a for Nav	√idad Rv	at Stran	ne Pk nr	Edna
**** Nav	idad Rv a	at Strane	e Pk nr E	Edna BASI	E CIs		
CINESEVT	9999999		9999999	9999999	9999999	9999999	
CI	9999999	9999999			9999999	9999999	
CINESVD1	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999		9999999	9999999	9999999	
CINESVT2	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CINESVT3	9999999	9999999	9999999	9999999	9999999	9999999	
CINESVIS	9999999	9999999	9999999	9999999	9999999	9999999	
CINEBDRY	9999999	9999999	9999999	9999999	9999999	9999999	
CINEBDRI	9999999	9999999	9999999	9999999	9999999	9999999	
	9999999	9999999	9999999	9999999	9999999	9999999	
CINEBAVG							
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CINEBWET	9999999	9999999		9999999	9999999		
CI ** NF PIII	9999999	9999999	9999999	9999999	9999999	9999999	
112 101	LSE CIS						
	ılse Dura		-				
CINESPND	6	6	7	7	7	7	
CI	5	5	6	6	6	6	
CINELPND	7	7	7	7	7	7	
CI	6	6	7	7	7	7	
CINEAPND	7	7	7	7	7	7	
CI	7	7	7	7	7	7	
*** NE Pu	ılse Cal	culation					
CIFKNE01	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE02	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE03	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE04	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE05	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE06	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE07	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE08	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE09	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE10	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE11	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE12	9999999	9999999	9999999	9999999	9999999	9999999	
CIFRNEIZ	9999999	9999999	9999999	9999999	9999999	9999999	
CIFKNE13						9999999	
		9999999			9999999		
CI	9999999		9999999		9999999		
CIFKNE14			9999999	9999999	9999999	9999999	
CI	9999999		9999999		9999999		
CIFKNE15	9999999	9999999		9999999	9999999	9999999	
CI	9999999		9999999		9999999		
	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999		9999999	9999999	9999999	
CIFKNE17	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999		9999999	9999999	9999999	
CIFKNE18	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999		9999999	9999999	9999999	
CIFKNE19	9999999	9999999	9999999	9999999	9999999	9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999	

```
      CIFKNE20
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      99999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
      9999999
```

WR/IF Records for Pulse Flows

```
** FNI Change - add code for Navidad Rv at Strane Park nr Edna
***********START E-Flows Navidad Rv at Strane Park nr Edna
**Start Base NE
** During Severe Conditions set Sub or Base trigger
WRNESVD1 12883 NEDRY20110301
                                                                   FKNESEVD1
WRNESEVT
                 XMONTH20110301
                                                                   SEVTRIGGER
ТО
    2
                   ADD
                                         GSNE1
                                                                        CONT
      6
                   DIV
                                                           FKNESEVD1
**** Severe Condition Subsistence or Base
WRNESVT2 12883 NEDRY20110301
                                                                    FKNESEVD2
TO
     16
                   LIM
                                     1 DV221A
     5 NESEVT
                                     1 9999999
FS
                    1
                             0
                                                1
WRNESVT3
         1401
                  NESUB20110301
                                                                   FKNESEVSUB
ТО
    16
                   LIM
                        1
                                     1 DV221A
      5 NESVT2
                    1
                             0
                                     0
                                           1
                                                1
*** Dry, Average, Wet Conditions, see .HIS file for Hydrologic conditions
                 NEDRY20110301
WRNEBDRY
        12883
                                                                     FKNEBASD
TO
     16
                   LIM
                                     2 DV221A
WRNEBAVG
          26833
                 NEAVG20110301
                                                                     FKNEBASM
TO
     16
                   LIM
                             3
                                     3 DV221A
WRNEBWET
          53038
                 NEWET20110301
                                                                     FKNEBASW
                   LIM
                                     4 DV221A
     16
                             4
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFNEBASE
                                                   NEBASEFIN
                      20110301 2
                                                           FKNESEVSUB
TO
     13
                    ADD
                                                                        CONT
                   ADD
TO
     13
                                                            FKNESEVD2
                                                                        CONT
TO
     13
                    ADD
                                                             FKNEBASD
                                                                        CONT
                                                             FKNEBASM
TO
     13
                    ADD
                                                                        CONT
TO
     13
                    ADD
                                                             FKNEBASW
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKNE01
                XMONTH20110301
                                                                   BF-NEB-SP1
TO
                   ADD
                                        DAYSPY
                                                                        CONT
      2
TO
      2
                    SUB
                                        NESPND
WRFKNE01
                XMONTH20110301
                                                                   BF-NEB-SP2
TO
      6
                   ADD
                                                           BF-NEB-SP1
TO
      2
                   DTV
                                        DAYSPY
WRFKNE01
                 XMONTH20110301
                                                                   BF-NEB-SP3
TΩ
     13
                   ADD
                                                            NEBASEFIN
                                                                        CONT
TO
      6
                   MUL
                                                           BF-NEB-SP2
** Developing pulse+base flow targets, Determining if Reg Flow at GSNE1 exceeded target
WRFKNE04
           9000 XMONTH20110301
                                                                   FKNESPULW
                                                           BF-NEB-SP3
TO
      6
                   ADD
WRFKNE05
                 XMONTH20110301
                                                                   NEWINONOFF
TO
      2
                    ADD
                                         GSNE1
                                                                        CONT
TO
      6
                    DIV
                                                            FKNESPULW
WRFKNE06
          11250 XMONTH20110301
                                                                   FKNESPUSP
ТО
      6
                   ADD
                                                           BF-NEB-SP3
                 XMONTH20110301
WRFKNE07
                                                                  NESPRONOFF
TO
      2
                    ADD
                                         GSNE1
                                                                        CONT
TΩ
      6
                   DTV
                                                            FKNESPIISP
```

```
1000 XMONTH20110301
WRFKNE08
                                                                      FKNESPULS
       6
                     ADD
                                                              BF-NEB-SP3
WRFKNE09
                  XMONTH20110301
                                                                      NESUMONOFF
TO
       2
                     ADD
                                           GSNE1
                                                                            CONT
TO
                     DIV
                                                               FKNESPULS
* *
WRFKNE10
            8700 XMONTH20110301
                                                                       FKNESPULF
TΩ
       6
                    ADD
                                                              BF-NEB-SP3
                  XMONTH20110301
WRFKNE11
                                                                     NEFALONOFF
TΩ
       2
                     ADD
                                          GSNE1
                                                                            CONT
       6
                     DIV
                                                               FKNESPULF
TO
** ENGAGING PULSE
            9000
                 XMONTH20110301
                                                       NESPIILW1
TENESPIIL
ТО
       6
                     ADD
                                                             BF-NEB-SP3
         FKNE05
                                                           2
FS
       5
                     1
                                       1 9999999
                                                   2
                                                             2 12
                 XMONTH20110301
IFNESPUL
            9000
                                                       NESPULW2
                     ADD
                                                              BF-NEB-SP3
TO
       6
FS
       5
          FKNE05
                      1
                                       1 9999999
                                                           2
                                                              0
                                                                 12
IFNESPUL
          11250
                 XMONTH20110301
                                                       NESPUSP1
TO
       6
                     ADD
                                                              BF-NEB-SP3
                                                           2
FS
       5
         FKNE07
                      1
                               Ω
                                       1 9999999
                                                              3
                                                                 3 6
TENESPIIL
          11250
                 XMONTH20110301
                                   3
                                                       NESPUSP2
TO
      6
                     ADD
                                                             BF-NEB-SP3
                                                           2
       5
         FKNE07
                     1
                               Ω
                                       1 9999999
                                                   2
                                                             0 3 6
FS
IFNESPUL
           1000
                 XMONTH20110301
                                                        NESPULS1
      6
TO
                     ADD
                                                             BF-NEB-SP3
       5
         FKNE09
                      1
                              Λ
                                       1 9999999
                                                           2 1
IFNESPUL
           1000
                 XMONTH20110301
                                                       NESPULS2
                                   3
TO
      6
                     ADD
                                                             BF-NEB-SP3
          FKNE09
                      1
                                       1 9999999
                                                   2
                                                              0 7 8
           8700
                 XMONTH20110301
                                                       NESPULF1
IFNESPUL
       6
                     ADD
                                                              BF-NEB-SP3
TO
         FKNE11
                     1
                                       1 9999999
                                                           2
FS
       5
                               Ω
                                                             2
IFNESPUL
            8700
                 XMONTH20110301
                                   3
                                                        NESPULF2
ТО
      6
                     ADD
                                                              BF-NEB-SP3
                              Ω
                                      1 9999999
FS
       5 FKNE11
                      1
                                                           2
                                                              0
                                                                 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
TENESPIIL
                       20110301
                                                         NESPETN
TO
     13
                     ADD
                                                                NESPULW2
                                                                            CONT
TO
     13
                     ADD
                                                               NESPUSP2
                                                                            CONT
TO
     13
                     ADD
                                                                NESPULS2
                                                                            CONT
ТО
                     ADD
                                                                NESPULF2
     13
* *
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKNE02
                 XMONTH20110301
                                                                      BF-NEB-LP1
ТО
       2
                    ADD
                                                                           CONT
                                          DAYSPY
TΩ
       2
                     SUB
                                          NELPND
WRFKNE02
                 XMONTH20110301
                                                                      BF-NEB-LP2
TO
       6
                     ADD
                                                              BF-NEB-LP1
                                                                         CONT
TO
                     DIV
                                          DAYSPY
                 XMONTH20110301
                                                                      BF-NEB-LP3
WRFKNE02
TO
                     ADD
                                                               NEBASEFIN
ТО
       6
                     MUL
                                                              BF-NEB-LP2
* *
** Developing pulse+base flow targets, Determining if Reg Flow at GSNE1 exceeded target
WRFKNE12
          11250 XMONTH20110301
                                                                      FKNELPULW
TO
                     ADD
                                                              BF-NEB-LP3
WRFKNE13
                 XMONTH20110301
                                                                    NELWINONOFF
                                                                            CONT
TO
       2
                     ADD
                                           GSNE1
то
       6
                     DIV
                                                               FKNELPULW
* *
WRFKNE14
           11250 XMONTH20110301
                                                                      FKNELPUSP
TO
       6
                     ADD
                                                              BF-NEB-LP3
WRFKNE15
                  XMONTH20110301
                                                                    NELSPRONOFF
                                          GSNE1
TO
       2
                     ADD
                                                                            CONT
                                                               FKNELPUSP
TO
                     DIV
WRFKNE16
            3400 XMONTH20110301
                                                                       FKNELPULS
```

```
TO
                    ADD
                                                            BF-NEB-LP3
                 XMONTH20110301
                                                                  NELSUMONOFF
WRFKNE17
      2
                    ADD
                                         GSNE1
                                                                         CONT
                    DIV
                                                             FKNELPULS
TO
      6
* *
WRFKNE18
          11250 XMONTH20110301
                                                                    FKNELPULF
TO
      6
                    ADD
                                                            BF-NEB-LP3
WRFKNE19
                 XMONTH20110301
                                                                  NELFALONOFF
TΩ
      2
                    ADD
                                         GSNE1
                                                                         CONT
                                                             FKNELPULF
** ENGAGING PULSE
IFNELPUL
          11250 XMONTH20110301
                                                      NELPULW1
      6
                                                           BF-NEB-LP3
TO
                    ADD
      5
                                     1 9999999
                                                        1 2 12
FS
         FKNE13
                     1
                              Λ
IFNELPUL
          11250
                 XMONTH20110301
                                                      NELPULW2
                                 3
TO
      6
                    ADD
                                                            BF-NEB-LP3
         FKNE13
                     1
                                      1 9999999
                                                            0 12 2
                                                      NELPUSP1
IFNELPUL
          11250
                 XMONTH20110301
TO
      6
                    ADD
                                                            BF-NEB-LP3
FS
      5
         FKNE15
                    1
                                      1 9999999
                                                         1 3 3 6
IFNELPUL
          11250
                 XMONTH20110301
                                 3
                                                      NELPUSP2
ТО
      6
                    ADD
                                                           BF-NEB-LP3
FS
      5
         FKNE15
                    1
                                      1 9999999
                                                         1
                                                           0 3 6
                 XMONTH20110301
IFNELPUL
          3400
                                                      NELPULS1
      6
TΩ
                    ADD
                                                            BF-NEB-LP3
FS
      5
         FKNE17
                     1
                                      1 9999999
                                                         1 1
                 XMONTH20110301
                                 3
IFNELPUL
           3400
                                                      NELPULS2
TO
      6
                    ADD
                                                            BF-NEB-LP3
FS
      5
        FKNE17
                     1
                              0
                                      1 9999999
                                                            0 7 8
                                                         1
IFNELPUL
          11250
                 XMONTH20110301
                                                      NELPULF1
     6
                    ADD
                                                            BF-NEB-LP3
        FKNE19
FS
      5
                     1
                              0
                                      1 9999999
                                                 2
                                                         1
                                                            2
                                                               9 11
IFNELPUL
          11250
                 XMONTH20110301
                                 3
                                                      NELPULF2
      6
                                                            BF-NEB-LP3
TΩ
                    ADD
      5 FKNE19
                     1
                              0
                                     1 9999999
                                                 2
                                                         1
                                                            0
                                                               9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFNELPUL
                      20110301
                                                       NELPFIN
TO
                    ADD
                                                              NELPULW2
                                                                         CONT
     13
                    ADD
                                                              NELPHSP2
                                                                         CONT
TΩ
TO
     13
                    ADD
                                                              NELPULS2
                                                                         CONT
                                                              NELPULF2
TO
     13
                    ADD
******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKNE03
                 XMONTH20110301
                                                                    BF-NEB-AP1
      2
                                        DAYSPY
TΩ
                    ADD
                                                                         CONT
TO
      2
                    SUB
                                        NEAPND
WRFKNE03
                 XMONTH20110301
                                                                   BF-NEB-AP2
TΩ
      6
                    ADD
                                                            BF-NEB-AP1
                                                                        CONT
TO
                    DIV
                                        DAYSPY
WRFKNE03
                 XMONTH20110301
                                                                    BF-NEB-AP3
TO
     13
                    ADD
                                                             NEBASEFIN
                    MUL
                                                            BF-NEB-AP2
TO
      6
** Developing pulse+base flow targets, Determining if Reg Flow at GSNE1 exceeded target
WRFKNE20
         11250 XMONTH20110301
                                                                     FKNEAPUL
ТО
    6
                    ADD
                                                            BF-NEB-AP3
WRFKNE21
                 XMONTH20110301
                                                                   NEANNONOFF
                                         GSNE1
TO
      2
                    ADD
                                                                         CONT
      6
                                                              FKNEAPIII.
                    DTV
** ENGAGING PULSE
IFNEAPFA
         11250 XMONTH20110301
                                                       NEAPLA1
TO
      6
                    ADD
                                                            BF-NEB-AP3
                     1
FS
      5
         FKNE21
                                     1 9999999
                                                 2
                                                            5 1
                                                                  6
                                                                            1
                 XMONTH20110301
IFNEAPFA
          11250
                                 3
                                                       NEAPLA2
TO
      6
                    ADD
                                                            BF-NEB-AP3
         FKNE21
                              0
                                     1 9999999
FS
      5
                     1
                                                 2
                                                         1
                                                           0 1
                                                                            1
IFNEAPFB
          11250
                 XMONTH20110301
                                                       NEAPLB1
TΩ
      6
                    ADD
                                                            BF-NEB-AP3
FS
      5
         FKNE21
                      1
                              0
                                     1 9999999
                                                 2
                                                     1
                                                         1
                                                            5 7
                                                                            1
```

IFNEAPFB	11250	XMONTH201	10301	3				NEAP	LB2				
TO 6		ADD							BF	-NEB-	-AP3		
FS 5	FKNE21	1	0	1	9999999	2	1	1	0	7	12	1	
WRFKNE22		201	10301								NEFR	STHALF	
		202											
TO 13										NEAL	LA2		
IFNEAPFB		201	10301	3				NEAP	LB3				
TO 13										NEAL	LB2		
FS 10		0	1	1	9999999	2	1	1	11	1	6	1	NEFRSTHALF
** COMBIN	E TO CRE	ATE IF FOR	ENTIRE	YEAR.									
IFNEAPUL		201	10301					NEAP	FIN				
TO 13		ADD								NEAL	PLA2	CONT	
TO 13		ADD								NEAL	PLB3		
******	*****	****											
******	*****	** End E-F	LOWS FO	R Navi	dad Rv a	t Stra	ne	Park	nr	Edna	ı		
	hango on												

** FNI change end

DIS File Revisions

FD Records

```
** FNI change - add FD cards for Navidad Rv at Strane Park nr Edna
FD GSNE1 GS500
                   1 GS550 GS1000
FDNESUBS
          GS500
                      1
                          GS550 GS1000
         GS500
                         GS550 GS1000
FDNEBASE
                      1
FDNESPUL
         GS500
                     1 GS550 GS1000
         GS500
GS500
                      1 GS550 GS1000
1 GS550 GS1000
FDNELPUL
FDNEAPUL
** FNI Change End
```

WP Records

```
** FNI change - add WP cards for Navidad Rv at Strane Park nr Edna
WP GSNE1 579.00
WPNESUBS 579.00
                    70.73 39.69
                                       1.0
                    70.73
                             39.69
                                        1.0
WPNEBASE 579.00
                    70.73
                            39.69
                                       1.0
WPNESPUL 579.00
                    70.73
                             39.69
                                       1.0
WPNELPUL 579.00
WPNEAPUL 579.00
                    70.73
                             39.69
                                        1.0
                                        1.0
                    70.73
                             39.69
** FNI change End
```

ATTACHMENT B PROPOSED SB3 CODE FOR GARCITAS CREEK NEAR INEZ

DAT File Revisions

UC Records

* *	FNI	change -	add UCs	for Card	citas Creek	near	Inez		
* *	GC UC	's							
UC	GCSUE	61	56	61	60	61	60	=	723
UC		61	61	60	61	60	61		
UC	GCDRY	123	112	123	119	123	119	=	1145
UC		61	61	60	61	60	123		
UC	GCAVG	246	224	246	238	246	238	=	2291
UC		123	123	119	123	119	246		
UC	GCWET	430	392	430	417	430	417	=	3856
UC		184	184	179	184	179	430		
**	FNI	change er	nd						

CP Records

CP Records										
** FNI ch	nange - edit	connectivity	for	Garc	itas C	reek near	Inez			
**CPGS1200	CB1190			1						
CPGS1200	GSGC1			1						
CP GSGC1	GCSUBS			7		GS1200	-1			
CPGCSUBS	GCBASE			7		GS1200	-1			
CPGCBASE	GCSPUL			7		GS1200	-1			
	GCLPUL			7		GS1200	-1			
CPGCLPUL	GCAPUL			7		GS1200	-1			
CPGCAPUL	CB1190			7		GS1200	-1			
CPDAYSPY	OUT			2	ZERO	ZERO				
** FNI ch	nange end									
** FNI cha	ange - add po	oints for Gar	citas	Cre	ek nea	r Inez				
**** GC Ba	ase Flows CPS	5								
CPGCSEVT	OUT		2		NONE	NONE				
CPGCSVD1	OUT		2		NONE	NONE				
CPGCSVT2	OUT		2		NONE	NONE				
CPGCSVT3	OUT		2		NONE	NONE				
CPGCBDRY	OUT		2		NONE	NONE				
CPGCBAVG	OUT		2		NONE	NONE				
CPGCBWET	OUT		2		NONE	NONE				
**										
** GC Puls				^						
CPGCSPND	OUT			2	ZERO	ZERO				
CPGCLPND	OUT			2	ZERO	ZERO				
CPGCAPND **	OUT			2	ZERO	ZERO				
CPFKGC01	OUT			2	NONE	NONE				
CPFKGC02	OUT			2	NONE	NONE				
CPFKGC03	OUT			2	NONE	NONE				
CPFKGC04	OUT			2	NONE	NONE				
CPFKGC05	OUT			2	NONE	NONE				
CPFKGC06	OUT			2	NONE	NONE				
CPFKGC07	OUT			2	NONE	NONE				
CPFKGC08	OUT			2	NONE	NONE				
CPFKGC09	OUT			2	NONE	NONE				
CPFKGC10	OUT			2	NONE	NONE				
CPFKGC11	OUT			2	NONE	NONE				
CPFKGC12	OUT			2	NONE	NONE				
CPFKGC13	OUT			2	NONE	NONE				
CPFKGC14	OUT			2	NONE	NONE				
CPFKGC15	OUT			2	NONE	NONE				
CPFKGC16	OUT			2	NONE	NONE				
CPFKGC17	OUT			2	NONE	NONE				
CPFKGC18	OUT			2	NONE	NONE				
CPFKGC19	OUT			2	NONE	NONE				
CPFKGC20	OUT			2	NONE	NONE				
CPFKGC21	OUT			2	NONE	NONE				
CPFKGC22	OUT			2	NONE	NONE				
CPGCAPFA	OUT			2	NONE	NONE				

CPGCAPFB OUT 2 NONE NONE ** FNI change end

CI Records

** FNT (change -	add data	for Car	rcitas C	reek ness	r Inez
CIDAYSPY	31	28.25	31	30	31	30
CI	31	31	30	31	30	31
**** Gard	citas Cre	eek near	Inez BAS	SE CIs		
CIGCSEVT	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIGCSVD1	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIGCSVT2	9999999	9999999	9999999	9999999	9999999	9999999
CI CIGCSVT3	9999999 9999999	9999999	9999999	9999999 9999999	9999999	9999999 9999999
CIGCSVIS	9999999	9999999	9999999	9999999	9999999	9999999
CIGCBDRY	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIGCBAVG	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIGCBWET	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
	LSE CIS					
*** GC Pt	ılse Dura 8	ation 8	10	10	10	10
CIGCSPND	4	4	8	8	8	8
CIGCLPND	10	10	10	10	10	10
CI	8	8	10	10	10	10
CIGCAPND	10	10	10	10	10	10
CI	10	10	10	10	10	10
*** GC Pi	ılse Calo					
CIFKGC01	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC02	9999999	9999999	9999999	9999999	9999999	9999999
CI CIFKGC03	9999999 9999999	9999999	9999999 9999999	9999999	9999999 9999999	9999999 9999999
CIFRGC03	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC04	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC05	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC06	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC07	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC08	9999999 9999999	9999999	9999999 9999999	9999999	9999999 9999999	9999999 9999999
CIFKGC09	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC10	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC11	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC12	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC13	9999999	9999999	9999999	9999999 9999999	9999999	9999999 9999999
CIFKGC14	9999999	9999999	9999999	9999999	9999999	9999999
CIFRGCIA	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC15	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC16	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC17	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC18	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKGC19	9999999 9999999	9999999 9999999	9999999 9999999	9999999 9999999	9999999 9999999	9999999 9999999
CIFKGC20	9999999	9999999	9999999	9999999	9999999	9999999
CILICEU	JJJJJ	JJJJJ	JJJJJ	J J J J J J J J	JJJJJ	J J J J J J J J

WR/IF Records for Pulse Flows

```
** FNI Change - add code for Garcitas Creek near Inez
**Start Base GC
** During Severe Conditions set Sub or Base trigger
WRGCSVD1
          1145 GCDRY20110301
                                                                  FKGCSEVD1
                XMONTH20110301
WRGCSEVT
                                                                 SEVTRIGGER
TΩ
    2.
                   ADD
                                       GSGC1
                                                                      CONT
ТΟ
     6
                   DIV
                                                         FKGCSEVD1
**** Severe Condition Subsistence or Base
WRGCSVT2 1145 GCDRY20110301
                                                                  FKGCSEVD2
   16
                                    1 GS1200
TΩ
                   LIM
                            1
     5
        GCSEVT
                            0
                                    1 9999999
FS
                    1
WRGCSVT3
                 GCSUB20110301
                                                                 FKGCSEVSUB
           723
TO
   16
                         1
                                    1
                                       GS1200
FS
     5 GCSVT2
                    1
                            0
                                   0
                                        1
                                               1
*** Dry, Average, Wet Conditions, see .HIS file for Hydrologic conditions
WRGCBDRY
        1145
                 GCDRY20110301
                                                                  FKGCBASD
                                    2 GS1200
TO
     16
                   LIM
                            2
WRGCBAVG
           2291
                 GCAVG20110301
                                                                   FKGCBASM
                                    3 GS1200
TΩ
   16
                   T.TM
                         3
WRGCBWET
           3856
                 GCWET20110301
                                                                  FKGCBASW
TO
   16
                   LIM
                           4
                                    4 GS1200
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFGCBASE
                     20110301 2
                                                  GCBASEFIN
                   ADD
                                                         FKGCSEVSUB
TO
     13
                                                                      CONT
ТО
     13
                   ADD
                                                          FKGCSEVD2
                                                                      CONT
TO
     13
                   ADD
                                                           FKGCBASD
                                                                      CONT
                                                           FKGCBASM
TO
     13
                   ADD
                                                                      CONT
                   ADD
                                                           FKGCBASW
TO
     13
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKGC01
                XMONTH20110301
                                                                 BF-GCB-SP1
TO
     2
                   ADD
                                       DAYSPY
                                                                      CONT
TO
      2
                   SUB
                                       GCSPND
WRFKGC01
                XMONTH20110301
                                                                 BF-GCB-SP2
                                                         BF-GCB-SP1
TΩ
      6
                   ADD
                                                                     CONT
TO
                   DIV
                                       DAYSPY
                XMONTH20110301
                                                                 BF-GCB-SP3
WRFKGC01
                                                          GCBASEFIN
TO
     13
                   ADD
TΩ
      6
                   MITT.
                                                         BF-GCB-SP2
** Developing pulse+base flow targets, Determining if Reg Flow at GSGC1 exceeded target
WRFKGC04
           520 XMONTH20110301
                                                                 FKGCSPULW
TO
      6
                   ADD
                                                         BF-GCB-SP3
WRFKGC05
                XMONTH20110301
                                                                 GCWINONOFF
                                        GSGC1
      2
                   ADD
                                                          FKGCSPULW
TO
      6
                   DIV
* *
WRFKGC06
           1500 XMONTH20110301
                                                                  FKGCSPUSP
TΩ
      6
                   ADD
                                                         BF-GCB-SP3
WRFKGC07
                XMONTH20110301
                                                                 GCSPRONOFF
TO
      2
                   ADD
                                       GSGC1
                                                                      CONT
                                                          FKGCSPUSP
TO
                   DIV
```

```
WRFKGC08
              28 XMONTH20110301
                                                                      FKGCSPULS
                                                             BF-GCB-SP3
TO
      6
                    ADD
WRFKGC09
                  XMONTH20110301
                                                                     GCSUMONOFF
TO
                                          GSGC1
       2
                     ADD
                                                                           CONT
TO
                     DIV
                                                              FKGCSPULS
             420 XMONTH20110301
WRFKGC10
                                                                      FKGCSPULF
TO
       6
                    ADD
                                                             BF-GCB-SP3
                 XMONTH20110301
WRFKGC11
                                                                     CCFALONOFF
                                          GSGC1
TO
      2
                    ADD
                                                                           CONT
       6
                    DTV
                                                              FKGCSPIILF
TO
** ENGAGING PULSE
IFGCSPUL
             520 XMONTH20110301
                                                       GCSPULW1
TΩ
      6
                     ADD
                                                             BF-GCB-SP3
                                                          2
FS
       5
         FKGC05
                      1
                                      1 9999999
                                                              2 12
                              0
IFGCSPUL
            520
                 XMONTH20110301
                                  3
                                                       GCSPULW2
                                                             BF-GCB-SP3
TO
      6
                     ADD
FS
         FKGC05
                              0
                                      1 9999999
                                                  2
                                                          2
                                                              0 12
       5
                      1
                                                      1
IFGCSPUL
           1500
                 XMONTH20110301
                                                        GCSPUSP1
      6
                                                             BF-GCB-SP3
TO
                     ADD
                                                                 3 6
FS
       5
         FKGC07
                      1
                              Ω
                                       1 9999999
                                                  2
                                                          2
                                                             3
IFGCSPUL
          1500
                 XMONTH20110301
                                  3
                                                       GCSPUSP2
TΩ
      6
                     ADD
                                                             BF-GCB-SP3
         FKGC07
                                       1 9999999
                                                           2
                                                             0 3 6
                 XMONTH20110301
                                                       GCSPULS1
TEGCSPIII.
              2.8
                     ADD
TO
       6
                                                             BF-GCB-SP3
         FKGC09
                     1
                                       1 9999999
                                                           2
       5
                                                             1 7 8
FS
IFGCSPUL
                  XMONTH20110301
                                  3
                                                        GCSPULS2
ТО
      6
                     ADD
                                                             BF-GCB-SP3
FS
       5
         FKGC09
                     1
                              Λ
                                       1 9999999
                                                  2
                                                           2
                                                             0 7 8
IFGCSPUL
          420
                 XMONTH20110301
                                                       GCSPULF1
                     ADD
                                                             BF-GCB-SP3
TO
      6
       5
         FKGC11
                      1
                              0
                                       1 9999999
                                                           2
FS
                                                             2
                 XMONTH20110301
TEGCSPIII.
             420
                                   3
                                                       GCSPULF2
TO
       6
                     ADD
                                                             BF-GCB-SP3
       5 FKGC11
                      1
                              0
                                      1 9999999
                                                  2
                                                           2
                                                             0
                                                                 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFGCSPUL
                       20110301
                                                         GCSPFIN
     13
TΩ
                     ADD
                                                                GCSPIII.W2
                                                                           CONT
ТО
      13
                     ADD
                                                                GCSPUSP2
                                                                           CONT
TO
                     ADD
                                                                GCSPULS2
                                                                           CONT
     13
TO
                     ADD
                                                                GCSPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKGC02
                 XMONTH20110301
                                                                     BF-GCB-LP1
TO
      2
                    ADD
                                         DAYSPY
                                                                           CONT
ТО
       2
                    SUB
                                         GCLPND
                 XMONTH20110301
WRFKGC02
                                                                     BF-GCB-LP2
TO
      6
                    ADD
                                                             BF-GCB-LP1
                                                                         CONT
TO
       2
                    DIV
                                         DAYSPY
WRFKGC02
                 XMONTH20110301
                                                                     BF-GCB-LP3
                                                              GCBASEFIN
                                                                           CONT
TO
     13
                    ADD
TO
                     MUL
                                                             BF-GCB-LP2
** Developing pulse+base flow targets, Determining if Reg Flow at GSGC1 exceeded target
WRFKGC12
           1500 XMONTH20110301
                                                                     FKGCLPULW
TΩ
       6
                    ADD
                                                             BF-GCB-LP3
WRFKGC13
                 XMONTH20110301
                                                                    GCLWINONOFF
       2
                                          GSGC1
TO
                    ADD
                                                                           CONT
       6
                     DIV
                                                              FKGCLPULW
TO
**
WRFKGC14
           1500 XMONTH20110301
                                                                      FKGCLPUSP
TO
       6
                     ADD
                                                             BF-GCB-LP3
WRFKGC15
                 XMONTH20110301
                                                                    GCLSPRONOFF
                                          GSGC1
TO
       2
                     ADD
                                                                           CONT
                                                              FKGCLPUSP
TO
       6
                     DIV
* *
WRFKGC16
             150 XMONTH20110301
                                                                      FKGCLPIII.S
TO
                    ADD
                                                             BF-GCB-LP3
       6
```

```
GCLSUMONOFF
WRFKGC17
                XMONTH20110301
                                       GSGC1
TO
     2
                   ADD
                                                                      CONT
                   DIV
                                                          FKGCLPULS
* *
WRFKGC18
           1500 XMONTH20110301
                                                                 FKGCLPULF
TO
   6
                   ADD
                                                         BF-GCB-LP3
WRFKGC19
                XMONTH20110301
                                                               GCLFALONOFF
                                       GSGC1
TO
                   ADD
                                                                      CONT
TΩ
      6
                   DTV
                                                          FKGCLPIILF
** ENGAGING PULSE
IFGCLPUL
        1500 XMONTH20110301
                                                    GCT.PIII.W1
TO
      6
                   ADD
                                                        BF-GCB-LP3
                                                   1 1 2 12 2
        FKGC13
                    1
                                    1 9999999
         1500
                XMONTH20110301
                                3
TEGCI PIII.
                                                    GCLPULW2
TO
     6
                   ADD
                                                       BF-GCB-LP3
        FKGC13
                                                   1 1 0 12 2
FS
      5
                   1
                                    1 9999999
IFGCLPUL
                XMONTH20110301
                                                    GCLPUSP1
         1500
                                                        BF-GCB-LP3
TO
      6
                   ADD
FS
      5
        FKGC15
                    1
                                    1 9999999
                                                   1 1 3
IFGCLPUL
         1500
                XMONTH20110301
                                3
                                                    GCLPUSP2
                   ADD
                                                        BF-GCB-LP3
TO
     6
FS
      5
        FKGC15
                    1
                                    1 9999999
                                                     1 0 3 6
TEGCI PIII.
          150
                XMONTH20110301
                                                    GCLPULS1
   6
                   ADD
                                                        BF-GCB-LP3
      5 FKGC17
                                                   1 1 1 7 8
                   1
                            Ω
                                    1 9999999
FS
         150
IFGCLPUL
                XMONTH20110301
                                3
                                                    GCLPULS2
   6
                                                       BF-GCB-LP3
TO
                   ADD
     5
        FKGC17
                   1
                                    1 9999999
                                                   1 1 0 7 8
         1500
IFGCLPUL
                XMONTH20110301
                                                    GCLPULF1
                                                        BF-GCB-LP3
TO
     6
                   ADD
        FKGC19
                    1
                                    1 9999999
                                                         2 9 11
         1500
IFGCLPUL
               XMONTH20110301
                                                    GCLPULF2
                                3
TO
      6
                   ADD
                                                         BF-GCB-LP3
      5 FKGC19
                   1
                                    1 9999999
                                                     1 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFGCLPUL
                   20110301
                                                    GCLPFIN
TΩ
    13
                   ADD
                                                           GCLPULW2
                                                                      CONT
TO
     13
                   ADD
                                                           GCLPUSP2
     13
                   ADD
                                                           GCT-PIII-S2
                                                                      CONT
TΩ
     13
                   ADD
                                                           GCLPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKGC03
                XMONTH20110301
                                                                BF-GCB-AP1
TO
      2
                   ADD
                                      DAYSPY
      2
                   SUB
TΩ
                                      GCAPND
WRFKGC03
                XMONTH20110301
                                                                BF-GCB-AP2
TO
   6
                   ADD
                                                         BF-GCB-AP1 CONT
TΩ
      2
                   DTV
                                      DAYSPY
WRFKGC03
                XMONTH20110301
                                                                BF-GCB-AP3
                                                          GCBASEFIN
TΩ
     13
                   ADD
                                                                     CONT
                   MUL
                                                         BF-GCB-AP2
** Developing pulse+base flow targets, Determining if Reg Flow at GSGC1 exceeded target
WRFKGC20 1500 XMONTH20110301
                                                                  FKGCAPUL
TO
    6
                   ADD
                                                         BF-GCB-AP3
WRFKGC21
                XMONTH20110301
                                                             GCANNONOFF
TΩ
      2
                   ADD
                                       GSGC1
                                                                      CONT
                                                           FKGCAPUL
                   DIV
** ENGAGING PULSE
IFGCAPFA 1500 XMONTH20110301
                                                     GCAPLA1
TO
   6
                   ADD
                                                       BF-GCB-AP3
FS
      5
        FKGC21
                    1
                                    1 9999999
                                                      1 5 1
IFGCAPFA
         1500
                XMONTH20110301
                                3
                                                    GCAPLA2
                                                         BF-GCB-AP3
TO
      6
                   ADD
        FKGC21
                     1
                                    1 9999999
                                                         0 1 6
                                                                         1
         1500
IFGCAPFB
                XMONTH20110301
                                                    GCAPLB1
      6
                                                         BF-GCB-AP3
                   ADD
FS
      5
        FKGC21
                    1
                            Ω
                                    1 9999999
                                                      1 5 7 12
                                                                         1
IFGCAPFB
          1500
                XMONTH20110301
                                3
                                                    GCAPLB2
```

TO	6		ADD							BF	-GCB	-AP3		
FS	5	FKGC21	1	0	1	9999999	2	1	1	0	7	12	1	
WRFKG	C22		2011	.0301								GCFR	STHALF	
TO	13										GCA	PLA2		
IFGCA	PFB		2011	.0301	3				GCAF	LB3				
TO	13										GCA	PLB2		
FS	10		0	1	1	9999999	2	1	1	11	1	6	1	GCFRSTHALF
** CO	MBIN	E TO CREAT	E IF FOR	ENTIRE	YEAR.									
IFGCAPUL 20110301 GCAPFIN														
TO	13		ADD								GCA:	PLA2	CONT	
TO	13		ADD								GCA:	PLB3		

****************** End E-FLOWS FOR Garcitas Creek near Inez														
** FNI change end														

DIS File Revisions

FD Records

```
** FNI change - Add for SB3 Garcitas Creek near Inez
FD GSGC1 GS1200
FDGCSUBS GS1200
FDGCBASE GS1200
FDGCSPUL GS1200
FDGCLPUL GS1200
FDGCAPUL GS1200
** FNI change end
```

WP Records

```
** FNI change - Add for SB3 Garcitas Creek near Inez
WP GSGC1 97.36 63.90 38.35
                                         1.0
WPGCSUBS 97.36 63.90
WPGCBASE 97.36 63.90
WPGCSPUL 97.36 63.90
                              38.35
                                           1.0
                               38.35
                                           1.0
                                          1.0
                              38.35
WPGCLPUL 97.36 63.90
WPGCAPUL 97.36 63.90
                              38.35
                                          1.0
                              38.35
                                           1.0
** FNI change end
```

ATTACHMENT C LAVACA WAM NATURALIZED FLOWS

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Jan-40	1,023	820	1	1,844	1,800	Υ
Feb-40	11,381	9,858	2,527	23,765	21,628	Υ
Mar-40	1,988	2,182	534	4,703	4,787	
Apr-40	1,350	1,223	697	3,269	2,682	Υ
May-40	2,420	1,958	2,615	6,993	4,297	Υ
Jun-40	5,807	13,502	1,610	20,918	29,624	
Jul-40	245,847	215,046	103,275	564,168	471,825	Υ
Aug-40	3,507	2,218	764	6,489	4,866	Υ
Sep-40	1,760	1,594	384	3,738	3,497	Υ
Oct-40	11,987	19,276	5,030	36,292	42,292	
Nov-40	204,146	383,786	54,360	642,291	842,051	
Dec-40	102,495	166,547	37,424	306,465	365,414	
Jan-41	37,314	55,143	13,146	105,603	120,988	
Feb-41	25,339	32,144	6,455	63,938	70,525	
Mar-41	82,410	100,927	12,352	195,688	221,440	
Apr-41	75,382	137,787	24,462	237,631	302,313	
May-41	171,088	186,190	29,205	386,483	408,514	
Jun-41	120,647	116,008	20,150	256,805	254,529	Υ
Jul-41	25,608	84,954	12,185	122,747	186,394	
Aug-41	12,066	30,606	2,629	45,301	67,151	
Sep-41	5,246	9,808	1,143	16,197	21,519	
Oct-41	9,748	40,102	9,750	59,600	87,987	
Nov-41	14,584	36,096	6,959	57,639	79,196	
Dec-41	5,884	12,769	3,424	22,077	28,015	
Jan-42	4,424	4,420	745	9,589	9,698	
Feb-42	4,358	6,738	1,977	13,072	14,783	
Mar-42	4,673	7,452	1,164	13,289	16,350	
Apr-42	54,692	83,739	15,057	153,488	183,729	
May-42	5,335	5,315	3,099	13,749	11,661	Υ
Jun-42	3,132	7,883	594	11,609	17,296	
Jul-42	66,036	100,455	28,906	195,396	220,404	
Aug-42	3,555	8,210	775	12,539	18,012	
Sep-42	16,648	18,504	3,627	38,780	40,599	
Oct-42	5,045	6,184	2,063	13,292	13,568	
Nov-42	5,188	13,719	3,908	22,815	30,100	
Dec-42	4,258	7,407	2,238	13,903	16,251	
Jan-43	5,938	16,987	3,817	26,742	37,271	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Feb-43	3,327	4,187	1,527	9,041	9,185	
Mar-43	12,775	35,107	4,474	52,356	77,026	
Apr-43	3,482	3,742	1,135	8,359	8,211	Υ
May-43	6,836	15,336	4,546	26,718	33,647	
Jun-43	8,016	6,202	290	14,508	13,608	Υ
Jul-43	8,061	8,568	4,927	21,557	18,800	Υ
Aug-43	3,306	4,491	720	8,518	9,854	
Sep-43	2,099	3,737	457	6,293	8,199	
Oct-43	1,638	2,424	1,211	5,272	5,318	
Nov-43	7,917	30,404	6,183	44,504	66,707	
Dec-43	20,037	38,496	9,112	67,645	84,462	
Jan-44	41,891	103,003	24,847	169,741	225,995	
Feb-44	11,204	22,518	4,758	38,479	49,405	
Mar-44	80,078	170,225	20,645	270,948	373,484	
Apr-44	7,716	7,448	1,780	16,944	16,341	Υ
May-44	50,325	91,741	15,573	157,639	201,286	
Jun-44	7,987	9,347	858	18,193	20,509	
Jul-44	3,122	3,756	2,885	9,762	8,241	Υ
Aug-44	2,957	3,226	644	6,828	7,078	
Sep-44	12,285	17,379	2,677	32,340	38,130	
Oct-44	2,130	3,373	1,426	6,929	7,401	
Nov-44	6,045	19,269	4,665	29,979	42,278	
Dec-44	9,890	50,421	11,749	72,059	110,626	
Jan-45	22,557	40,551	9,578	72,686	88,971	
Feb-45	6,270	14,512	3,347	24,130	31,841	
Mar-45	7,796	8,622	1,304	17,722	18,916	
Apr-45	36,707	126,265	22,457	185,429	277,033	
May-45	3,373	3,642	2,858	9,872	7,990	Υ
Jun-45	7,801	5,641	188	13,630	12,377	Υ
Jul-45	1,922	4,189	2,388	8,499	9,191	
Aug-45	2,568	35,098	560	38,225	77,007	
Sep-45	933	10,021	203	11,157	21,986	
Oct-45	2,567	9,146	2,734	14,446	20,066	
Nov-45	1,180	1,398	2,229	4,807	3,068	Υ
Dec-45	1,964	10,884	3,007	15,855	23,879	
Jan-46	5,061	30,850	7,206	43,117	67,687	
Feb-46	27,765	62,262	11,764	101,791	136,608	

		Modeled N	Naturalized F	low (ac-ft)		50000 . 0
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Mar-46	14,891	41,117	5,193	61,201	90,212	
Apr-46	6,355	15,334	3,153	24,842	33,644	
May-46	10,090	43,888	8,667	62,645	96,294	
Jun-46	49,179	134,467	23,489	207,134	295,028	
Jul-46	6,498	19,754	4,281	30,532	43,341	
Aug-46	43,771	24,474	9,536	77,781	53,697	Υ
Sep-46	96,539	82,015	21,033	199,587	179,946	Υ
Oct-46	86,823	61,646	14,633	163,102	135,255	Υ
Nov-46	39,359	76,211	12,428	127,997	167,211	
Dec-46	10,782	13,929	3,680	28,390	30,560	
Jan-47	39,027	78,586	18,877	136,490	172,422	
Feb-47	6,747	6,189	1,880	14,817	13,580	Υ
Mar-47	12,619	18,967	2,542	34,129	41,616	
Apr-47	10,121	10,711	2,348	23,181	23,501	
May-47	35,898	51,967	9,832	97,697	114,018	
Jun-47	4,050	3,460	-	7,510	7,591	
Jul-47	1,944	4,030	2,397	8,372	8,843	
Aug-47	1,532	5,837	334	7,703	12,806	
Sep-47	941	5,652	205	6,798	12,401	
Oct-47	1,024	973	882	2,879	2,134	Υ
Nov-47	2,048	3,213	2,476	7,737	7,049	Υ
Dec-47	2,701	11,648	3,176	17,524	25,556	
Jan-48	3,655	14,998	3,331	21,984	32,906	
Feb-48	10,195	32,004	6,430	48,630	70,219	
Mar-48	9,471	27,133	3,520	40,124	59,532	
Apr-48	2,443	4,359	1,243	8,045	9,564	
May-48	73,030	51,208	9,723	133,961	112,353	Υ
Jun-48	4,182	1,507	-	5,689	3,306	Υ
Jul-48	2,854	5,730	2,774	11,358	12,573	
Aug-48	582	-	127	708	-	Υ
Sep-48	1,050	7,196	229	8,475	15,789	
Oct-48	607	741	829	2,177	1,625	Υ
Nov-48	728	1,318	2,218	4,263	2,891	Υ
Dec-48	899	715	759	2,372	1,568	Υ
Jan-49	2,185	2,209	204	4,598	4,846	
Feb-49	9,829	30,967	6,248	47,044	67,944	
Mar-49	4,308	18,300	2,463	25,071	40,152	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Apr-49	62,058	110,884	19,781	192,723	243,287	
May-49	9,353	12,426	4,126	25,905	27,262	
Jun-49	3,554	2,219	-	5,772	4,868	Υ
Jul-49	3,955	8,532	3,229	15,717	18,720	
Aug-49	5,163	7,468	1,125	13,756	16,386	
Sep-49	1,979	8,018	431	10,429	17,593	
Oct-49	23,632	117,942	27,392	168,966	258,771	
Nov-49	2,196	5,317	2,763	10,276	11,666	
Dec-49	27,051	53,546	12,440	93,037	117,484	
Jan-50	7,022	26,889	6,238	40,148	58,996	
Feb-50	5,847	20,470	4,397	30,715	44,913	
Mar-50	2,579	3,178	653	6,410	6,973	
Apr-50	6,557	14,855	3,069	24,482	32,594	
May-50	4,738	2,454	2,686	9,878	5,384	Υ
Jun-50	7,888	50,721	8,342	66,951	111,285	
Jul-50	1,628	2,128	2,267	6,023	4,669	Υ
Aug-50	248	1	54	302	-	Υ
Sep-50	289	7,075	63	7,426	15,522	
Oct-50	218	1,057	901	2,175	2,318	
Nov-50	242	281	2,076	2,599	617	Υ
Dec-50	570	575	728	1,873	1,262	Υ
Jan-51	808	686	-	1,493	1,504	
Feb-51	901	806	931	2,639	1,768	Υ
Mar-51	1,102	3,998	751	5,851	8,772	
Apr-51	842	2,047	840	3,730	4,491	
May-51	577	415	2,392	3,383	909	Υ
Jun-51	19,043	55,144	1,792	75,978	120,989	
Jul-51	278	-	1,708	1,986	-	Υ
Aug-51	-	-	-	-	-	
Sep-51	8,287	22,277	1,805	32,369	48,878	
Oct-51	1,677	5,128	1,824	8,629	11,251	
Nov-51	736	1,330	2,219	4,285	2,917	Υ
Dec-51	759	919	804	2,482	2,017	Υ
Jan-52	570	552	-	1,122	1,212	
Feb-52	2,029	5,724	1,798	9,551	12,558	
Mar-52	1,378	2,683	594	4,654	5,886	
Apr-52	14,204	54,129	9,904	78,237	118,763	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
May-52	79,510	97,699	16,433	193,641	214,357	
Jun-52	11,867	15,447	1,962	29,275	33,891	
Jul-52	1,663	446	2,281	4,390	978	Υ
Aug-52	1,062		231	1,293	-	Υ
Sep-52	896	5,336	195	6,427	11,708	
Oct-52	153	688	817	1,658	1,509	Υ
Nov-52	17,004	23,656	5,263	45,923	51,903	
Dec-52	23,611	43,263	10,166	77,040	94,921	
Jan-53	2,958	6,480	1,248	10,686	14,217	
Feb-53	3,149	6,492	1,934	11,575	14,245	
Mar-53	1,900	2,113	525	4,538	4,635	
Apr-53	2,875	2,004	833	5,712	4,397	Υ
May-53	41,820	85,890	14,728	142,438	188,447	
Jun-53	1,484	580	-	2,063	1,272	Υ
Jul-53	988	2,806	2,002	5,796	6,156	
Aug-53	14,099	29,730	3,072	46,901	65,229	
Sep-53	6,522	58,228	1,421	66,172	127,757	
Oct-53	1,480	2,476	1,223	5,179	5,433	
Nov-53	972	1,440	2,234	4,646	3,159	Υ
Dec-53	910	4,404	1,574	6,888	9,662	
Jan-54	885	837	-	1,722	1,836	
Feb-54	645	518	881	2,044	1,137	Υ
Mar-54	643	542	337	1,523	1,190	Υ
Apr-54	4,962	1,119	679	6,759	2,455	Υ
May-54	4,117	4,050	2,917	11,085	8,887	Υ
Jun-54	230	-	1	230	-	Υ
Jul-54	-	-	1,585	1,585	-	Υ
Aug-54	150		33	182	-	Υ
Sep-54	311	813	68	1,192	1,783	
Oct-54	-	1,409	981	2,390	3,091	
Nov-54	-	6	2,039	2,044	12	Υ
Dec-54		11	603	614	25	Υ
Jan-55	486	849		1,336	1,864	
Feb-55	35,929	46,126	8,920	90,974	101,203	
Mar-55	859	321	311	1,491	704	Υ
Apr-55	1,791	1,846	805	4,443	4,050	Y
May-55	42,574	37,211	7,703	87,487	81,642	Υ

		Modeled N	laturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Jun-55	6,388	9,499	886	16,773	20,841	
Jul-55	593	-	1,839	2,431	-	Υ
Aug-55	9,107	2,142	1,984	13,233	4,700	Υ
Sep-55	2,461	14,967	536	17,964	32,837	
Oct-55	198	9,834	2,890	12,923	21,577	
Nov-55	24	-	2,036	2,060		Υ
Dec-55	185	-	598	783		Υ
Jan-56	229	541	-	770	1,187	
Feb-56	946	4,540	1,589	7,075	9,960	
Mar-56	294	-	271	565		Υ
Apr-56	150	1,625	767	2,542	3,565	
May-56	363	-	2,209	2,572	-	Υ
Jun-56	-	-	-	-	-	
Jul-56	861	-	1,950	2,810	-	Υ
Aug-56	-	-	-	-	-	
Sep-56	-	65	-	65	142	
Oct-56	-	12	664	675	25	Υ
Nov-56	-	24	2,041	2,065	52	Υ
Dec-56	1,890	2,738	1,206	5,834	6,007	
Jan-57	-	1	-	1	2	
Feb-57	4,497	6,334	1,906	12,737	13,898	
Mar-57	27,353	71,665	8,849	107,868	157,238	
Apr-57	84,645	115,649	20,610	220,903	253,741	
May-57	28,155	81,956	14,161	124,272	179,816	
Jun-57	18,294	80,014	13,640	111,948	175,557	
Jul-57	779	-	1,916	2,695		Υ
Aug-57	124	-	27	151	-	Υ
Sep-57	9,911	27,912	2,159	39,982	61,240	
Oct-57	116,984	191,114	8,353	316,451	419,316	
Nov-57	68,782	98,735	15,499	183,015	216,630	
Dec-57	7,252	7,700	2,303	17,255	16,895	Υ
Jan-58	40,968	63,498	15,188	119,654	139,318	
Feb-58	65,782	84,989	15,770	166,540	186,471	
Mar-58	10,106	9,184	1,372	20,662	20,151	Υ
Apr-58	4,390	4,915	1,339	10,644	10,783	
May-58	23,639	30,456	6,728	60,823	66,822	
Jun-58	1,687	518	-	2,205	1,136	Υ

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Jul-58	7,286	6,200	4,607	18,092	13,603	Υ
Aug-58	725	1	158	883	1	Υ
Sep-58	22,898	34,147	4,989	62,033	74,920	
Oct-58	13,962	15,468	4,167	33,597	33,937	
Nov-58	3,856	11,205	3,566	18,627	24,585	
Dec-58	7,038	24,468	6,010	37,517	53,684	
Jan-59	3,584	13,149	2,879	19,612	28,850	
Feb-59	64,801	122,800	22,434	210,035	269,431	
Mar-59	6,330	8,114	1,244	15,687	17,802	
Apr-59	78,903	161,998	28,676	269,577	355,435	
May-59	20,885	27,402	6,287	54,575	60,122	
Jun-59	8,204	51,079	8,406	67,688	112,069	
Jul-59	3,444	3,701	3,018	10,163	8,121	Υ
Aug-59	4,174	14,882	909	19,965	32,651	
Sep-59	4,311	10,815	939	16,065	23,728	
Oct-59	16,152	52,801	12,629	81,582	115,849	
Nov-59	13,800	37,888	7,203	58,891	83,128	
Dec-59	10,328	38,271	9,062	57,662	83,970	
Jan-60	11,350	33,184	7,777	52,312	72,808	
Feb-60	12,683	37,965	7,481	58,129	83,298	
Mar-60	4,944	8,307	1,267	14,518	18,227	
Apr-60	6,757	14,792	3,058	24,608	32,455	
May-60	5,097	23,062	5,661	33,820	50,600	
Jun-60	64,335	206,881	36,586	307,802	453,910	
Jul-60	11,082	36,529	6,177	53,787	80,147	
Aug-60	39,104	74,198	8,520	121,822	162,795	
Sep-60	4,537	13,932	989	19,458	30,568	
Oct-60	223,165	164,737	37,999	425,901	361,443	Υ
Nov-60	50,570	94,666	14,944	160,180	207,703	
Dec-60	36,385	65,180	15,012	116,576	143,008	
Jan-61	58,368	93,763	22,588	174,719	205,721	
Feb-61	63,650	164,710	29,822	258,181	361,383	
Mar-61	9,911	12,193	1,732	23,836	26,753	
Apr-61	6,769	7,626	1,811	16,206	16,733	
May-61	5,591	5,083	3,066	13,740	11,152	Υ
Jun-61	80,999	145,089	25,410	251,497	318,334	
Jul-61	34,490	60,886	15,858	111,234	133,587	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	eP000 < Sum of Upstream Primary CPs?
Aug-61	4,873	4,241	1,062	10,176	9,304	Υ
Sep-61	123,171	259,819	26,835	409,825	570,060	
Oct-61	9,552	7,258	2,306	19,117	15,925	Y
Nov-61	65,144	65,505	10,968	141,617	143,722	
Dec-61	7,593	5,714	1,864	15,171	12,537	Y
Jan-62	5,773	6,262	1,195	13,230	13,739	
Feb-62	5,239	7,166	2,052	14,457	15,722	
Mar-62	4,354	4,671	832	9,857	10,249	
Apr-62	37,031	39,736	3,094	79,861	87,183	
May-62	5,796	9,373	3,685	18,853	20,564	
Jun-62	14,054	21,413	3,041	38,507	46,980	
Jul-62	3,200	10,179	2,917	16,296	22,334	
Aug-62	1,112	-	242	1,354	-	Y
Sep-62	8,997	13,497	1,960	24,454	29,613	
Oct-62	3,496	2,569	1,244	7,309	5,636	Υ
Nov-62	2,006	816	2,149	4,972	1,791	Y
Dec-62	3,579	10,872	3,004	17,455	23,853	
Jan-63	4,982	14,717	3,262	22,961	32,290	
Feb-63	17,552	17,043	3,793	38,388	37,392	Y
Mar-63	2,936	2,427	563	5,926	5,324	Υ
Apr-63	1,679	1,801	797	4,277	3,950	Υ
May-63	1,701	3,054	2,773	7,529	6,702	Υ
Jun-63	1,573	4,324	1	5,897	9,487	
Jul-63	4,304	17,006	3,373	24,684	37,313	
Aug-63	291	-	63	355	-	Υ
Sep-63	256	1,377	56	1,689	3,021	
Oct-63	210	1,230	940	2,380	2,698	
Nov-63	1,054	6,125	2,873	10,051	13,438	
Dec-63	2,268	12,393	3,341	18,002	27,192	
Jan-64	2,116	2,664	315	5,095	5,844	
Feb-64	4,095	15,617	3,542	23,254	34,265	
Mar-64	5,360	9,698	1,433	16,491	21,278	
Apr-64	4,313	2,620	940	7,874	5,749	Υ
May-64	1,718	509	2,406	4,632	1,116	Υ
Jun-64	17,407	25,864	3,846	47,116	56,747	
Jul-64	943	2,771	1,984	5,698	6,080	
Aug-64	1,434	681	313	2,428	1,495	Υ

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Sep-64	11,332	28,702	2,469	42,503	62,974	
Oct-64	2,410	6,979	2,243	11,632	15,311	
Nov-64	523	3,103	2,461	6,086	6,807	
Dec-64	794	856	790	2,439	1,878	Υ
Jan-65	36,461	35,016	8,225	79,701	76,826	Υ
Feb-65	55,753	44,640	8,658	109,051	97,943	Υ
Mar-65	4,978	3,218	658	8,854	7,061	Υ
Apr-65	4,129	4,819	1,323	10,271	10,573	
May-65	99,470	154,143	24,579	278,192	338,199	
Jun-65	40,640	39,706	6,349	86,696	87,118	
Jul-65	2,882	4,901	2,786	10,569	10,754	
Aug-65	1,795		391	2,186	-	Υ
Sep-65	1,107	8,943	241	10,292	19,622	
Oct-65	5,254	14,328	3,909	23,491	31,436	
Nov-65	48,575	88,379	14,087	151,041	193,909	
Dec-65	17,005	33,720	3,698	54,423	73,984	
Jan-66	7,453	20,671	4,718	32,841	45,353	
Feb-66	15,971	40,347	7,901	64,220	88,525	
Mar-66	9,130	21,847	2,887	33,865	47,934	
Apr-66	34,763	53,635	9,818	98,216	117,677	
May-66	44,984	107,992	17,919	170,894	236,942	
Jun-66	8,299	26,069	3,883	38,250	57,196	
Jul-66	5,189	11,699	3,739	20,627	25,669	
Aug-66	2,572	12,377	560	15,509	27,155	
Sep-66	1,994	9,879	434	12,307	21,675	
Oct-66	1,056	4,917	1,776	7,748	10,787	
Nov-66	1,008	608	2,121	3,737	1,334	Υ
Dec-66	1,225	1,048	832	3,105	2,299	Y
Jan-67	1,395	2,236	211	3,841	4,905	
Feb-67	1,090	1,016	968	3,075	2,229	Υ
Mar-67	1,553	1,108	405	3,066	2,431	Υ
Apr-67	4,342	7,007	1,703	13,053	15,374	
May-67	2,176	4,960	3,048	10,184	10,882	
Jun-67	540	561	-	1,101	1,230	
Jul-67	126	1,775	1,646	3,547	3,895	
Aug-67	982	15,814	214	17,010	34,698	
Sep-67	111,966	211,623	24,394	347,982	464,314	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Oct-67	51,582	60,435	14,359	126,376	132,598	
Nov-67	4,887	4,344	2,630	11,861	9,530	Υ
Dec-67	2,723	1,819	1,003	5,545	3,992	Υ
Jan-68	61,217	167,362	40,582	269,161	367,203	
Feb-68	8,727	14,373	3,323	26,423	31,535	
Mar-68	10,017	13,911	1,937	25,865	30,521	
Apr-68	13,108	15,556	3,191	31,856	34,131	
May-68	83,488	122,224	19,973	225,685	268,168	
Jun-68	114,656	290,873	51,778	457,307	638,194	
Jul-68	12,628	32,637	6,816	52,081	71,607	
Aug-68	3,621	3,512	789	7,921	7,704	Υ
Sep-68	6,407	18,437	1,396	26,240	40,451	
Oct-68	2,654	13,734	3,774	20,163	30,134	
Nov-68	2,757	9,831	3,378	15,966	21,569	
Dec-68	12,305	28,904	6,991	48,200	63,417	
Jan-69	6,820	17,134	3,853	27,807	37,593	
Feb-69	62,639	112,799	20,672	196,110	247,489	
Mar-69	44,111	75,738	9,337	129,185	166,173	
Apr-69	83,346	97,419	17,437	198,202	213,743	
May-69	87,432	129,448	21,015	237,895	284,017	
Jun-69	6,580	8,124	637	15,341	17,825	
Jul-69	2,815	-	2,758	5,572	-	Υ
Aug-69	2,063	-	450	2,513	-	Υ
Sep-69	2,974	11,554	648	15,176	25,350	
Oct-69	7,455	12,651	3,529	23,634	27,756	
Nov-69	3,713	8,063	3,137	14,914	17,691	
Dec-69	18,140	27,152	6,604	51,896	59,574	
Jan-70	16,469	28,229	6,566	51,263	61,936	
Feb-70	3,938	3,797	1,458	9,193	8,330	Υ
Mar-70	22,337	66,160	8,191	96,688	145,159	
Apr-70	4,698	9,298	2,102	16,098	20,400	
May-70	76,769	120,683	19,750	217,202	264,786	
Jun-70	26,067	31,538	4,872	62,476	69,195	
Jul-70	3,575	10,753	3,072	17,399	23,592	
Aug-70	2,545	706	555	3,805	1,549	Υ
Sep-70	21,676	68,563	4,723	94,961	150,431	
Oct-70	16,111	77,280	18,177	111,567	169,556	

		Modeled N	Naturalized F	low (ac-ft)		50000 + C
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	eP000 < Sum of Upstream Primary CPs?
Nov-70	2,351	3,922	2,573	8,845	8,605	Υ
Dec-70	2,014	1,813	1,001	4,828	3,978	Υ
Jan-71	1,893	1,736	89	3,717	3,810	
Feb-71	1,954	2,456	1,222	5,632	5,388	Υ
Mar-71	2,177	1,545	457	4,179	3,389	Υ
Apr-71	1,677	4,115	1,200	6,992	9,028	
May-71	1,344	2,991	2,764	7,099	6,562	Y
Jun-71	5,208	209	-	5,416	458	Y
Jul-71	979	941	1,998	3,918	2,065	Y
Aug-71	39,396	34,665	8,583	82,645	76,057	Y
Sep-71	83,037	113,170	18,091	214,297	248,301	
Oct-71	22,025	56,153	13,388	91,565	123,203	
Nov-71	4,689	3,111	2,462	10,262	6,825	Υ
Dec-71	33,969	55,690	12,914	102,573	122,188	
Jan-72	21,834	29,230	6,810	57,875	64,132	
Feb-72	26,465	57,083	10,851	94,399	125,244	
Mar-72	13,857	16,061	2,195	32,112	35,238	
Apr-72	3,703	4,842	1,327	9,872	10,624	
May-72	190,906	252,635	38,794	482,335	554,297	
Jun-72	23,518	40,423	6,479	70,421	88,692	
Jul-72	6,396	18,404	4,239	29,039	40,380	
Aug-72	6,351	9,626	1,384	17,361	21,121	
Sep-72	2,719	9,928	593	13,240	21,782	
Oct-72	2,286	4,829	1,756	8,871	10,595	
Nov-72	2,287	4,122	2,600	9,009	9,043	
Dec-72	2,034	1,684	973	4,691	3,696	Υ
Jan-73	4,241	10,376	2,201	16,818	22,765	
Feb-73	9,384	21,451	4,570	35,405	47,066	
Mar-73	65,214	106,304	12,995	184,513	233,238	
Apr-73	153,465	228,415	40,234	422,114	501,157	
May-73	34,011	39,607	8,049	81,667	86,899	
Jun-73	297,620	547,560	6,421	851,600	1,201,381	
Jul-73	23,547	29,094	11,332	63,973	63,834	Υ
Aug-73	9,731	24,662	2,120	36,513	54,110	
Sep-73	14,272	97,355	3,109	114,736	213,602	
Oct-73	110,068	125,784	29,170	265,022	275,978	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Nov-73	12,780	26,754	5,685	45,220	58,700	
Dec-73	7,737	10,250	2,867	20,853	22,489	
Jan-74	67,993	119,562	28,895	216,450	262,327	
Feb-74	13,186	15,615	3,542	32,342	34,260	
Mar-74	7,434	11,002	1,589	20,025	24,139	
Apr-74	5,793	20,507	4,053	30,352	44,993	
May-74	30,763	56,163	10,438	97,363	123,224	
Jun-74	50,672	52,564	8,675	111,910	115,328	
Jul-74	3,711	6,367	3,128	13,205	13,969	
Aug-74	6,331	12,574	1,379	20,284	27,588	
Sep-74	90,222	249,150	19,657	359,028	546,650	
Oct-74	8,809	16,771	4,463	30,042	36,797	
Nov-74	37,728	96,880	15,246	149,853	212,560	
Dec-74	17,133	32,552	7,798	57,483	71,421	
Jan-75	10,307	17,713	3,995	32,015	38,864	
Feb-75	9,521	12,910	3,065	25,496	28,326	
Mar-75	5,815	5,391	918	12,123	11,828	Y
Apr-75	34,849	37,584	7,025	79,457	82,462	
May-75	105,958	156,996	24,991	287,944	344,459	
Jun-75	28,735	69,535	11,744	110,014	152,564	
Jul-75	27,225	30,993	12,854	71,071	68,000	Y
Aug-75	5,837	15,915	1,272	23,023	34,918	
Sep-75	4,420	18,129	963	23,512	39,776	
Oct-75	3,397	9,505	2,816	15,717	20,853	
Nov-75	2,709	2,820	2,422	7,952	6,187	Υ
Dec-75	12,620	33,252	7,953	53,824	72,957	
Jan-76	2,945	3,076	416	6,436	6,748	
Feb-76	2,351	2,338	1,201	5,890	5,129	Υ
Mar-76	3,163	2,526	575	6,264	5,543	Υ
Apr-76	31,366	34,089	6,416	71,872	74,794	
May-76	50,594	52,725	9,942	113,260	115,682	
Jun-76	16,888	43,330	7,005	67,223	95,069	
Jul-76	17,906	31,480	8,999	58,385	69,069	
Aug-76	2,344	-	511	2,855	-	Υ
Sep-76	3,963	3,153	863	7,979	6,917	Υ
Oct-76	54,965	36,569	8,950	100,483	80,234	Υ
Nov-76	22,417	26,321	5,626	54,364	57,750	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Dec-76	147,442	209,574	4,142	361,158	459,820	
Jan-77	21,105	24,552	5,667	51,324	53,869	
Feb-77	60,594	82,184	15,275	158,054	180,317	
Mar-77	11,261	7,410	1,159	19,830	16,258	Υ
Apr-77	55,437	100,678	18,004	174,119	220,893	
May-77	12,822	12,272	4,103	29,197	26,925	Υ
Jun-77	17,450	41,755	6,720	65,926	91,614	
Jul-77	3,834	8,805	3,179	15,819	19,319	
Aug-77	2,103		458	2,561		Υ
Sep-77	3,881	567	846	5,293	1,243	Υ
Oct-77	1,537	2,824	935	5,295	6,195	
Nov-77	9,400	16,397	8,425	34,222	35,976	
Dec-77	2,788	1,750	134	4,671	3,839	Υ
Jan-78	9,178	42,076	13,369	64,623	92,318	
Feb-78	9,177	24,466	7,563	41,206	53,679	
Mar-78	6,383	4,302	60	10,744	9,438	Υ
Apr-78	15,092	14,144	3,441	32,677	31,033	Υ
May-78	2,459	-	-	2,459	-	Υ
Jun-78	8,217	21,767	4,939	34,922	47,757	
Jul-78	2,497	5,618	5,864	13,979	12,326	Υ
Aug-78	1,049	-	-	1,049	-	Υ
Sep-78	168,898	232,001	44,083	444,982	509,025	
Oct-78	7,571	9,387	3,144	20,102	20,596	
Nov-78	7,800	15,154	6,911	29,865	33,248	
Dec-78	4,372	6,312	4,179	14,863	13,850	Υ
Jan-79	96,003	162,030	31,523	289,556	355,504	
Feb-79	44,823	74,721	16,322	135,865	163,942	
Mar-79	23,964	38,152	7,086	69,202	83,707	
Apr-79	63,800	104,768	27,537	196,104	229,867	
May-79	151,064	168,474	15,514	335,052	369,643	
Jun-79	89,903	42,014	5,093	137,009	92,180	Υ
Jul-79	10,076	14,955	6,900	31,931	32,812	
Aug-79	4,334	652	2,130	7,116	1,430	Υ
Sep-79	49,278	128,628	60,917	238,822	282,217	
Oct-79	3,916	1,231	160	5,307	2,701	Υ
Nov-79	2,806	3,272	1,059	7,137	7,178	
Dec-79	3,489	2,974	4,083	10,546	6,526	Υ

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	eP000 < Sum of Upstream Primary CPs?
Jan-80	31,759	103,236	54,103	189,098	226,507	
Feb-80	13,598	15,034	4,061	32,692	32,984	
Mar-80	4,750	4,412	541	9,703	9,680	Y
Apr-80	4,019	4,068	1,069	9,156	8,926	Y
May-80	52,619	69,045	14,784	136,447	151,488	
Jun-80	3,414	3,168	-	6,582	6,951	
Jul-80	1,635	9,876	656	12,167	21,669	
Aug-80	1,043	828	-	1,871	1,816	Y
Sep-80	2,070	1,228	4,728	8,025	2,694	Y
Oct-80	1,899	20,945	6,493	29,336	45,954	
Nov-80	1,252	3,513	453	5,218	7,707	
Dec-80	1,552	4,780	886	7,218	10,487	
Jan-81	2,257	4,707	1,020	7,984	10,328	
Feb-81	1,507	4,322	343	6,171	9,482	
Mar-81	1,988	7,859	214	10,062	17,244	
Apr-81	9,672	18,932	3,056	31,660	41,539	
May-81	14,212	26,752	19,217	60,180	58,696	Y
Jun-81	137,738	187,303	42,364	367,405	410,955	
Jul-81	22,820	29,811	14,909	67,540	65,407	Y
Aug-81	4,350	44,652	2,271	51,273	97,970	
Sep-81	141,120	268,255	10,460	419,835	588,569	
Oct-81	16,447	42,492	12,831	71,770	93,230	
Nov-81	103,563	182,641	20,204	306,408	400,727	
Dec-81	8,562	14,589	290	23,441	32,010	
Jan-82	5,997	2,421	50	8,469	5,312	Υ
Feb-82	32,877	32,131	8,013	73,020	70,497	Υ
Mar-82	10,033	11,965	783	22,780	26,251	
Apr-82	6,295	14,189	3,819	24,303	31,132	
May-82	198,967	217,862	42,052	458,882	478,004	
Jun-82	9,155	7,822	-	16,977	17,162	
Jul-82	3,775	13,697	825	18,297	30,052	
Aug-82	1,727	-	-	1,727	-	Y
Sep-82	3,433	3,202	370	7,005	7,026	
Oct-82	2,987	6,381	1,859	11,226	13,999	
Nov-82	64,093	83,009	22,935	170,038	182,127	
Dec-82	11,112	-	3,363	14,475	-	Y
Jan-83	12,829	46,077	5,750	64,655	101,095	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Feb-83	46,769	113,035	21,530	181,333	248,005	
Mar-83	50,939	97,569	14,949	163,457	214,073	
Apr-83	7,101	22,906	700	30,708	50,257	
May-83	21,867	30,901	2,180	54,948	67,798	
Jun-83	5,499	8,783	1	14,282	19,271	
Jul-83	54,135	20,609	23,308	98,051	45,217	Υ
Aug-83	8,224		3,583	11,807	-	Υ
Sep-83	8,796	81,517	24,359	114,672	178,853	
Oct-83	12,716	113,014	32,627	158,357	247,960	
Nov-83	28,025	68,104	6,764	102,893	149,424	
Dec-83	3,857	745	1,810	6,412	1,635	Υ
Jan-84	19,804	39,842	5,343	64,989	87,416	
Feb-84	5,813	18,051	1,683	25,547	39,605	
Mar-84	6,873	12,423	191	19,488	27,258	
Apr-84	3,200	10,003	1,206	14,408	21,947	
May-84	4,350		7,802	12,152	-	Υ
Jun-84	4,006	8,896	1	12,903	19,519	
Jul-84	1,063	14,272	3,078	18,413	31,313	
Aug-84	804	3,087	69	3,961	6,774	
Sep-84	526	581	30	1,137	1,275	
Oct-84	20,707	134,262	29,868	184,836	294,579	
Nov-84	3,594	11,262	2,863	17,719	24,710	
Dec-84	3,485	8,906	1,283	13,673	19,541	
Jan-85	21,703	56,254	7,704	85,660	123,425	
Feb-85	20,283	29,602	5,332	55,217	64,949	
Mar-85	40,571	113,626	21,870	176,067	249,302	
Apr-85	112,956	134,281	27,037	274,275	294,622	
May-85	13,127	23,851	1,485	38,463	52,330	
Jun-85	5,543	13,221	1,097	19,861	29,008	
Jul-85	11,073	19,427	3,642	34,143	42,624	
Aug-85	918	8,649	151	9,718	18,976	
Sep-85	2,556	9,883	2,408	14,847	21,684	
Oct-85	3,455	19,368	7,893	30,717	42,495	
Nov-85	49,337	133,474	23,707	206,517	292,850	
Dec-85	7,270	33,690	6,661	47,620	73,917	
Jan-86	3,032	1,428	154	4,614	3,133	Y
Feb-86	3,500	3,020	74	6,593	6,626	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Mar-86	2,280	-	94	2,375	-	Υ
Apr-86	1,457	7,610	943	10,011	16,697	
May-86	2,398	7,776	1,765	11,938	17,060	
Jun-86	62,335	111,005	22,573	195,912	243,551	
Jul-86	1,775	13,230	1,594	16,599	29,027	
Aug-86	594	5,269	-	5,863	11,559	
Sep-86	2,572	13,743	2,156	18,470	30,153	
Oct-86	6,732	26,802	7,207	40,741	58,806	
Nov-86	1,908	26,877	2,751	31,535	58,969	
Dec-86	64,214	94,937	21,858	181,009	208,297	
Jan-87	18,126	30,113	7,044	55,283	66,071	
Feb-87	53,338	64,122	12,821	130,281	140,688	
Mar-87	16,814	21,759	2,805	41,378	47,740	
Apr-87	3,434	10,222	1,143	14,800	22,428	
May-87	7,726	40,335	14,322	62,383	88,497	
Jun-87	287,605	242,684	35,054	565,343	532,465	Υ
Jul-87	11,639	30,692	5,467	47,798	67,341	
Aug-87	3,187	4,556	574	8,316	9,996	
Sep-87	2,105	2,314	-	4,418	5,076	
Oct-87	1,456	-	-	1,456	-	Υ
Nov-87	13,067	55,879	12,549	81,494	122,602	
Dec-87	16,332	50,404	11,072	77,808	110,590	
Jan-88	2,975	6,034	577	9,585	13,238	
Feb-88	2,184	-	124	2,308	-	Υ
Mar-88	3,084	15,363	1,995	20,442	33,708	
Apr-88	2,082	16,952	2,647	21,681	37,194	
May-88	5,178	9,920	982	16,080	21,766	
Jun-88	4,922	7,005	-	11,927	15,369	
Jul-88	3,533	16,048	1,381	20,963	35,211	
Aug-88	361	5,700	803	6,865	12,507	
Sep-88	84	-	-	84	-	Υ
Oct-88	105	10,589	1,690	12,385	23,234	
Nov-88	205	809	604	1,617	1,776	
Dec-88	530	8,037	2,208	10,775	17,634	
Jan-89	10,120	70,647	17,638	98,405	155,004	
Feb-89	3,871	10,118	1,685	15,674	22,200	
Mar-89	2,062	8,592	146	10,800	18,850	

		Modeled N	laturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
Apr-89	1,053	2,832	758	4,643	6,212	
May-89	9,733	86,835	18,621	115,189	190,522	
Jun-89	2,283	10,115	793	13,191	22,193	
Jul-89	213	4,945	1,403	6,560	10,849	
Aug-89	-	2,332	-	2,332	5,117	
Sep-89	-	-	-	-	-	
Oct-89	18	3,565	-	3,583	7,822	
Nov-89	66	4,143	386	4,595	9,091	
Dec-89	193	-	125	318	-	Υ
Jan-90	512	2,132	247	2,891	4,679	
Feb-90	1,190	23,189	3,549	27,928	50,879	
Mar-90	5,868	47,176	5,102	58,147	103,508	
Apr-90	8,726	31,388	5,261	45,374	68,867	
May-90	3,989	17,466	8,168	29,623	38,322	
Jun-90	24	-	-	24	-	Υ
Jul-90	1,446	19,552	1,562	22,560	42,898	
Aug-90	-	2,507	277	2,784	5,501	
Sep-90	1,374	10,740	3	12,118	23,564	
Oct-90	-	8,275	1,457	9,732	18,155	
Nov-90	17	946	444	1,406	2,075	
Dec-90	-	-	20	20	-	Υ
Jan-91	34,505	92,023	24,377	150,905	201,904	
Feb-91	11,496	36,576	5,906	53,978	80,249	
Mar-91	1,971	10,447	2,182	14,599	22,920	
Apr-91	82,404	151,111	32,887	266,403	331,548	
May-91	9,763	18,979	2,070	30,812	41,641	
Jun-91	4,161	24,216	4,578	32,954	53,130	
Jul-91	9,770	25,671	7,112	42,553	56,324	
Aug-91	94	6,981	455	7,529	15,316	
Sep-91	2,636	20,429	6,810	29,875	44,822	
Oct-91	655	663	879	2,197	1,455	Υ
Nov-91	4,420	788	791	5,999	1,729	Υ
Dec-91	133,097	162,661	36,141	331,899	356,887	
Jan-92	92,413	168,751	33,892	295,056	370,251	
Feb-92	299,673	407,807	71,385	778,865	894,754	
Mar-92	42,029	70,346	5,526	117,901	154,344	
Apr-92	164,461	183,690	21,615	369,765	403,027	

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	EP000 < Sum of Upstream Primary CPs?
May-92	151,256	221,930	29,573	402,759	486,929	
Jun-92	104,544	103,212	9,334	217,091	226,454	
Jul-92	6,599	18,257	3,244	28,100	40,057	
Aug-92	2,707	5,631	32	8,370	12,356	
Sep-92	1,824	4,500	2,181	8,505	9,873	
Oct-92	1,865	5,207	-	7,071	11,423	
Nov-92	6,655	43,046	10,933	60,634	94,446	
Dec-92	17,435	29,479	7,047	53,961	64,678	
Jan-93	16,995	46,255	7,890	71,140	101,487	
Feb-93	20,673	72,294	16,974	109,941	158,617	
Mar-93	43,394	59,380	8,318	111,092	130,283	
Apr-93	28,742	59,160	9,954	97,856	129,801	
May-93	138,379	216,965	42,891	398,234	476,035	
Jun-93	236,335	302,170	56,251	594,755	662,979	
Jul-93	10,624	25,934	2,382	38,940	56,901	
Aug-93	3,330	14,541	1,006	18,877	31,904	
Sep-93	1,801	587	-	2,388	1,287	Υ
Oct-93	2,082	20,610	3,710	26,402	45,220	
Nov-93	1,732	289	3,605	5,626	635	Υ
Dec-93	2,635	34,901	1,090	38,626	76,575	
Jan-94	2,454	5,773	219	8,446	12,666	
Feb-94	1,747	-	141	1,889	-	Υ
Mar-94	6,738	21,142	5,845	33,725	46,387	
Apr-94	2,937	29,919	2,612	35,468	65,645	
May-94	95,673	102,981	11,102	209,756	225,947	
Jun-94	6,177	50,608	8,444	65,229	111,037	
Jul-94	1,271	8,469	928	10,668	18,581	
Aug-94	1,335	21,192	1,743	24,269	46,496	
Sep-94	5,268	10,211	2,587	18,066	22,404	
Oct-94	437,500	468,800	105,469	1,011,768	1,028,576	
Nov-94	8,182	4,132	425	12,739	9,066	Υ
Dec-94	18,432	62,939	21,424	102,795	138,091	
Jan-95	35,600	64,397	13,898	113,895	141,292	
Feb-95	5,987	2,317	396	8,700	5,084	Y
Mar-95	37,653	133,214	7,982	178,849	292,280	
Apr-95	35,491	393	5,130	41,014	862	Y

		Modeled N	Naturalized F	low (ac-ft)		
Date	GS300	GS500	WGS800	Sum of Upstream Primary CPs	EP000	eP000 < Sum of Upstream Primary CPs?
May-95	10,051	94,707	5,026	109,784	207,793	
Jun-95	17,997	1,127	4,779	23,902	2,472	Υ
Jul-95	2,881	30,833	9,096	42,810	67,650	
Aug-95	2,233	11,869	1,918	16,019	26,040	
Sep-95	961	6,543	1,987	9,490	14,355	
Oct-95	605	-	-	605	-	Υ
Nov-95	3,306	8,376	3,354	15,037	18,378	
Dec-95	4,891	40,223	13,354	58,468	88,251	
Jan-96	1,200	5,397	467	7,064	11,842	
Feb-96	882	2,252	122	3,256	4,942	
Mar-96	1,162	8,030	186	9,377	17,618	
Apr-96	964	6,730	807	8,501	14,765	
May-96	506	11,317	17	11,839	24,830	
Jun-96	7,573	45,380	7,178	60,131	99,567	
Jul-96	1,723	10,988	2,499	15,209	24,107	
Aug-96	5,304	1,859	6,903	14,065	4,078	Υ
Sep-96	39,311	32,443	15,636	87,390	71,182	Υ
Oct-96	1,619	-	-	1,619	-	Υ
Nov-96	1,849	5,784	5,672	13,305	12,691	Υ
Dec-96	3,955	7,627	5,221	16,803	16,735	Υ

APPENDIX 3C TCEQ Active Water Rights

Lavaca Regional Water Planning Area TCEQ Active Water Rights - January 23, 2019

WRNo	WRType	Permit #	WR Issue Date	Amendment Letter	OwnerName	Diversion Amount (AFY)	UseCode	Priority Date	Consumptive Amt	Acreage	Basin Number	Water Master	County
	Jp				DUPONT, NANTE MAE FARQUHAR, FRANCES GAYLE, A D JR GAYLE, GEORGE S JR								
					LAWRENCE, VIRGINIA G ORMAN, ELIZABETH L SHOEMATE, CATHERINE L SIMONS, A G								
2078	אחו	2078	07/03/1981		SIMONS, LILLIAN H SIMONS, M T JR SIMONS, W C STELL, REGINA E WRIGHT, ELEANOR	450,0000	AGRICULTURE - IRRIGATION	12/10/1938			16	SOUTH TEXAS	JACKSON
2070 7	103	2070	0770371761		DUPONT, NANIE MAE FARQUHAR, FRANCES GAYLE, A D JR GAYLE, GEORGE S JR	430.0000	AGRICOLITIKE - INKIGATION	12/10/1930			10	300111 TEXAS	JACKSON
					LAWRENCE, VIRGINIA G ORMAN, ELIZABETH L SHOEMATE, CATHERINE L SIMONS, A G								
2070	\D.I	2070	07/02/1001		SIMONS, LILLIAN H SIMONS, M T JR SIMONS, W C STELL, REGINA E WRIGHT, ELEANOR	1120 0000	ACDICULTURE IRRICATION	00/20/1002			1/	COUTU TEVAC	IACKCON
2078 / 2084 /	ADJ ADJ	2078 2084	07/03/1981 07/03/1981		ESTATE OF ET ROSE DECEASED		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	09/30/1903 11/10/1950			16 16	SOUTH TEXAS SOUTH TEXAS	JACKSON JACKSON
	ADJ	2095	07/03/1981	E	LAVACA-NAVIDAD RIVER AUTHORITY	18122.0000	OTHER	10/06/1993			16	SOUTH TEXAS	JACKSON
	/DJ	2095	07/03/1981	E	LAVACA-NAVIDAD RIVER AUTHORITY		MUNICIPAL/DOMESTIC NAVIGATION	05/15/1972		170300.0000		SOUTH TEXAS	JACKSON
2095 / 2095 /	AD1	2095 2095	07/03/1981 07/03/1981	<u>E</u>	LAVACA-NAVIDAD RIVER AUTHORITY LAVACA-NAVIDAD RIVER AUTHORITY		INDUSTRIAL NAVIGATION RECREATION MUNICIPAL/DOMESTIC	05/15/1972 05/15/1972		93340.0000	16 16	SOUTH TEXAS SOUTH TEXAS	JACKSON JACKSON
	ADJ	2095	07/03/1781	E	LAVACA-NAVIDAD RIVER AUTHORITY		INDUSTRIAL RECREATION	05/15/1972		73340.0000	16	SOUTH TEXAS	JACKSON
	ADJ	2095	07/03/1981	E	LAVACA-NAVIDAD RIVER AUTHORITY		MUNICIPAL/DOMESTIC NAVIGATION	05/24/1982			16	SOUTH TEXAS	JACKSON
	ADJ	2095	07/03/1981	E	LAVACA-NAVIDAD RIVER AUTHORITY		INDUSTRIAL MUNICIPAL/DOMESTIC	07/01/2002			16	SOUTH TEXAS	JACKSON
2097 / 2098 /		2097 2098	07/03/1981 07/03/1981	A	GEBRUEDER VIEHOF FARMS OHG STAFFORD, BURR JED STAFFORD, HARRISON STAFFORD, HARRISON II		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	11/17/1939			16 16	SOUTH TEXAS SOUTH TEXAS	JACKSON JACKSON
	ADJ	2098	07/03/1981	A	STAFFORD, BURR JED STAFFORD, HARRISON STAFFORD, HARRISON II		AGRICULTURE - IRRIGATION	11/22/1982			16	SOUTH TEXAS	JACKSON
2099		2099	07/03/1981		STAFFORD, BURR JED STAFFORD, HARRISON STAFFORD, HARRISON II		AGRICULTURE - IRRIGATION	11/17/1939			16	SOUTH TEXAS	JACKSON
2100		2100	07/03/1981		STAFFORD, BURR JED STAFFORD, HARRISON STAFFORD, HARRISON II		AGRICULTURE - IRRIGATION	11/17/1939			16	SOUTH TEXAS	JACKSON
	NRPERM	2101 4123	07/03/1981 08/03/1981		KOOP, FRANCIS SWENSON, ALBERT W SWENSON, CLAUDIA P		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	11/28/1939 05/11/1981			16 15	SOUTH TEXAS NOT IN WM AREA	JACKSON JACKSON
	WRPERM	4192	06/18/1982	В	FORMOSA PLASTICS CORPORATION TEXAS		AGRICULTURE - IRRIGATION	03/01/1982		1120.0000		NOT IN WM AREA	JACKSON
	WRPERM	4296	05/19/1983	· · · · · · · · · · · · · · · · · · ·	JAVELIN HOLDING LIMITED LIABILITY COMPANY	1200.0000	AGRICULTURE - IRRIGATION	01/03/1983		480.0000		SOUTH TEXAS	JACKSON
	WRPERM	4296	05/19/1983		2001 CAVALCADE INC OWEN ENTERPRISES LLC		AGRICULTURE - IRRIGATION	01/03/1983			16	SOUTH TEXAS	JACKSON
	WRPERM ADJ	4353 4791	03/14/1984	В	ROLAND CARLSON LLC		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	04/18/1983		900.0000	16 15	SOUTH TEXAS NOT IN WM AREA	JACKSON JACKSON
4/91 /	ADJ	4/91	01/20/1987		FORMOSA PLASTICS CORPORATION TEXAS BABB, MURIEL MARTIN, CHARLES D MARTIN, DOROTHY MCCARTER MARTIN, ROBERT	11035.0000	AGRICULTURE - IRRIGATION	12/20/1976		900.0000	15	NOT IN WIVI AREA	JACKSON
5120	WRPERM	5120	06/10/1987		T J BABB HEIRS REVOCABLE TRUST YATES, ELEANOR V	2500.0000	AGRICULTURE - IRRIGATION	02/19/1987			17	SOUTH TEXAS	JACKSON
	WRPERM	5487	08/08/1994		SWENSON, ALAN P SWENSON, BRIAN M SWENSON, SHARON		AGRICULTURE - IRRIGATION	05/20/1994		8.0000		NOT IN WM AREA	JACKSON
	WRPERM	5584	10/27/1997		JACKSON COUNTY		INDUSTRIAL ACRICATION	04/24/1997			16	SOUTH TEXAS	JACKSON
	/DJ	2077 2077	07/03/1981 07/03/1981		BOZKA, MATT J BOZKA, MATT J		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	12/31/1956 02/28/1949		10.0000	16 16	SOUTH TEXAS SOUTH TEXAS	LAVACA LAVACA
	ADJ	2096	07/03/1981		MRAZ, VLASTA		AGRICULTURE - IRRIGATION	02/28/1961		12.0000	16	SOUTH TEXAS	LAVACA
	ADJ	2096	07/03/1981		MRAZ, VLASTA		AGRICULTURE - IRRIGATION	02/28/1961		12.0000		SOUTH TEXAS	LAVACA
	WRPERM	4185	10/14/1982	A	JO ANN LEAVESLEY FAMILY TRUST LEAVESLEY, JOHN E		AGRICULTURE - IRRIGATION	02/08/1982		100.0000	16	SOUTH TEXAS	LAVACA
	WRPERM WRPERM	4327 5130	04/19/1984 07/15/1987	A	T-BAR-D LLC CITY OF MOULTON		AGRICULTURE - IRRIGATION RECREATION	02/22/1983 04/24/1987		6.0800	16 16	SOUTH TEXAS SOUTH TEXAS	LAVACA LAVACA
	WRPERM	5370	10/15/1991	A	PAULA LOUISE ROBINSON TRUST		AGRICULTURE - IRRIGATION	07/01/1991		356.0000		SOUTH TEXAS	LAVACA
	AD J	2082	07/03/1981		EL RANCHO DE LOS PATOS INC		AGRICULTURE - IRRIGATION	03/31/1929			16	SOUTH TEXAS	WHARTON
	ADJ	2083	07/03/1981		RAUN, NORRIS		AGRICULTURE - IRRIGATION	10/27/1969			16	SOUTH TEXAS	WHARTON
	AD1	2083 2090	07/03/1981 07/03/1981		RAUN, NORRIS ROD, KEN ROD, MELISSA Z		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	05/10/1948 03/31/1956			16 16	SOUTH TEXAS SOUTH TEXAS	WHARTON WHARTON
	ADJ	2091	07/03/1981	В	BIRKNER, JACK BIRKNER, MARY LOU		AGRICULTURE - IRRIGATION	03/31/1750			16	SOUTH TEXAS	WHARTON
	ADJ	2092	07/03/1981		DEFRIEND, CHARLOTTE DEFRIEND, MARK		AGRICULTURE - IRRIGATION	03/30/1945			16	SOUTH TEXAS	WHARTON
	ADJ	2093	07/03/1981		TUCKER, EVA REIGH		AGRICULTURE - IRRIGATION	07/31/1964			16	SOUTH TEXAS	WHARTON
	ADJ WRPERM	2094 3958	07/03/1981 04/23/1979	A	ALLEN, GRADY ESTATE OF J K ALLEN BIRKNER, JACK BIRKNER, MARY LOU		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	04/30/1952 01/29/1979			16 16	SOUTH TEXAS	WHARTON WHARTON
	WRPERM	4019	04/22/1980	<u> </u>	BAIN, CARL B		AGRICULTURE - IRRIGATION	01/21/1980			16	SOUTH TEXAS	WHARTON
3727 \	WRPERM	4021	04/23/1980		SCHMIDT, GREGORY PAUL SCHMIDT, ROBERT JOHN	913.0000	AGRICULTURE - IRRIGATION	01/21/1980			16	SOUTH TEXAS	WHARTON
	WRPERM	4132	10/23/1981	^	VITERA, HARRY E		AGRICULTURE - IRRIGATION	05/26/1981			16	SOUTH TEXAS	WHARTON
	WRPERM WRPERM	4129 4129	06/04/1982 06/04/1982		MEEK, ALAN WAYNE MEEK, BRIAN NELSON		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	05/18/1981 05/18/1981				SOUTH TEXAS SOUTH TEXAS	WHARTON WHARTON
	WRPERM	4129	06/04/1982	A	MEEK, DALE CHARLES		AGRICULTURE - IRRIGATION	05/18/1981				SOUTH TEXAS	WHARTON
3876 \	WRPERM	4129	06/04/1982	Α	MEEK, GARY KENNETH		AGRICULTURE - IRRIGATION	05/18/1981			16	SOUTH TEXAS	WHARTON
	WRPERM	4129	06/04/1982	A	MEEK, ALAN WAYNE		AGRICULTURE - IRRIGATION	05/18/1981				SOUTH TEXAS	WHARTON
	WRPERM WRPERM	4158 4161	10/14/1982 10/14/1982	A	MUSTANG EXPLORATION CO LTD EL RANCHO DE LOS PATOS INC		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	11/16/1981 11/16/1981			16 16	SOUTH TEXAS SOUTH TEXAS	WHARTON WHARTON
	WRPERM	4163	10/14/1982		ESTATE OF J K ALLEN		AGRICULTURE - IRRIGATION	11/16/1981		1.0000		SOUTH TEXAS	WHARTON
3907 \	WRPERM	4163	10/14/1982		ESTATE OF J K ALLEN	520.0000	AGRICULTURE - IRRIGATION	11/16/1981		1.0000	16	SOUTH TEXAS	WHARTON
	WRPERM	4165	10/14/1982		HALAMICEK, KATHLEEN		AGRICULTURE - IRRIGATION	11/16/1981		45.0000		SOUTH TEXAS	WHARTON
	WRPERM WRPERM	4166 4174	10/14/1982 10/14/1982		DERNEHL, WILBERT O WIGGINTON, ELAINE WIGGINTON, GAYNARD		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	11/16/1981 12/07/1981		63.0000 2.0000		SOUTH TEXAS SOUTH TEXAS	WHARTON WHARTON
	WRPERINI WRPERM	4174	08/01/1985	В	WEINHEIMER, EDMUND A JR		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	04/30/1985		25.2000		SOUTH TEXAS	WHARTON
	WRPERM	4559	10/03/1985	A	RAUN, NORRIS RAUN, RICHARD T RAUN, TRAVIS NORRIS		AGRICULTURE - IRRIGATION	04/16/1985		4.9000		SOUTH TEXAS	WHARTON
	WRPERM	5168	06/17/1988	A	RICHARDS BROTHERS COMPANY		AGRICULTURE - IRRIGATION	02/02/1988	1092.0000	2.0000		SOUTH TEXAS	WHARTON
	WRPERM WRPERM	5168 5263	06/17/1988 03/08/1990	A	RICHARDS BROTHERS COMPANY WEINHEIMER, EDMUND A JR		AGRICULTURE - WILDLIFE MANAGEMENT RECREATI AGRICULTURE - IRRIGATION	11/21/1989	651.0000	334.0000		SOUTH TEXAS SOUTH TEXAS	WHARTON WHARTON
	WRPERM WRPERM	5263	03/08/1990	Α	SEIFMAN, SARA A SEIFMAN, WILLIAM R		AGRICULTURE - IRRIGATION AGRICULTURE - IRRIGATION	03/07/1997				SOUTH TEXAS	WHARTON
	WRPERM	5595	09/27/2000		GOFF, E G GOFF, JAN GOFF, KENNETH		AGRICULTURE - IRRIGATION	09/27/2000				SOUTH TEXAS	WHARTON
	WRPERM	5678	11/14/2000		RICHARDS BROTHERS COMPANY		AGRICULTURE - IRRIGATION	07/27/2000				SOUTH TEXAS	WHARTON
5706	WRPERM	5706	03/27/2002		BRANDL, ANTON JR BRANDL, DOROTHY	104.4000	AGRICULTURE - IRRIGATION	10/01/2000			16	SOUTH TEXAS	WHARTON

Contents

Chapter	4 – Identification of Water Needs	4-1
4.1	Identification of Water Needs	4-1
4.2	Socioeconomic Impact of Projected Water Shortages	4-1
List of A	ppendices	
Appendix	4A – WUG Needs Report and MWP Needs Data	
Appendix	4B – Socioeconomic Impacts of Projected Water Shortages for the Lavaca (Region P) Regional Water Planning Area	

i

This page intentionally left blank.

Chapter 4 – Identification of Water Needs

This chapter describes the analysis performed to identify water user groups (WUGs) with water shortages, also known as water needs. In *Chapter 5*, water management strategies have been defined for each of the identified future water shortages within LRWPA as required by the regional water planning process.

4.1 Identification of Water Needs

In *Chapter 2*, water demands were identified for all WUGs. In *Chapter 3*, water supplies available to the Lavaca Regional Water Planning Area (LRWPA) were identified and allocated to WUGs and Major Water Providers (MWPs) based on current usage and contracts. Projected surpluses and shortages were determined by matching the supplies and the demands. The *WUG Needs Report* in *Appendix 4A* lists all WUGs within the LRWPA with shortages.

Total water demands in the LRWPA were 206,304 ac-ft/yr in the year 2020 and are projected to decrease to 204,482 ac-ft/yr and 204,333 ac-ft/yr in years 2060 and 2070, respectively. Total water supplies allocated to WUGs in the region were estimated at 198,744 ac-ft/yr for 2020 and 198,825 ac-ft/yr for all planning periods between the years 2030 and 2070.

The sum of the projected shortages in the WUG Needs Report in Appendix 4A remains at 8,067 ac-ft/yr for the entire planning horizon from 2020 through 2070. As no WUGs are currently experiencing water shortages in LRWPA, it is assumed that the remaining demands have been made up by additional groundwater pumpage in excess of the supply numbers presented in Chapter 3, or with available interruptible surface water supplies.

LNRA, the Major Water Provider in the region, has 0 acre-feet of projected water needs through 2070 in the 2021 Lavaca RWP. Needs data for LNRA by category of use and by county/basin is provided in *Appendix 4A* in Tables 4A-1 and 4A-2. The WUGs in Lavaca County and Jackson County were found to experience no shortages through the year 2070. Irrigation in Wharton County within the Lavaca Basin will experience shortages in the planning area with a deficit of 8,067 ac-ft/yr from 2020 through 2070. There are no municipal shortages anticipated for LRWPA through the year 2070.

4.2 Socioeconomic Impact of Projected Water Shortages

For the 2021 Lavaca RWP, TWDB prepared the report *Socioeconomic Impacts of Projected Water Shortages for the Lavaca (Region P) Regional Water Planning Area*, along with corresponding reports for each of the other 15 regional water planning areas. The socioeconomic impacts within the Region P portion of Wharton County were summarized in this report. A copy of the report is included in *Appendix 4B*.

The socioeconomic impact reports for all 16 planning regions were divided into two components. The first of these is the economic impact module which addressed the potential impacts of unmet water demands on losses to regional economies resulting from reduced economic output caused by agricultural, industrial, or commercial water shortages. For the Lavaca Region, this portion of the report predicts what would occur if, in any given year, the Drought of Record recurs and the water demands anticipated in *Chapter 2* of this Plan cannot be met by the firm supplies shown in *Chapter 3*. Economic baseline data used in the analysis was generated from available year 2016 data using IMPLAN PROTM distributed by the IMPLAN Group.

Additionally, methodology for socioeconomic impact analyses for the 2021 Regional Water Plans was provided by the TWDB as the second component of this analysis. The IMPLAN model estimates direct and indirect impacts to business, industry and agriculture, using output elasticities which were chosen to correlate the magnitude of the shortage as a percentage of the total demand to the resulting economic impact. Elasticities measure the relationship between a percentage reduction in water availability and a percentage reduction in output. For example, shortages of 0 to 5 percent of the total demand were not expected to cause any reduction in output. Water shortages of between 5 and 50 percent were expected to see linear reductions in output for every 1 percent of unmet need, reaching the 100 percent negative impact level at 50 percent water shortage.

The socioeconomic impacts analysis examined multiple potential impacts of unmet water needs, including repercussions to tax revenues, income, employment, population, and school enrollment. The results of the study indicate income losses of \$2 million for irrigated agriculture if needs are not met during a 1-year drought period. Unmet needs would result in the loss of an estimated 39 agricultural jobs, a population reduction of 7 people, and a decline in school enrollment of 1 student.

APPENDIX 4A WUG Needs Report and MWP Needs Data

WUG NEEDS REPORT

	REGION P		SPLIT WUG NEEDS (ACRE-FEET PER YEAR) *Surpluses Updated to Zero						
COUNTY	BASIN	WUG	2020	2030	2040	2050	2060	2070	
JACKSON	COLORADO-LAVACA	COUNTY-OTHER	0	0	0	0	0	0	
JACKSON	COLORADO-LAVACA	IRRIGATION	0	0	0	0	0	0	
JACKSON	COLORADO-LAVACA	LIVESTOCK	0	0	0	0	0	0	
JACKSON	COLORADO-LAVACA	MANUFACTURING	0	0	0	0	0	0	
JACKSON	COLORADO-LAVACA	MINING	0	0	0	0	0	0	
JACKSON	LAVACA	COUNTY-OTHER	0	0	0	0	0	0	
JACKSON	LAVACA	EDNA	0	0	0	0	0	0	
JACKSON	LAVACA	GANADO	0	0	0	0	0	0	
JACKSON	LAVACA	IRRIGATION	0	0	0	0	0	0	
JACKSON	LAVACA	LIVESTOCK	0	0	0	0	0	0	
JACKSON	LAVACA	MANUFACTURING	0	0	0	0	0	0	
JACKSON	LAVACA	MINING	0	0	0	0	0	0	
JACKSON	LAVACA-GUADALUPE	COUNTY-OTHER	0	0	0	0	0	0	
JACKSON	LAVACA-GUADALUPE	IRRIGATION	0	0	0	0	0	0	
JACKSON	LAVACA-GUADALUPE	LIVESTOCK	0	0	0	0	0	0	
JACKSON	LAVACA-GUADALUPE	MANUFACTURING	0	0	0	0	0	0	
JACKSON	LAVACA-GUADALUPE	MINING	0	0	0	0	0	0	
LAVACA	GUADALUPE	COUNTY-OTHER	0	0	0	0	0	0	
LAVACA	GUADALUPE	LIVESTOCK	0	0	0	0	0	0	
LAVACA	LAVACA	COUNTY-OTHER	0	0	0	0	0	0	
LAVACA	LAVACA	HALLETTSVILLE	0	0	0	0	0	0	
LAVACA	LAVACA	IRRIGATION	0	0	0	0	0	0	
LAVACA	LAVACA	LIVESTOCK	0	0	0	0	0	0	
LAVACA	LAVACA	MANUFACTURING	0	0	0	0	0	0	
LAVACA	LAVACA	MINING	0	0	0	0	0	0	
LAVACA	LAVACA	MOULTON	0	0	0	0	0	0	
LAVACA	LAVACA	SHINER	0	0	0	0	0	0	
LAVACA	LAVACA	YOAKUM	0	0	0	0	0	0	
LAVACA	LAVACA-GUADALUPE	COUNTY-OTHER	0	0	0	0	0	0	
LAVACA	LAVACA-GUADALUPE	LIVESTOCK	0	0	0	0	0	0	
WHARTON	COLORADO	COUNTY-OTHER	0	0	0	0	0	0	
WHARTON	COLORADO	EL CAMPO	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	COUNTY-OTHER	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	EL CAMPO	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	IRRIGATION	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	LIVESTOCK	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	MANUFACTURING	0	0	0	0	0	0	
WHARTON	COLORADO-LAVACA	MINING	0	0	0	0	0	0	
WHARTON	LAVACA	COUNTY-OTHER	0	0	0	0	0	0	
WHARTON	LAVACA	EL CAMPO	0	0	0	0	0	0	
WHARTON	LAVACA	IRRIGATION	8,067	8,067	8,067	8,067	8,067	8,067	
WHARTON	LAVACA	LIVESTOCK	0	0	0	0	0	0	
	REGION P TOTAL NEED	-	8,067	8,067	8,067	8,067	8,067	8,067	

Table 4A-1 Major Water Provider Needs by Category of Use

	Contract Demand Needs/Surplus by Planning Decade (acre-feet/year)									
Region P Major Water Provider	Buyer Entity	Buyer Entity Region	Buyer WUG Category	CNS 2020	CNS 2030	CNS 2040	CNS 2050	CNS 2060	CNS 2070	
LNRA	CORPUS CHRISTI	N	MUNICIPAL	0	0	0	0	0	0	
LNRA	MANUFACTURING, CALHOUN	L	MANUFACTURING	0	0	0	0	0	0	
LNRA	MANUFACTURING, JACKSON	Р	MANUFACTURING	0	0	0	0	0	0	
LNRA	POINT COMFORT	L	MUNICIPAL	0	0	0	0	0	0	

Table 4A-2 Major Water Provider Needs by County and Basin

		Contract Demand Needs/Surplus by Planning Decade (acre-feet/year)								
Region P Major Water Provider	Buyer Entity	Buyer Entity Region	Buyer Entity Split County	Buyer Entity Split Basin	CNS 2020	CNS 2030	CNS 2040	CNS 2050	CNS 2060	CNS 2070
LNRA	CORPUS CHRISTI	N	NUECES	NUECES	0	0	0	0	0	0
LNRA	CORPUS CHRISTI	N	NUECES	NUECES-RIO GRANDE	0	0	0	0	0	0
LNRA	MANUFACTURING, CALHOUN	L	CALHOUN	COLORADO- LAVACA	0	0	0	0	0	0
LNRA	MANUFACTURING, CALHOUN	L	CALHOUN	LAVACA- GUADALUIPE	0	0	0	0	0	0
LNRA	MANUFACTURING, JACKSON	Р	JACKSON	COLORADO- LAVACA	0	0	0	0	0	0
LNRA	POINT COMFORT	L	CALHOUN	COLORADO- LAVACA	0	0	0	0	0	0

APPENDIX 4B

Socioeconomic Impacts of Projected Water Shortages for the Lavaca (Region P) Regional Water Planning Area

Socioeconomic Impacts of Projected Water Shortages for the Lavaca (Region P) Regional Water Planning Area

Prepared in Support of the 2021 Region P Regional Water Plan

Dr. John R. Ellis Water Use, Projections, & Planning Division Texas Water Development Board

November 2019

Table of Contents

Execut	ive Summary	1		
1 In	troduction	3		
1.1	Regional Economic Summary	3		
1.2	Identified Regional Water Needs (Potential Shortages)	5		
2 In	npact Assessment Measures	7		
2.1	Regional Economic Impacts	8		
2.2	Financial Transfer Impacts	8		
2.3	Social Impacts	10		
3 Sc	ocioeconomic Impact Assessment Methodology	11		
3.1	Analysis Context	11		
3.2	IMPLAN Model and Data	11		
3.3	Elasticity of Economic Impacts	12		
3.4	Analysis Assumptions and Limitations	13		
4 Analysis Results				
4.1	Impacts for Irrigation Water Shortages	17		
4.2	Impacts for Livestock Water Shortages	17		
4.3	Impacts of Manufacturing Water Shortages	18		
4.4	Impacts of Mining Water Shortages	18		
4.5	Impacts for Municipal Water Shortages	19		
4.6	Impacts of Steam-Electric Water Shortages	20		
4.7	Regional Social Impacts	21		
Annen	dix A - County Level Summary of Estimated Economic Impacts for Region P	22		

Region P

Executive Summary

Evaluating the social and economic impacts of not meeting identified water needs is a required analysis in the regional water planning process. The Texas Water Development Board (TWDB) estimates these impacts for regional water planning groups (RWPGs) and summarizes the impacts in the state water plan. The analysis presented is for the Lavaca Regional Water Planning Group (Region P).

Based on projected water demands and existing water supplies, Region P identified water needs (potential shortages) that could occur within its region under a repeat of the drought of record for six water use categories (irrigation, livestock, manufacturing, mining, municipal and steam-electric power). The TWDB then estimated the annual socioeconomic impacts of those needs—if they are not met—for each water use category and as an aggregate for the region.

This analysis was performed using an economic impact modeling software package, IMPLAN (Impact for Planning Analysis), as well as other economic analysis techniques, and represents a snapshot of socioeconomic impacts that may occur during a single year repeat of the drought of record with the further caveat that no mitigation strategies are implemented. Decade specific impact estimates assume that growth occurs, and future shocks are imposed on an economy at 10-year intervals. The estimates presented are not cumulative (i.e., summing up expected impacts from today up to the decade noted), but are simply snapshots of the estimated annual socioeconomic impacts should a drought of record occur in each particular decade based on anticipated water supplies and demands for that same decade.

For regional economic impacts, income losses and job losses are estimated within each planning decade (2020 through 2070). The income losses represent an approximation of gross domestic product (GDP) that would be foregone if water needs are not met.

The analysis also provides estimates of financial transfer impacts, which include tax losses (state, local, and utility tax collections); water trucking costs; and utility revenue losses. In addition, social impacts are estimated, encompassing lost consumer surplus (a welfare economics measure of consumer wellbeing); as well as population and school enrollment losses.

IMPLAN data reported that Region P generated more than \$1.3 billion in GDP (2018 dollars) and supported roughly 20,200 jobs in 2016. The Region P estimated total population was approximately 50,500 in 2016.

It is estimated that not meeting the identified water needs in Region P would result in an annually combined lost income impact of approximately \$2 million in 2020 and \$1 million in 2070 (Table ES-1). It is also estimated that the region would lose approximately 39 jobs in 2020 and 30 jobs in 2070.

All impact estimates are in year 2018 dollars and were calculated using a variety of data sources and tools including the use of a region-specific IMPLAN model, data from TWDB annual water use

estimates, the U.S. Census Bureau, Texas Agricultural Statistics Service, and the Texas Municipal League.

Table ES-1 Region P socioeconomic impact summary

Regional Economic Impacts	2020	2030	2040	2050	2060	2070
Income losses (\$ millions)*	\$2	\$2	\$2	\$2	\$2	\$1
Job losses	39	37	35	33	32	30
Financial Transfer Impacts	2020	2030	2040	2050	2060	2070
Tax losses on production and imports (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Water trucking costs (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Utility revenue losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Utility tax revenue losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Social Impacts	2020	2030	2040	2050	2060	2070
Consumer surplus losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Population losses	7	7	6	6	6	5
School enrollment losses	1	1	1	1	1	1

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

Region P

1 Introduction

Water shortages during a repeat of the drought of record would likely curtail or eliminate certain economic activity in businesses and industries that rely heavily on water. Insufficient water supplies could not only have an immediate and real impact on the regional economy in the short term, but they could also adversely and chronically affect economic development in Texas. From a social perspective, water supply reliability is critical as well. Shortages could disrupt activity in homes, schools and government, and could adversely affect public health and safety. For these reasons, it is important to evaluate and understand how water supply shortages during drought could impact communities throughout the state.

As part of the regional water planning process, RWPGs must evaluate the social and economic impacts of not meeting water needs (31 Texas Administrative Code §357.33 (c)). Due to the complexity of the analysis and limited resources of the planning groups, the TWDB has historically performed this analysis for the RWPGs upon their request. Staff of the TWDB's Water Use, Projections, & Planning Division designed and conducted this analysis in support of Region P, and those efforts for this region as well as the other 15 regions allow consistency and a degree of comparability in the approach.

This document summarizes the results of the analysis and discusses the methodology used to generate the results. Section 1 provides a snapshot of the region's economy and summarizes the identified water needs in each water use category, which were calculated based on the RWPG's water supply and demand established during the regional water planning process. Section 2 defines each of ten impact assessment measures used in this analysis. Section 3 describes the methodology for the impact assessment and the approaches and assumptions specific to each water use category (i.e., irrigation, livestock, manufacturing, mining, municipal, and steam-electric power). Section 4 presents the impact estimates for each water use category with results summarized for the region as a whole. Appendix A presents a further breakdown of the socioeconomic impacts by county.

1.1 Regional Economic Summary

The Region P Regional Water Planning Area generated more than \$1.3 billion in gross domestic product (2018 dollars) and supported roughly 20,200 jobs in 2016, according to the IMPLAN dataset utilized in this socioeconomic analysis. This activity accounted for 0.1 percent of the state's total gross domestic product of 1.73 trillion dollars for the year based on IMPLAN. Table 1-1 lists all economic sectors ranked by the total value-added to the economy in Region P. The manufacturing and mining sectors generated more than 26 percent of the region's total value-added and were also significant sources of tax revenue. The top employers in the region were in the agriculture, manufacturing, and public administration sectors. Region P's estimated total population was roughly 50,500 in 2016, approximately 0.2 percent of the state's total.

This represents a snapshot of the regional economy as a whole, and it is important to note that not all economic sectors were included in the TWDB socioeconomic impact analysis. Data

considerations prompted use of only the more water-intensive sectors within the economy because damage estimates could only be calculated for those economic sectors which had both reliable income and water use estimates.

Table 1-1 Region P regional economy by economic sector*

Economic sector	Value-added (\$ millions)	Tax (\$ millions)	Jobs
Manufacturing	\$255.0	\$9.5	2,295
Construction	\$157.8	\$1.7	1,552
Public Administration	\$136.8	\$(0.6)	2,050
Real Estate and Rental and Leasing	\$124.9	\$22.6	454
Mining, Quarrying, and Oil and Gas Extraction	\$100.3	\$27.4	1,060
Wholesale Trade	\$92.3	\$20.3	690
Agriculture, Forestry, Fishing and Hunting	\$88.4	\$3.1	3,990
Retail Trade	\$69.4	\$22.4	1,709
Health Care and Social Assistance	\$56.0	\$1.9	1,333
Finance and Insurance	\$43.2	\$2.9	918
Transportation and Warehousing	\$40.5	\$2.8	760
Professional, Scientific, and Technical Services	\$36.8	\$1.3	703
Other Services (except Public Administration)	\$36.5	\$3.6	601
Management of Companies and Enterprises	\$30.2	\$0.8	301
Accommodation and Food Services	\$25.7	\$4.6	769
Utilities	\$23.7	\$5.6	58
Administrative and Support and Waste Management and Remediation Services	\$17.4	\$1.1	449
Information	\$14.6	\$3.7	142
Educational Services	\$2.0	\$0.2	166
Arts, Entertainment, and Recreation	\$1.5	\$0.4	177
Grand Total	\$1,353.2	\$135.5	20,179

^{*}Source: 2016 IMPLAN for 536 sectors aggregated by 2-digit NAICS (North American Industry Classification System)

While the manufacturing sector led the region in economic output, the majority (90 percent) of water use in 2016 occurred in irrigated agriculture. Figure 1-1 illustrates Region P's breakdown of the 2016 water use estimates by TWDB water use category.

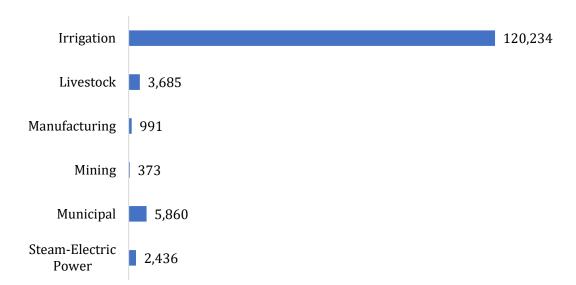


Figure 1-1 Region P 2016 water use estimates by water use category (in acre-feet)

Source: TWDB Annual Water Use Estimates (all values in acre-feet)

1.2 Identified Regional Water Needs (Potential Shortages)

As part of the regional water planning process, the TWDB adopted water demand projections for water user groups (WUG) in Region P with input from the planning group. WUG-level demand projections were established for utilities that provide more than 100 acre-feet of annual water supply, combined rural areas (designated as county-other), and county-wide water demand projections for five non-municipal categories (irrigation, livestock, manufacturing, mining and steam-electric power). The RWPG then compared demands to the existing water supplies of each WUG to determine potential shortages, or needs, by decade.

Table 1-2 summarizes the region's identified water needs in the event of a repeat of the drought of record. Demand management, such as conservation, or the development of new infrastructure to increase supplies, are water management strategies that may be recommended by the planning group to address those needs. This analysis assumes that no strategies are implemented, and that the identified needs correspond to future water shortages. To provide a general sense of proportion, total projected needs as an overall percentage of total demand by water use category are also presented in aggregate in Table 1-2. Projected needs for individual water user groups within the aggregate can vary greatly and may reach 100% for a given WUG and water use category. A detailed summary of water needs by WUG and county appears in Chapter 4 of the 2021 Region P Regional Water Plan.

Table 1-2 Regional water needs summary by water use category*

Water Use Categ	gory	2020	2030	2040	2050	2060	2070
Irrigation	water needs (acre-feet per year)	8,067	8,067	8,067	8,067	8,067	8,067
irrigation	% of the category's total water demand	5%	5%	5%	5%	5%	5%
	water needs (acre-feet per year)	-	-	-	-	-	-
Livestock	% of the category's total water demand	0%	0%	0%	0%	0%	0%
Manufacturing	water needs (acre-feet per year)	-	-	-	-	-	-
	% of the category's total water demand	0%	0%	0%	0%	0%	0%
Minima	water needs (acre-feet per year)	-	-	-	-	-	-
Mining	% of the category's total water demand	0%	0%	0%	0%	0%	0%
Municipal**	water needs (acre-feet per year)	-	-	-	-	-	-
Municipai	% of the category's total water demand	0%	0%	0%	0%	0%	0%
Steam-electric	water needs (acre-feet per year)	-	-	-	-	-	-
power	% of the category's total water demand	0%	0%	0% 0%		0%	0%
Total v (acre-fe	8,067	8,067	8,067	8,067	8,067	8,067	

^{*}Entries denoted by a dash (-) indicate no identified water need for a given water use category.

^{**} Municipal category consists of residential and non-residential (commercial and institutional) subcategories.

2 Impact Assessment Measures

A required component of the regional and state water plans is to estimate the potential economic and social impacts of potential water shortages during a repeat of the drought of record. Consistent with previous water plans, ten impact measures were estimated and are described in Table 2-1.

Table 2-1 Socioeconomic impact analysis measures

Regional economic impacts	Description
Income losses - value-added	The value of output less the value of intermediate consumption; it is a measure of the contribution to gross domestic product (GDP) made by an individual producer, industry, sector, or group of sectors within a year. Value-added measures used in this report have been adjusted to include the direct, indirect, and induced monetary impacts on the region.
Income losses - electrical power purchase costs	Proxy for income loss in the form of additional costs of power as a result of impacts of water shortages.
Job losses	Number of part-time and full-time jobs lost due to the shortage. These values have been adjusted to include the direct, indirect, and induced employment impacts on the region.
Financial transfer impacts	Description
Tax losses on production and imports	Sales and excise taxes not collected due to the shortage, in addition to customs duties, property taxes, motor vehicle licenses, severance taxes, other taxes, and special assessments less subsidies. These values have been adjusted to include the direct, indirect and induced tax impacts on the region.
Water trucking costs	Estimated cost of shipping potable water.
Utility revenue losses	Foregone utility income due to not selling as much water.
Utility tax revenue losses	Foregone miscellaneous gross receipts tax collections.
Social impacts	Description
Consumer surplus losses	A welfare measure of the lost value to consumers accompanying restricted water use.
Population losses	Population losses accompanying job losses.
School enrollment losses	School enrollment losses (K-12) accompanying job losses.

2.1 Regional Economic Impacts

The two key measures used to assess regional economic impacts are income losses and job losses. The income losses presented consist of the sum of value-added losses and the additional purchase costs of electrical power.

Income Losses - Value-added Losses

Value-added is the value of total output less the value of the intermediate inputs also used in the production of the final product. Value-added is similar to GDP, a familiar measure of the productivity of an economy. The loss of value-added due to water shortages is estimated by input-output analysis using the IMPLAN software package, and includes the direct, indirect, and induced monetary impacts on the region. The indirect and induced effects are measures of reduced income as well as reduced employee spending for those input sectors which provide resources to the water shortage impacted production sectors.

Income Losses - Electric Power Purchase Costs

The electrical power grid and market within the state is a complex interconnected system. The industry response to water shortages, and the resulting impact on the region, are not easily modeled using traditional input/output impact analysis and the IMPLAN model. Adverse impacts on the region will occur and are represented in this analysis by estimated additional costs associated with power purchases from other generating plants within the region or state. Consequently, the analysis employs additional power purchase costs as a proxy for the value-added impacts for the steam-electric power water use category, and these are included as a portion of the overall income impact for completeness.

For the purpose of this analysis, it is assumed that power companies with insufficient water will be forced to purchase power on the electrical market at a projected higher rate of 5.60 cents per kilowatt hour. This rate is based upon the average day-ahead market purchase price of electricity in Texas that occurred during the recent drought period in 2011. This price is assumed to be comparable to those prices which would prevail in the event of another drought of record.

Job Losses

The number of jobs lost due to the economic impact is estimated using IMPLAN output associated with each TWDB water use category. Because of the difficulty in predicting outcomes and a lack of relevant data, job loss estimates are not calculated for the steam-electric power category.

2.2 Financial Transfer Impacts

Several impact measures evaluated in this analysis are presented to provide additional detail concerning potential impacts on a portion of the economy or government. These financial transfer impact measures include lost tax collections (on production and imports), trucking costs for

Region P

imported water, declines in utility revenues, and declines in utility tax revenue collected by the state. These measures are not solely adverse, with some having both positive and negative impacts. For example, cities and residents would suffer if forced to pay large costs for trucking in potable water. Trucking firms, conversely, would benefit from the transaction. Additional detail for each of these measures follows.

Tax Losses on Production and Imports

Reduced production of goods and services accompanying water shortages adversely impacts the collection of taxes by state and local government. The regional IMPLAN model is used to estimate reduced tax collections associated with the reduced output in the economy. Impact estimates for this measure include the direct, indirect, and induced impacts for the affected sectors.

Water Trucking Costs

In instances where water shortages for a municipal water user group are estimated by RWPGs to exceed 80 percent of water demands, it is assumed that water would need to be trucked in to support basic consumption and sanitation needs. For water shortages of 80 percent or greater, a fixed, maximum of \$35,000¹ per acre-foot of water applied as an economic cost. This water trucking cost was utilized for both the residential and non-residential portions of municipal water needs.

Utility Revenue Losses

Lost utility income is calculated as the price of water service multiplied by the quantity of water not sold during a drought shortage. Such estimates are obtained from utility-specific pricing data provided by the Texas Municipal League, where available, for both water and wastewater. These water rates are applied to the potential water shortage to estimate forgone utility revenue as water providers sold less water during the drought due to restricted supplies.

Utility Tax Losses

Foregone utility tax losses include estimates of forgone miscellaneous gross receipts taxes. Reduced water sales reduce the amount of utility tax that would be collected by the State of Texas for water and wastewater service sales.

¹ Based on staff survey of water hauling firms and historical data concerning transport costs for potable water in the recent drought in California for this estimate. There are many factors and variables that would determine actual water trucking costs including distance to, cost of water, and length of that drought.

Region P

2.3 Social Impacts

Consumer Surplus Losses for Municipal Water Users

Consumer surplus loss is a measure of impact to the wellbeing of municipal water users when their water use is restricted. Consumer surplus is the difference between how much a consumer is willing and able to pay for a commodity (i.e., water) and how much they actually have to pay. The difference is a benefit to the consumer's wellbeing since they do not have to pay as much for the commodity as they would be willing to pay. Consumer surplus may also be viewed as an estimate of how much consumers would be willing to pay to keep the original quantity of water which they used prior to the drought. Lost consumer surplus estimates within this analysis only apply to the residential portion of municipal demand, with estimates being made for reduced outdoor and indoor residential use. Lost consumer surplus estimates varied widely by location and degree of water shortage.

Population and School Enrollment Losses

Population loss due to water shortages, as well as the associated decline in school enrollment, are based upon the job loss estimates discussed in Section 2.1. A simplified ratio of job and net population losses are calculated for the state as a whole based on a recent study of how job layoffs impact the labor market population.² For every 100 jobs lost, 18 people were assumed to move out of the area. School enrollment losses are estimated as a proportion of the population lost based upon public school enrollment data from the Texas Education Agency concerning the age K-12 population within the state (approximately 19%).

-

² Foote, Andrew, Grosz, Michel, Stevens, Ann. "Locate Your Nearest Exit: Mass Layoffs and Local Labor Market Response." University of California, Davis. April 2015, http://paa2015.princeton.edu/papers/150194. The study utilized Bureau of Labor Statistics data regarding layoffs between 1996 and 2013, as well as Internal Revenue Service data regarding migration, to model the change in the population as the result of a job layoff event. The study found that layoffs impact both out-migration and in-migration into a region, and that a majority of those who did move following a layoff moved to another labor market rather than an adjacent county.

3 Socioeconomic Impact Assessment Methodology

This portion of the report provides a summary of the methodology used to estimate the potential economic impacts of future water shortages. The general approach employed in the analysis was to obtain estimates for income and job losses on the smallest geographic level that the available data would support, tie those values to their accompanying historic water use estimate, and thereby determine a maximum impact per acre-foot of shortage for each of the socioeconomic measures. The calculations of economic impacts are based on the overall composition of the economy divided into many underlying economic sectors. Sectors in this analysis refer to one or more of the 536 specific production sectors of the economy designated within IMPLAN, the economic impact modeling software used for this assessment. Economic impacts within this report are estimated for approximately 330 of these sectors, with the focus on the more water-intensive production sectors. The economic impacts for a single water use category consist of an aggregation of impacts to multiple, related IMPLAN economic sectors.

3.1 Analysis Context

The context of this socioeconomic impact analysis involves situations where there are physical shortages of groundwater or surface water due to a recurrence of drought of record conditions. Anticipated shortages for specific water users may be nonexistent in earlier decades of the planning horizon, yet population growth or greater industrial, agricultural or other sector demands in later decades may result in greater overall demand, exceeding the existing supplies. Estimated socioeconomic impacts measure what would happen if water user groups experience water shortages for a period of one year. Actual socioeconomic impacts would likely become larger as drought of record conditions persist for periods greater than a single year.

3.2 IMPLAN Model and Data

Input-Output analysis using the IMPLAN software package was the primary means of estimating the value-added, jobs, and tax related impact measures. This analysis employed regional level models to determine key economic impacts. IMPLAN is an economic impact model, originally developed by the U.S. Forestry Service in the 1970's to model economic activity at varying geographic levels. The model is currently maintained by the Minnesota IMPLAN Group (MIG Inc.) which collects and sells county and state specific data and software. The year 2016 version of IMPLAN, employing data for all 254 Texas counties, was used to provide estimates of value-added, jobs, and taxes on production for the economic sectors associated with the water user groups examined in the study. IMPLAN uses 536 sector-specific Industry Codes, and those that rely on water as a primary input were assigned to their appropriate planning water user categories (irrigation, livestock, manufacturing, mining, and municipal). Estimates of value-added for a water use category were obtained by summing value-added estimates across the relevant IMPLAN sectors associated with that water use category. These calculations were also performed for job losses as well as tax losses on production and imports.

The adjusted value-added estimates used as an income measure in this analysis, as well as the job and tax estimates from IMPLAN, include three components:

- *Direct effects* representing the initial change in the industry analyzed;
- *Indirect effects* that are changes in inter-industry transactions as supplying industries respond to reduced demands from the directly affected industries; and,
- *Induced effects* that reflect changes in local spending that result from reduced household income among employees in the directly and indirectly affected industry sectors.

Input-output models such as IMPLAN only capture backward linkages and do not include forward linkages in the economy.

3.3 Elasticity of Economic Impacts

The economic impact of a water need is based on the size of the water need relative to the total water demand for each water user group. Smaller water shortages, for example, less than 5 percent, are generally anticipated to result in no initial negative economic impact because water users are assumed to have a certain amount of flexibility in dealing with small shortages. As a water shortage intensifies, however, such flexibility lessens and results in actual and increasing economic losses, eventually reaching a representative maximum impact estimate per unit volume of water. To account for these characteristics, an elasticity adjustment function is used to estimate impacts for the income, tax and job loss measures. Figure 3-1 illustrates this general relationship for the adjustment functions. Negative impacts are assumed to begin accruing when the shortage reaches the lower bound 'b1' (5 percent in Figure 3-1), with impacts then increasing linearly up to the 100 percent impact level (per unit volume) once the upper bound reaches the 'b2' level shortage (40 percent in Figure 3-1).

To illustrate this, if the total annual value-added for manufacturing in the region was \$2 million and the reported annual volume of water used in that industry is 10,000 acre-feet, the estimated economic measure of the water shortage would be \$200 per acre-foot. The economic impact of the shortage would then be estimated using this value-added amount as the maximum impact estimate (\$200 per acre-foot) applied to the anticipated shortage volume and then adjusted by the elasticity function. Using the sample elasticity function shown in Figure 3-1, an approximately 22 percent shortage in the livestock category would indicate an economic impact estimate of 50% of the original \$200 per acre-foot impact value (i.e., \$100 per acre-foot).

Such adjustments are not required in estimating consumer surplus, utility revenue losses, or utility tax losses. Estimates of lost consumer surplus rely on utility-specific demand curves with the lost consumer surplus estimate calculated based on the relative percentage of the utility's water shortage. Estimated changes in population and school enrollment are indirectly related to the elasticity of job losses.

Assumed values for the lower and upper bounds 'b1' and 'b2' vary by water use category and are presented in Table 3-1.

100% 90% % Economic Impact per unit 80% volume of shortage 70% 60% 50% 40% 30% 20% 10% 0% 10% **b1** 0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 3-1 Example economic impact elasticity function (as applied to a single water user's shortage)

Shortage as percent of water demand

Table 3-1 Economic impact elasticity function lower and upper bounds

Water use category	Lower bound (b1)	Upper bound (b2)
Irrigation	5%	40%
Livestock	5%	10%
Manufacturing	5%	40%
Mining	5%	40%
Municipal (non-residential water intensive subcategory)	5%	40%
Steam-electric power	N/A	N/A

3.4 Analysis Assumptions and Limitations

The modeling of complex systems requires making many assumptions and acknowledging the model's uncertainty and limitations. This is particularly true when attempting to estimate a wide range of socioeconomic impacts over a large geographic area and into future decades. Some of the key assumptions and limitations of this methodology include:

1. The foundation for estimating the socioeconomic impacts of water shortages resulting from a drought are the water needs (potential shortages) that were identified by RWPGs as part of the

Region P

- regional water planning process. These needs have some uncertainty associated with them but serve as a reasonable basis for evaluating the potential impacts of a drought of record event.
- 2. All estimated socioeconomic impacts are snapshots for years in which water needs were identified (i.e., 2020, 2030, 2040, 2050, 2060, and 2070). The estimates are independent and distinct "what if" scenarios for each particular year, and water shortages are assumed to be temporary events resulting from a single year recurrence of drought of record conditions. The evaluation assumed that no recommended water management strategies are implemented. In other words, growth occurs and future shocks are imposed on an economy at 10-year intervals, and the resulting impacts are estimated. Note that the estimates presented are not cumulative (i.e., summing up expected impacts from today up to the decade noted), but are simply snapshots of the estimated annual socioeconomic impacts should a drought of record occur in each particular decade based on anticipated water supplies and demands for that same decade.
- 3. Input-output models such as IMPLAN rely on a static profile of the structure of the economy as it appears today. This presumes that the relative contributions of all sectors of the economy would remain the same, regardless of changes in technology, availability of limited resources, and other structural changes to the economy that may occur in the future. Changes in water use efficiency will undoubtedly take place in the future as supplies become more stressed. Use of the static IMPLAN structure was a significant assumption and simplification considering the 50-year time period examined in this analysis. To presume an alternative future economic makeup, however, would entail positing many other major assumptions that would very likely generate as much or more error.
- 4. This is not a form of cost-benefit analysis. That approach to evaluating the economic feasibility of a specific policy or project employs discounting future benefits and costs to their present value dollars using some assumed discount rate. The methodology employed in this effort to estimate the economic impacts of future water shortages did not use any discounting methods to weigh future costs differently through time.
- 5. All monetary values originally based upon year 2016 IMPLAN and other sources are reported in constant year 2018 dollars to be consistent with the water management strategy requirements in the State Water Plan.
- 6. IMPLAN based loss estimates (income-value-added, jobs, and taxes on production and imports) are calculated only for those IMPLAN sectors for which the TWDB's Water Use Survey (WUS) data was available and deemed reliable. Every effort is made in the annual WUS effort to capture all relevant firms who are significant water users. Lack of response to the WUS, or omission of relevant firms, impacts the loss estimates.

Region P

- 7. Impacts are annual estimates. The socioeconomic analysis does not reflect the full extent of impacts that might occur as a result of persistent water shortages occurring over an extended duration. The drought of record in most regions of Texas lasted several years.
- 8. Value-added estimates are the primary estimate of the economic impacts within this report. One may be tempted to add consumer surplus impacts to obtain an estimate of total adverse economic impacts to the region, but the consumer surplus measure represents the change to the wellbeing of households (and other water users), not an actual change in the flow of dollars through the economy. The two measures (value-added and consumer surplus) are both valid impacts but ideally should not be summed.
- 9. The value-added, jobs, and taxes on production and import impacts include the direct, indirect and induced effects to capture backward linkages in the economy described in Section 2.1. Population and school enrollment losses also indirectly include such effects as they are based on the associated losses in employment. The remaining measures (consumer surplus, utility revenue, utility taxes, additional electrical power purchase costs, and potable water trucking costs), however, do not include any induced or indirect effects.
- 10. The majority of impacts estimated in this analysis may be more conservative (i.e., smaller) than those that might actually occur under drought of record conditions due to not including impacts in the forward linkages in the economy. Input-output models such as IMPLAN only capture backward linkages on suppliers (including households that supply labor to directly affected industries). While this is a common limitation in this type of economic modeling effort, it is important to note that forward linkages on the industries that use the outputs of the directly affected industries can also be very important. A good example is impacts on livestock operators. Livestock producers tend to suffer substantially during droughts, not because there is not enough water for their stock, but because reductions in available pasture and higher prices for purchased hay have significant economic effects on their operations. Food processors could be in a similar situation if they cannot get the grains or other inputs that they need. These effects are not captured in IMPLAN, resulting in conservative impact estimates.
- 11. The model does not reflect dynamic economic responses to water shortages as they might occur, nor does the model reflect economic impacts associated with a recovery from a drought of record including:
 - a. The likely significant economic rebound to some industries immediately following a drought, such as landscaping;
 - b. The cost and time to rebuild liquidated livestock herds (a major capital investment in that industry);
 - c. Direct impacts on recreational sectors (i.e., stranded docks and reduced tourism); or,
 - d. Impacts of negative publicity on Texas' ability to attract population and business in the event that it was not able to provide adequate water supplies for the existing economy.

- 12. Estimates for job losses and the associated population and school enrollment changes may exceed what would actually occur. In practice, firms may be hesitant to lay off employees, even in difficult economic times. Estimates of population and school enrollment changes are based on regional evaluations and therefore do not necessarily reflect what might occur on a statewide basis.
- 13. The results must be interpreted carefully. It is the general and relative magnitudes of impacts as well as the changes of these impacts over time that should be the focus rather than the absolute numbers. Analyses of this type are much better at predicting relative percent differences brought about by a shock to a complex system (i.e., a water shortage) than the precise size of an impact. To illustrate, assuming that the estimated economic impacts of a drought of record on the manufacturing and mining water user categories are \$2 and \$1 million, respectively, one should be more confident that the economic impacts on manufacturing are twice as large as those on mining and that these impacts will likely be in the millions of dollars. But one should have less confidence that the actual total economic impact experienced would be \$3 million.
- 14. The methodology does not capture "spillover" effects between regions or the secondary impacts that occur outside of the region where the water shortage is projected to occur.
- 15. The methodology that the TWDB has developed for estimating the economic impacts of unmet water needs, and the assumptions and models used in the analysis, are specifically designed to estimate potential economic effects at the regional and county levels. Although it may be tempting to add the regional impacts together in an effort to produce a statewide result, the TWDB cautions against that approach for a number of reasons. The IMPLAN modeling (and corresponding economic multipliers) are all derived from regional models a statewide model of Texas would produce somewhat different multipliers. As noted in point 14 within this section, the regional modeling used by TWDB does not capture spillover losses that could result in other regions from unmet needs in the region analyzed, or potential spillover gains if decreased production in one region leads to increases in production elsewhere. The assumed drought of record may also not occur in every region of Texas at the same time, or to the same degree.

4 Analysis Results

This section presents estimates of potential economic impacts that could reasonably be expected in the event of water shortages associated with a drought of record and if no recommended water management strategies were implemented. Projected economic impacts for the six water use categories (irrigation, livestock, manufacturing, mining, municipal, and steam-electric power) are reported by decade.

4.1 Impacts for Irrigation Water Shortages

One of the three counties in the region are projected to experience water shortages in the irrigated agriculture water use category for one or more decades within the planning horizon. Estimated impacts to this water use category appear in Table 4-1. Note that tax collection impacts were not estimated for this water use category. IMPLAN data indicates a negative tax impact (i.e., increased tax collections) for the associated production sectors, primarily due to past subsidies from the federal government. However, it was not considered realistic to report increasing tax revenues during a drought of record.

Table 4-1 Impacts of water shortages on irrigation in Region P

Impact measure	2020	2030	2040	2050	2060	2070
Income losses (\$ millions)*	\$2	\$2	\$2	\$2	\$2	\$1
Job losses	39	37	35	33	32	30

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

4.2 Impacts for Livestock Water Shortages

None of the three counties in the region are projected to experience water shortages in the livestock water use category. Estimated impacts to this water use category appear in Table 4-2.

Table 4-2 Impacts of water shortages on livestock in Region P

Impact measure	2020	2030	2040	2050	2060	2070
Income losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Jobs losses	-	-	-	-	-	-
Tax losses on production and imports (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

4.3 Impacts of Manufacturing Water Shortages

None of the three counties in the region are projected to experience water shortages in the manufacturing water use category. Estimated impacts to this water use category appear in Table 4-3.

Table 4-3 Impacts of water shortages on manufacturing in Region P

Impacts measure	2020	2030	2040	2050	2060	2070
Income losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Job losses	-	-	-	-	-	-
Tax losses on production and Imports (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

4.4 Impacts of Mining Water Shortages

None of the three counties in the region are projected to experience water shortages in the mining water use category. Estimated impacts to this water use type appear in Table 4-4.

Table 4-4 Impacts of water shortages on mining in Region P

Impacts measure	2020	2030	2040	2050	2060	2070
Income losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Job losses	-	-	-	-	-	-
Tax losses on production and Imports (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

4.5 Impacts for Municipal Water Shortages

None of the three counties in the region are projected to experience water shortages in the municipal water use category.

Impact estimates were made for two sub-categories within municipal water use: residential and non-residential. Non-residential municipal water use includes commercial and institutional users, which are further divided into non-water-intensive and water-intensive subsectors including car wash, laundry, hospitality, health care, recreation, and education. Lost consumer surplus estimates were made only for needs in the residential portion of municipal water use. Available IMPLAN and TWDB Water Use Survey data for the non-residential, water-intensive portion of municipal demand allowed these sectors to be included in income, jobs, and tax loss impact estimate.

Trucking cost estimates, calculated for shortages exceeding 80 percent, assumed a fixed, maximum cost of \$35,000 per acre-foot to transport water for municipal use. The estimated impacts to this water use category appear in Table 4-5.

Table 4-5 Impacts of water shortages on municipal water users in Region P

Impacts measure	2020	2030	2040	2050	2060	2070
Income losses¹ (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Job losses ¹	-	-	-	-	-	-
Tax losses on production and imports¹ (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Trucking costs (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Utility revenue losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Utility tax revenue losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-

¹ Estimates apply to the water-intensive portion of non-residential municipal water use.

4.6 Impacts of Steam-Electric Water Shortages

None of the three counties in the region are projected to experience water shortages in the steamelectric water use category. Estimated impacts to this water use category appear in Table 4-6.

Note that estimated economic impacts to steam-electric water users:

- Are reflected as an income loss proxy in the form of estimated additional purchasing costs for power from the electrical grid to replace power that could not be generated due to a shortage;
- Do not include estimates of impacts on jobs. Because of the unique conditions of power generators during drought conditions and lack of relevant data, it was assumed that the industry would retain, perhaps relocating or repurposing, their existing staff in order to manage their ongoing operations through a severe drought.
- Do not presume a decline in tax collections. Associated tax collections, in fact, would likely increase under drought conditions since, historically, the demand for electricity increases during times of drought, thereby increasing taxes collected on the additional sales of power.

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

Table 4-6 Impacts of water shortages on steam-electric power in Region P

Impacts measure	2020	2030	2040	2050	2060	2070
Income Losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

4.7 Regional Social Impacts

Projected changes in population, based upon several factors (household size, population, and job loss estimates), as well as the accompanying change in school enrollment, were also estimated and are summarized in Table 4-7.

Table 4-7 Region-wide social impacts of water shortages in Region P

Impacts measure	2020	2030	2040	2050	2060	2070
Consumer surplus losses (\$ millions)*	\$-	\$-	\$-	\$-	\$-	\$-
Population losses	7	7	6	6	6	5
School enrollment losses	1	1	1	1	1	1

^{*} Year 2018 dollars, rounded. Entries denoted by a dash (-) indicate no estimated economic impact. Entries denoted by a zero (\$0) indicate estimated income losses less than \$500,000.

Appendix A - County Level Summary of Estimated Economic Impacts for Region P

County level summary of estimated economic impacts of not meeting identified water needs by water use category and decade (in 2018 dollars, rounded). Values are presented only for counties with projected economic impacts for at least one decade.

(* Entries denoted by a dash (-) indicate no estimated economic impact)

			Income losses (Million \$)*						Job losses				
County	Water Use Category	2020	2030	2040	2050	2060	2070	2020	2030	2040	2050	2060	2070
WHARTON	IRRIGATION	\$1.88	\$1.79	\$1.71	\$1.62	\$1.53	\$1.44	39	37	35	33	32	30
WHARTON Tota	al	\$1.88	\$1.79	\$1.71	\$1.62	\$1.53	\$1.44	39	37	35	33	32	30
REGION P Total		\$1.88	\$1.79	\$1.71	\$1.62	\$1.53	\$1.44	39	37	35	33	32	30

Contents

Chapter	5 – Eva	luation a	nd Selection of Water Management Strategies	5-1				
5.1	Selecti	ion and Ap	oplication of Water Management Strategies	5-1				
	5.1.1	Potentia	l Water Management Strategies	5-2				
	5.1.2	Recomn	nended Strategies to Meet Irrigation Water Needs	5-3				
		5.1.2.1	Irrigation Conservation	5-3				
	5.1.3	Recomn	nended Strategies for Major Water Providers	5-5				
		5.1.3.1	Lavaca Off-Channel Reservoir	5-5				
		5.1.3.2	LNRA Desalination	5-7				
	5.1.4	Recomn	nended Strategies for Municipal Utilities	5-9				
		5.1.4.1	Drought Management	5-10				
		5.1.4.2	Municipal Conservation	5-10				
		5.1.4.3	Reuse	5-13				
	5.1.5	Alternati	ve Strategies	5-14				
		5.1.5.1	Expand Use of Groundwater (Alternative Strategy)	5-14				
		5.1.5.2	Lake Texana Dredging (Alternative Strategy)	5-15				
		5.1.5.3	LNRA Aquifer Storage and Recovery (Alternative Strategy)	5-17				
		5.1.5.4	Irrigation Conservation – Alternate Wetting and Drying (Alternative Strategy)					
		5.1.5.5	Drought Management for Manufacturing (Alternative Strategy)	5-20				
	5.1.6	Strategie	es Considered but Not Recommended	5-21				
		5.1.6.1	Drought Management for Irrigation (Considered)	5-21				
		5.1.6.2	Irrigation Conservation – Row-Irrigated Rice (Considered)	5-21				
	5.1.7	Strategy	Allocation	5-21				
5.2	Water	Conserva	tion	5-21				
	5.2.1	Municipal Conservation						
	5.2.2	Conserv	ration for Manufacturing	5-22				
	5.2.3	Irrigation	Conservation	5-23				
		5.2.3.1	On-Farm Conservation	5-24				
		5.2.3.2	Tail Water Recovery	5-24				

List of Tables

- Table 5-1 Estimated Unit Cost of On-Farm Conservation Improvements
- Table 5-2 Drought Management Municipal Water Demand Reductions
- Table 5-3 Municipal Conservation Target GPCDs
- Table 5-4 Municipal Conservation Water Demand Reductions
- Table 5-5 Municipal Conservation Costs
- Table 5-6 LNRA Lake Texana Dredging Yield
- Table 5-7 Potential Applicable Regulations for Dredging Activities
- Table 5-8 Drought Management for Manufacturing Water Demand Reductions
- Table 5-9 Conservation for Manufacturing Water Demand Reductions

List of Appendices

- Appendix 5A Consideration of Strategies that are Potentially Feasible for Meeting Water Needs
- Appendix 5B Potential Management Strategies and Impacts
- Appendix 5C Recommended and Alternative Water Management Strategy Summaries
- Appendix 5D Water Management Strategy Cost Tables
- Appendix 5E TWDB DB22 Reports
- Appendix 5F Strategy WAM Coding

Chapter 5 – Evaluation and Selection of Water Management Strategies

Chapter 4 identified the WUGs in the region with water needs. Appendix 4A lists all WUGs within the Lavaca Region with shortages. This chapter (Chapter 5) describes the analysis regarding the evaluation, and selection of appropriate water management strategies for the Lavaca Region. Water management strategies have been defined for each of the identified future water shortages within the Lavaca Region as required by the regional water planning process. Included within this chapter are:

- Description of the potentially feasible water management strategies
- Definition of the recommended and alternative water management strategies
- Allocation of selected strategies to specific WUGs

In addition to the above, this chapter has a sub-section specifically to address water conservation – including any recommended water conservation management strategies.

5.1 Selection and Application of Water Management Strategies

The Lavaca Regional Water Planning Area (LRWPA) obtains its surface water from Lake Texana and groundwater from the Gulf Coast aquifer. Because of the sensitivity of agricultural producers to the price of the water, attention was paid to the issue of sustainable use to prevent the drawdown of the water table to the point that the water would be unavailable to agriculture from a pumping cost standpoint.

Groundwater availabilities were determined based upon Desired Future Conditions (DFC) of each aquifer. This availability is known as the Modeled Available Groundwater (MAG), and the Texas Water Development Board restricted recommended strategies to those that use volumes of water that do not exceed the MAG, unless the Lavaca Regional Water Planning Group (LRWPG) requested to use a MAG Peak Factor. The LRWPG decided not to request a MAG Peak Factor.

Regions are required to consider emergency transfers of non-municipal use surface water per 31 TAC §357.34(c). Emergency transfers of surface water are granted by the Texas Commission on Environmental Quality on an interim basis during periods where an imminent threat to public health and safety exists, including multi-year droughts, spikes in demands, or failure of water supply systems where demands are unable to be met by available resources. As the regional water planning process considers supplies and demands over decadal periods, temporary emergency transfers of water were not considered. As all supplies allocated are considered available during drought of record (DOR) conditions, the need for additional supplies in the water planning process are due to unmet demands rather than temporary unavailability of supplies. If shortages are identified in a decade within the planning period, they are met with new supplies developed in a water management strategy (WMS).

Currently, non-municipal users in the Lavaca Region rely almost entirely on groundwater, and thus there is no infrastructure available to convey water from non-municipal users under emergency conditions. Furthermore, all needs within the Plan are assigned to irrigated agriculture.

Regions are required to consider regional water supply facilities and providing regional management of regional resources. However, due to the dependence of the Lavaca Region on groundwater supplies, regional-level supply infrastructure has not developed in the region, nor is it anticipated to develop or be needed in the foreseeable future. WUGs and individual agricultural irrigators predominantly are supplied by their own wells. Municipal WUGs are unlikely to display interest in regional water infrastructure development as they have access to adequate supplies and for a majority of municipal WUGs, limited or no growth is projected. At the same time, irrigated agriculture cannot financially support development of large-scale water infrastructure.

Per House Bill 807 (HB 807), if a Regional Water Planning Area (RWPA) has significant identified water needs, the Regional Water Planning Group (RWPG) shall provide a specific assessment of the potential for aquifer storage and recovery (ASR) projects to meet those needs. At the August 19, 2019 meeting, the LRWPG determined the threshold of significant water needs by evaluating existing needs for Irrigation in Wharton County. As the LRWPG did not believe the need in Irrigation was great enough to necessitate a consideration of ASR, significant identified water need was defined as 10,000 ac-ft/yr. Though the needs in the Lavaca Region did not reach the defined level of "significant," an evaluation for ASR was conducted for LNRA, which may be found in *Section 5.1.5.3* as an alternative strategy.

Regional water planning groups are required to consider and report water loss estimates in the evaluation of water management strategies. A summary of current water loss for Region P is provided at the end of *Chapter 1*. Reported real losses for individual municipal WUGs from the 2015 audit submitted to TWDB range from 5.9 to 34.3 percent. These real losses are embedded in the water use survey data that the TWDB uses to project municipal water demands and determine water needs in the regional water planning process. Certain conservation strategies recommended in the 2021 Region P Water Plan are intended to decrease the water loss percentage for existing infrastructure, both for municipal and for irrigation water users. Drought management strategies recommended in this plan have no associated water losses.

5.1.1 Potential Water Management Strategies

The potential water management strategies considered in the 2021 RWP are as follows:

- Municipal Drought Management Recommended (Section 5.1.4.1)
- Municipal Conservation Recommended (Sections 5.1.4.2 and 5.2.1)
- Reuse (El Campo) Recommended (Section 5.1.4.3)
- Manufacturing Drought Management Alternative (Section 5.1.5.5)
- Conservation for Manufacturing Recommended (Section 5.2.2)
- Irrigation Drought Management Considered (Section 5.1.6.1)
- Irrigation Conservation Recommended (Sections 5.1.2.1 and 5.1.2.3), Alternative (Section 5.1.5.4), Considered (Section 5.1.6.2)
- Lavaca Off-Channel Reservoir Recommended (Section 5.1.3.1)
- LNRA Desalination Recommended (Section 5.1.3.2)
- Lake Texana Dredging Alternative (Section 5.1.5.2)
- LNRA Aguifer Storage and Recovery Alternative (Section 5.1.5.3)
- Expand Use of Groundwater Alternative (Section 5.1.5.1)

Several of the strategies mentioned above were considered and evaluated for meeting Irrigation water needs. *Appendix 5A* provides a table that lists which strategies are potentially feasible for meeting the Irrigation water needs. Several other strategies were considered and evaluated at the request of the project sponsor. If a project sponsor wishes to be considered for certain types of State funding, the project that the funding is requested for must be included in the Regional and State

Water Plan. The complete list and description of considered potential strategies is included in *Appendix 5B*.

5.1.2 Recommended Strategies to Meet Irrigation Water Needs

A major factor considered by LRWPG when selecting management strategies to meet Irrigation water needs is the cost of the proposed strategy. As farmers are the only users in the region with an anticipated shortage, they would bear the costs of any water management strategy. Irrigators would not be able to financially support strategies above a certain cost as higher rates for water would become economically prohibitive.

5.1.2.1 Irrigation Conservation

Several methods of conservation for agriculture were considered in the 2021 Lavaca Regional Water Plan to help meet irrigation needs. The recommended conservation measures for irrigation include On-Farm Conservation and Tail Water Recovery. Conservation is recommended as a water management strategy to meet irrigation water needs in Wharton County. Recommended conservation measures focus on Wharton County (within the Lavaca Basin), where irrigation needs are identified, but the Lavaca Regional Water Planning Group (LRWPG) supports conservation for irrigation in the whole region.

There are issues with irrigation conservation in the region; on the agricultural side, conservation savings would not result in a reduction of capital expenditures but a forced expenditure of funding to garner any savings. There is a finite upper limit to the amount of money that can be spent to conserve agricultural water and still be supported by on-farm income. The high cost of conservation and the lack of funds to pay for it make large scale conservation projects unlikely. Implementation largely depends on funding from the Natural Resources Conservation Service (NRCS). Programs such as the Environmental Quality Incentive Program (EQIP) have made the costs of improvements more reasonable for farmers with some success. However, the way in which agricultural operations in the Lavaca Region are managed prevent such programs from having substantial effects. A large portion of the irrigated acreage within the Lavaca Region is farmed by tenant farmers who have only year-to-year leases. These farmers have a limited incentive for investing in conservation measures without financial backing from the owner of the property.

Increased conservation in agricultural irrigation would have a potentially negative impact on streamflows in the area. During dry months, return flows from agricultural operations represent nearly all the streamflow seen in the region. Therefore, additional conservation during these times could have adverse effects on wildlife habitat. The more efficient usage of available supply may reduce habitat if canals with current plant growth and wildlife harborage are converted to pipelines or are lined to reduce seepage and plant growth.

Irrigation Conservation is also discussed in Section 5.2.3.

5.1.2.1.1 On-Farm Conservation

On-farm conservation measures include a combination of land leveling, multiple inlets, irrigation well meters, and replacement of canal ditches with pipeline. These measures increase water efficiency and reduce water loss. All measures focused on rice production, with the exception of irrigation well meters, which could also be applied for rice production, but focused on non-rice crops in this analysis.

Total water savings from on-farm conservation measures is 9,496 ac-ft/yr in Wharton County for all planning decades. These savings assume 50 percent of unimproved land will be improved with land-leveling and multiple inlets (6,780 acres), 25 percent of unimproved land will be improved with irrigation pipelines (3,390 acres), and that 25 percent of non-rice acreage will be improved with

irrigation well meters (12,155 acres). It is assumed that 20 percent of the total rice acreage has already been improved and 25 percent of non-rice acreage has already been improved. For land with combined multiple inlets and land leveling, conservation savings would be 1.23 ac-ft/ac. For conversion from canal ditch to irrigation pipeline, the assumed conservation savings from Region H report by James Stansel "Potential Rice Irrigation Conservation Measures" was used for a water savings of 38 ac-ft per ditch mile. An assumed length of pipeline per acre of field of 25 feet was used, as recommended by L. G. Raun, Jr. Irrigation well meters were assumed to provide a water savings of 5 percent due to leak detection.

Unit costs for on-farm conservation measures are \$54/ac-ft of water savings. Total facilities costs are \$6.4 million, with total project costs of \$7.2 million. Annual costs are approximately \$509,000. The TWDB Costing Tool Cost Summary is provided in *Appendix 5D*. The capital costs shown are associated with the full demand reduction volume listed.

Local information on agricultural water conservation practices was provided by Dennis Mueck (USDA-NRCS, Ronald Gertson (Coastal Bend Groundwater Conservation District), and Glen Minzenmeyer (USDA-NRCS) for the 2011 Regional Water Plan. Costs have been updated to September 2018 dollars. *Table 5-1* lists a summary of current local conservation costs. In general, costs without grant funding or low-interest loans are prohibitive to implementation.

Improvement	Improvement Cost per Acre
Land Leveling	\$538
Multiple Inlets	\$101
Irrigation Pipeline	\$241
Irrigation Well Meter	\$100

Table 5-1 Estimated Unit Cost of On-Farm Conservation Improvements

5.1.2.1.2 Tail Water Recovery

Tail water recovery is also recommended as a water management strategy. Tail water recovery is defined by the Natural Resources Conservation Service as a planned irrigation system in which all facilities utilized for the collection, storage, and transportation of irrigation tail water and/or rainfall runoff for reuse have been installed. The system allows for the capture of a portion of the irrigation field return flows, stores them until needed, and then conveys the water from the storage facility to a point of entry back into the irrigation system.

Total water savings from tail water recovery measures is 5,733 ac-ft/yr in Wharton County for all planning decades. These savings assume 5 percent of unimproved land, or 3,561 acres, will be improved with tail water recovery systems.

Unit costs for tail water recovery are \$442/ac-ft of water savings. The costs were determined using the LCRA Water Supply for Agriculture report, a supplement to the LCRA Water Supply Resource Plan. The report's 2010 construction cost was updated to September 2018 dollars and converted using the acreage amount of for the Lavaca Region. Total facilities costs are \$16.8 million, with total project costs of \$19.1 million. Annual costs are approximately \$2.54 million. The TWDB Costing Tool Cost Summary is provided in *Appendix 5D*. The capital costs shown are associated with the full demand reduction volume listed.

5.1.2.1.3 Impacts of Irrigation Return Flows

An analysis was performed as part of the 2006 RWP to determine whether there is a significant impact upon in stream flows in the Lavaca Region from rice return flows. The analysis showed that there is an impact, and that the impact is positive in terms of the presence of additional flow that would otherwise not be in the stream during dry weather periods, although it may be minimal and of short duration. It should be noted further that the estimate of contribution is a very conservative estimate in that only the 2000 survey acreages were used, instead of the higher acreages that are likely during times of good price and demand for rice when acreages increase. It is further noted that the estimates of contribution are very conservative. Some additional flow from the rice fields can be expected from rainfall that would otherwise soak into the soil and produce no runoff during dry weather conditions. Where the rice fields are saturated, runoff will be produced even during dry times. Finally, all the water that will be applied to the land is produced from groundwater. There are no springs in the Lavaca Region, and there is no reduction of flow from the streams or from any springs as a result of the production of the groundwater. The additional water flowing in the streams as a result of rice return flow is a net increase. Additional conservation in the rice industry diminishes that additional flow as a consequence of more efficient water use and may reduce or impair existing aquatic and riparian habitat.

5.1.3 Recommended Strategies for Major Water Providers

The Lavaca-Navidad River Authority (LNRA) has existing and potential future customers that will require additional water beyond LNRA's existing supplies. LNRA is currently looking at different options for meeting those water demands. The water management strategies recommended by the LRWPG include the Lavaca Off-Channel Reservoir and LNRA Desalination, discussed in detail in this section.

5.1.3.1 Lavaca Off-Channel Reservoir

The Lavaca-Navidad River Authority (LNRA) has previously considered multiple scenarios for construction of new reservoir storage, including both on- and off-channel reservoirs. The *Lavaca River Water Supply Project Feasibility Study*, completed in 2011 by Freese & Nichols, Inc., compared a variety of these configuration options and recommended the most feasible scenarios. In the 2016 Lavaca Regional Water Plan, two of the scenarios were discussed. Since the 2016 Plan, LNRA has been moving forward with the project and narrowed down the general location to east of Lake Texana delivery system pipeline and determined that a two-phase implementation process may be the most feasible.

LNRA is still determining reservoir storage capacity configurations and pump station flow rates, but the minimum facility requirements would include a channel dam and associated pump station to deliver water from the river through a pipeline to Lake Texana in the first phase, and then to the proposed 50,000 ac-ft reservoir in the second phase. A second pump station would be required with the new off-channel reservoir to deliver raw water to the existing LNRA East Delivery System pipeline.

The associated pump station would turn on when there is sufficient storage in Lake Texana in the first phase and in the off-channel reservoir in the second phase, and when there is sufficient depth of water covering the inlet pipe. The amount of water pumped is limited primarily to flow conditions in the river and would likely be restricted to short-duration, high flow events. Thus, the associated river pump would be required to pump at significantly high rates in order to capture flood flows. For yield and costing purposes, the pump station is assumed to have a 200 MGD maximum flow rate, although the LNRA is considering flow rates up to 500 MGD. A diversion dam to increase the in-channel storage and optimize pumping opportunities is also considered in the scenarios in order to increase firm yield. A relatively small amount of in-channel storage could increase the project yield at minimal

cost compared to the cost of increasing the size of the off-channel reservoir in order to store more water.

The two-phase project includes:

Phase One

- South Diversion Dam on the Lavaca River
- Raw water diversion pump station on the Lavaca River
- Pipeline from the diversion pump station to Lake Texana

Phase Two

- Pipeline from the diversion pump station to the off-channel reservoir
- Off-channel reservoir and associated intake pump station
- Pipeline from off-channel reservoir to the existing LNRA East Delivery System pipeline serving customers to the south

For Phase 1, the project yield was provided by consultants for LNRA, based on their modeling efforts.

For Phase 2, the firm yield of the Lavaca Off-Channel Reservoir project was analyzed by the consultants for the Lavaca Region, using an unmodified version of the TCEQ Lavaca River WAM Run 3, to maintain the latest TCEQ environmental flow standards, adopted August 2012, with respect to the freshwater inflows to Lavaca Bay. Additions and changes to the Base Lavaca WAM to create the strategy analysis are in *Appendix 5F*.

The Phase 1 yield involving diversion to Lake Texana was determined to be 23,500 ac-ft/yr and is assumed to be online by 2030. For Phase 2, the firm yield of the new off-channel reservoir was determined to be approximately 30,000 ac-ft/yr and is assumed to come online by 2040. This firm yield would increase LNRA's supply as a wholesale water provider and would be available to meet potential water needs for municipal, industrial, or other water users within the Lavaca Region or neighboring Region L, as needed. Water losses associated with evaporation from the reservoir are included in the modeling analysis. Water losses from the transmission pipeline are considered negligible.

Costs

The costs were initially taken from the Lavaca River Water Supply Project Feasibility Study.

For Phase 1, the diversion dam and pump station costs were taken from the study and updated to September 2018 dollars. In addition, the pipeline cost from the study was reduced proportionally to represent the 2 ½ mile pipeline proposed from the diversion dam to Lake Texana, and that cost was updated to September 2018 dollars. Facility costs were estimated to be \$30.4 million, with total project costs being approximately \$41.2 million. Annual costs were determined to be \$4.1 million, with a unit cost of \$176. The TWDB Costing Tool Cost Summary is provided in *Appendix 5D*.

For Phase 2, the remaining study costs not included in Phase 1 were used. The study costs were for a 25,000 ac-ft capacity reservoir, so those costs were upsized to a 50,000 ac-ft capacity reservoir. The costs were then converted to September 2018 dollars. Actual costs could vary significantly due to project implementation requirements. Facility costs were estimated to be \$200.1 million, with total project costs being approximately \$290 million. Annual costs were determined to be \$18.5 million, with a unit cost of \$618. The TWDB Costing Tool Cost Summary is provided in *Appendix 5D*.

If Phase 1 comes online in 2030 and Phase 2 comes online in 2040, debt service costs will combine for the two phases during the 2040 decade.

Issues and Considerations

The off-channel reservoir minimizes challenges to implementation as compared to an on-channel scenario. Water rights, land acquisition, and relocation of infrastructure are considerations in the feasibility of this strategy. The evaluation of this strategy assumes that a new water right permit would be obtained for the project. As such, the TCEQ-adopted, Senate Bill 3-developed environmental flow standards, effective August 30, 2012, would need to be met in order for TCEQ to approve the permit.

Environmental and Other Impacts

The proposed off-channel reservoir would have substantially less impacts on valuable habitat than an on-channel reservoir option. In the off-channel scenario, some habitat would be altered or lost as a result of temporary flooding and the area impacted would be smaller than that of the on-channel reservoir. The impact of the proposed off-channel reservoir appears to have minimal or no impact on threatened and endangered species.

The proposed location of the off-channel reservoir is such that it is downstream of all TCEQ adopted environmental flow standard instream flow measurement points along the Lavaca River. The only TCEQ standard flows that needs to be met are the Bay and Estuary Freshwater Inflow standards for the Lavaca Bay System. Because the current version of the TCEQ Lavaca WAM Run 3 incorporates the environmental flow standards in the model, and the diversion for the reservoir was modeled using a junior water right priority date, diversions to the reservoir are made only after the environmental flow standard is met.

As a result of developing a reservoir to capture and store flow from the river, up to 50,000 ac-ft/yr would be diverted to storage in any given year. Additionally, the new reservoir could provide up to 2,000 acres of new waterfowl habitat.

Impacts to Agriculture

The proposed off-channel reservoir scenarios would have a marginal impact on local agricultural activities. Siting of the project and inundation of the off-channel reservoir would remove approximately 2,500 acres of agricultural land from production but would have minimal influence given the large quantity of agricultural land in the area.

Impacts to Navigation

The proposed off-channel reservoir scenarios would have no impact on navigation. Any diversion dam structure would need to consider navigation impacts.

5.1.3.2 LNRA Desalination

The Lavaca-Navidad River Authority (LNRA) has been evaluating water supply sources to provide raw water to industry and other possible raw water and potable water users along FM 1593 from Lolita to Point Comfort. Given that the largest single raw water user in the area, Formosa Plastics, shows future demands totaling 10,000 ac-ft/yr, LNRA engaged NRS Engineers to develop water supply strategies for these sources. A preliminary engineering feasibility study was prepared for LNRA by NRS Engineers in January 2013. Water supply sources identified include brackish groundwater and brackish surface water from the Lavaca River downstream of Lake Texana.

At a November 2012 LNRA Board Meeting, NRS Engineers presented three options of site locations. Two options were based on desalination of the brackish groundwater supply in the vicinity of the Formosa Plastics owned property and one option was based on desalination of a combination of

brackish groundwater and surface water located on LNRA property just south of Lake Texana. The options evaluated used a variety of water supply volumes due to the uncertainty of the development and production of brackish groundwater in Jackson County, and the unknown quantity of brackish surface water that would be available.

For the 2021 Regional Water Plan, the Lavaca Regional Water Planning Group (LRWPG) evaluated desalination using a combination of brackish groundwater and brackish surface water. Available groundwater under the MAG and additional brackish surface water volumes was used for sizing potential water supply strategies. Based on these criteria, the infrastructure required for this strategy consists of:

- Groundwater wells
- Desalination plant
- Raw and finished water transmission lines
- Concentrate disposal line
- Microfiltration treatment train
- River intake and pump station
- East drain reservoir
- Sludge lagoon

This strategy is dependent upon the receipt of a groundwater pumping contract from the Texana Groundwater Conservation District (GCD).

The proposed wellfield site is located in the Colorado-Lavaca Basin in Jackson County. For groundwater, after accounting for existing supplies being used, the available yield for groundwater in this basin is approximately 4,800 ac-ft/yr (4.3 MGD average). This groundwater yield value was used for this analysis in place of the estimated groundwater yields proposed by NRS Engineers. For surface water, the yield was estimated to be approximately 1,652 ac-ft/yr (1.5 MGD average). This surface water yield was used for this analysis in place of the estimated surface water yields proposed by NRS Engineers as there was a variety of yield options, but additional information is required to determine water rights. Water Availability Modeling (WAM) was performed using an unmodified version of the TCEQ Lavaca River WAM Run 3. A diversion of at least 11,664 ac-ft was available every year over the drought of record, so the 1,652 ac-ft/yr assumed for this strategy evaluation is likely to be available at the desired Total Dissolved Solids (TDS) level. This volume accounts for water loss associated with the diversion and treatment. Total yield for this strategy is estimated to be 6,452 ac-ft/yr (5.8 MGD average). If additional groundwater or surface water is available and needed, the yield would increase. This strategy is expected to be online by 2040.

Costs

The infrastructure required for this strategy was determined by NRS Engineers as presented at the November 2012 LNRA Board Meeting. The quantity and sizing of the infrastructure was modified to match the groundwater and surface water yield projected for the Lavaca Basin in Jackson County.

The following infrastructure was proposed:

- River Intake and Pump Station
- Three (3) 1,000 gpm Water Supply Wells and well piping
- 5.8 MGD Average (11.5 MGD Peak) Brackish Desalination Water Treatment Plant (RO for Groundwater and MF for Surface Water)
- Approximately 2 miles of well field transmission piping
- Approximately 1.5 miles of transmission piping and appurtenances
- Approximately 1.5 miles of concentrate discharge piping and appurtenances
- Finished Water Pump Station

- Concentrate Pump Station
- One (1) ground storage tank for finished water

A capital cost estimate was provided by NRS Engineers as part of their presentation. However, the cost estimate was for larger infrastructure than what was sized based on available yield. In order to provide a comparable cost consistent with other strategies in this report, facility and project costs were developed using the Texas Water Development Board (TWDB) Cost Estimating Tool in September 2018 dollars. The Cost Estimating Tool was also used to determine operating costs.

The facility cost for this strategy is primarily driven by the cost of a water treatment facility and the well field. In September 2018 values, the probable facility cost for LNRA needs is approximately \$35.6 million, with the project cost being \$49.9 million. This would result in a total annual cost (including operations and maintenance of approximately \$8,460,000. The resulting unit cost of water is \$1,311/ac-ft. If larger amounts of groundwater or surface water are available, unit costs would potentially decrease.

Environmental and Other Impacts

The LNRA desalination strategy will require extensive permitting to ensure it complies with all environmental considerations. The primary regulatory agencies and permitting requirements include the TCEQ's administration of surface water diversion permitting and Texana GCD's regulation of pumping of groundwater.

The advantage of this strategy is dependent on the status of the sustainable yield of the aquifer. Having a groundwater withdrawal rate higher than the recharge rate will create water shortages in the future as well as affect the groundwater sustainability. This proposed well field would be within the Texana GCD and the groundwater use could be limited to an amount that can be replenished on an annual basis. LNRA customers are currently surface water users, so the increased use from groundwater would increase return flows to the streams. A discharge permit would be required for brine disposal.

Permitting would also be required to pump brackish surface water from the tidal stream of the Navidad River. Capturing surface water that spills over the Palmetto Dam would be subject to the TCEQ SB3 environmental flow standards for bay and estuary inflows. It was determined that the yield used in this evaluation would be available while meeting or exceeding the SB3 bay and estuary requirements. The LRWPG acknowledges the importance of pulse flows reaching Lavaca Bay, and that capturing pulse flow volumes that otherwise would have made it to Lavaca Bay may have some impact on salinity levels.

Impacts to Agriculture

As agricultural demands have been met in Jackson County, there should be no impacts to agriculture from this strategy.

5.1.4 Recommended Strategies for Municipal Utilities

The municipalities in the region have no identified water needs, as all their projected water demands are met. Even so, the LRWPG is recommending drought management, municipal conservation, and reuse as water management strategies in the 2021 Regional Water Plan.

5.1.4.1 Drought Management

Drought management is considered as a water management strategy for all municipal WUGs, regardless of water needs. The purpose for the drought management strategy is to encourage utilities to maintain and implement their Drought Contingency Plans during times of reduced water availability, as well as to prepare for potential emergency situations that may occur. *Chapter 7* discusses drought response for the region in more detail.

Drought management was evaluated by considering each municipal WUG's Drought Contingency Plan (as available), including drought triggers and responses, and projected water demands. Demand reductions were considered individually with respect to the type of trigger, and how often that trigger might be reached. The following table shows the potential demand reductions for each utility:

	•	•	•						
WUG	County	Rasın I	Percent	Demand Reduction (ac-ft/yr)					
	County	240	Reduction	2020	2030	2040	2050	2060	2070
EDNA	JACKSON	LAVACA	15%	33	33	33	33	33	33
GANADO	JACKSON	LAVACA	20%	47	47	46	46	46	47
HALLETTSVILLE	LAVACA	LAVACA	30%	48	47	46	46	46	46
MOULTON	LAVACA	LAVACA	20%	36	35	34	34	34	34
SHINER	LAVACA	LAVACA	10%	49	48	47	46	46	46
YOAKUM	LAVACA	LAVACA	30%	16	16	16	15	15	15
EL CAMPO	WHARTON	COLORADO	15%	12	12	12	13	13	13
EL CAMPO	WHARTON	COLORADO -LAVACA	15%	72	74	75	76	78	80
EL CAMPO	WHARTON	LAVACA	15%	2	2	2	2	2	2
WHARTON COUNTY WCID 1*	WHARTON	LAVACA	15%	28	29	29	30	31	32

Table 5-2 Drought Management Municipal Water Demand Reductions

The costs considered for implementing drought management focused on effort for public outreach and enforcement. No capital costs were assumed, and unit costs were estimated at \$100/ac-ft.

No environmental impacts are anticipated from utilities implementing their Drought Contingency Plans. No impacts to agriculture are anticipated, either.

5.1.4.2 Municipal Conservation

With no projected water needs, there is not a large incentive for municipalities in the region to implement conservation. That being said, deteriorating infrastructure can have high rates of water loss. Water loss is discussed further in *Chapter 1*. The LRWPG feels it is important to recommend municipal conservation as a water management strategy to encourage conservation in the region and to aid municipalities in obtaining funding to perform conservation measures such as leak detection and repair and installing smart meters.

A methodology was developed to determine the anticipated municipal water conservation savings for the WUGs within the Lavaca Region. First, WUGs were required to meet the following criteria to be chosen for conservation measures:

Be a municipal WUG.

^{*}No Drought Contingency Plan was made available. Demand reductions were assumed proportional to the demands for the other utilities.

Have a year 2030 per capita water usage of greater than 140 GPCD, indicating a potential for savings through conservation.

Conservation was considered, regardless of whether a municipality had a water need.

Per capita water demands were determined from the measured or projected population and water demands for each WUG during each decade. The following methodology was used in calculating water demand reductions:

- If the 2030 GPCD is greater than 140,
 - 5 percent GPCD reduction per decade until 140 GPCD is reached.
- If the 2030 GPCD is less than 140,
 - No conservation considered.

This method is slightly higher than the recommendation of a 0.5 percent per year reduction in per capita water demand until the target demand of 140 GPCD was reached, as proposed by the Water Conservation Implementation Task Force (WCITF). Conservation was applied beginning in 2030.

The new GPCD for each decade was used along with the WUG population to determine the revised water demands for each decade. These values were subtracted from the original water demands to determine the amount of water conserved in each decade.

This strategy is recommended using the criteria above, with the potential target GPCDs and the resulting demand reductions as shown below in Tables 5-3 and 5-4. HB 807 requires that the 2021 Regional Water Plan shall "set one or more specific goals for gallons of water use per capita per day in each decade of the period covered by the plan for the municipal water user groups in the RWPA."

Table 5-3 Municipal Conservation Target GPCDs

WUG	County	Basin	GPCD	Target GPCD						
	,		(2011)	2020	2030	2040	2050	2060	2070	
HALLETTSVILLE	LAVACA	LAVACA	212	203	189	179	170	162	154	
MOULTON	LAVACA	LAVACA	192	183	170	161	153	146	140	
SHINER	LAVACA	LAVACA	220	211	196	186	177	168	160	
YOAKUM	LAVACA	LAVACA	168	159	147	140	140	140	140	
EL CAMPO	WHARTON	COLORADO	178	169	156	149	141	140	140	
EL CAMPO	WHARTON	COLORADO- LAVACA	178	169	156	149	141	140	140	
EL CAMPO	WHARTON	LAVACA	178	169	156	149	141	140	140	
WHARTON COUNTY WCID 1	WHARTON	LAVACA	162	153	141	140	140	140	140	

WILLO	Country	Basin	Demand Reduction (ac-ft/yr)						
WUG	County	Basin	2020	2030	2040	2050	2060	2070	
HALLETTSVILLE	LAVACA	LAVACA	0	31	50	73	98	124	
MOULTON	LAVACA	LAVACA	0	9	13	20	26	32	
SHINER	LAVACA	LAVACA	0	24	38	56	75	94	
YOAKUM	LAVACA	LAVACA	0	32	47	39	38	38	
EL CAMPO	WHARTON	COLORADO	0	16	26	39	41	42	
EL CAMPO	WHARTON	COLORADO- LAVACA	0	98	159	237	253	259	
EL CAMPO	WHARTON	LAVACA	0	3	5	7	7	7	
WHARTON COUNTY WCID 1	WHARTON	LAVACA	0	10	7	4	4	4	

Table 5-4 Municipal Conservation Water Demand Reductions

Costs were calculated to include a variety of conservation measures. The Texas Water Development Board (TWDB) Cost Estimating Tool methodology was used to determine project costs, annual costs, and unit costs, once the facility costs were developed. The unit cost is presented as an average, with some conservation measures being more expensive and some being less.

Facility costing efforts focused on smart meters and leak detection and repair but were meant to encompass other types of capital-cost associated conservation measures as well. Costs for leak detection and repair were estimated assuming 10 percent of the individual WUG's pipeline is replaced in a 50-year timespan. Implementing this conservation strategy would reduce approximately 3 percent of the demand. Smart meters were assumed a cost of \$150 per home, with the assumption that 100 percent of homes would implement this strategy over the planning horizon. Implementing this conservation strategy would reduce approximately 5 percent of the demand. These assumptions were modified as needed if they caused the demand reduction to be higher than the assumed water savings based on our target GPCD methodology.

Remaining conservation measures were assumed to be non-capital approaches, which could include both labor and materials associated with implementing standards, incentives, and outreach. Many of the non-capital cost measures include, but are not limited to, drought tolerant landscape, public education and outreach – including school programs, rebate and incentive programs – local ordinances that increase water efficiency by customers, support of legislation that increases water efficiency in plumbing products and appliances at both the State and Federal level, increased water efficiency in utility operations, and conservation-oriented rate structures. Conservation measures for non-capital approaches were included in the annual costs at an average of \$250/ac-ft of water savings.

The following table provides the estimated costs for municipal conservation. Higher unit costs represent WUGs where a higher portion of the demand reduction is met with capital cost measures. The Lavaca Region encourages the TWDB to provide funding for all types of conservation measures for WUGs and wholesale water providers within the region and around the state. Costing backup information can be located in *Appendix 5D*.

WUG	County	Basin	Facility Cost	Project Cost	Annual Cost	Unit Cost
			\$	\$	\$	\$
HALLETTSVILLE	LAVACA	LAVACA	\$1,124,000	\$1,502,000	\$237,000	\$1,911
MOULTON	LAVACA	LAVACA	\$307,000	\$410,000	\$65,000	\$2,031
SHINER	LAVACA	LAVACA	\$606,000	\$810,000	\$132,000	\$1,404
YOAKUM	LAVACA	LAVACA	\$1,134,000	\$1,515,000	\$220,000	\$4,681
EL CAMPO	WHARTON	MULTIPLE	\$2,748,000	\$3,671,000	\$560,000	\$1,812
WHARTON COUNTY WCID 1	WHARTON	LAVACA	\$306,000	\$409,000	\$60,000	\$6,000

Table 5-5 Municipal Conservation Costs

Environmental and other impacts are expected to be negligible.

5.1.4.3 Reuse

El Campo is currently planning to produce a Type 1 wastewater effluent that could be used by the utility or sold to potential customers. As such, they requested to have their reuse project as a recommended water management strategy in the 2021 Lavaca Regional Water Plan.

El Campo currently produces one million gallons per day (1 MGD) of treated wastewater effluent that is discharged to the Tres Palacios Creek. The proposed yield from the strategy is 0.5 MGD or 560 ac-ft/yr, beginning in 2030. Currently, the utility has no identified users of the effluent, but is moving forward with installing a sand filtration system. The water may be used by another WUG in the region, such as Manufacturing.

For costing purposes, the sand filtration system and five miles of 12" transmission pipeline were assumed. Costs were developed using the Texas Water Development Board (TWDB) Cost Estimating Tool in September 2018 dollars. Capital costs were calculated to be approximately \$5.6 million, with total project costs of approximately \$7.8 million. Annual costs were calculated at \$766,000 per year, for a unit cost of \$1,368/ac-ft. Annual unit cost after 20-year debt service is \$191/ac-ft.

Water that is currently discharged into streams in the basin would be consumed instead. In addition, if effluent is used for agricultural purpose, it would start with higher dissolved solids levels than either groundwater or surface water in the area. Agricultural use would further increase dissolved solids levels. Agricultural demands would continue to be met, with associated discharges to the watercourses of agricultural return flows.

Stress on the groundwater in the area would be reduced. However, return flows to the streams in the area would also be reduced and dissolved solids concentrations would increase slightly. The overall effect would be minimal because of the limited amount of effluent available, although during drought, return flows can at times be the only flows in the creeks.

If water is used for irrigation purposes, it would provide up to an additional 560 ac-ft/yr of water supply, and as noted previously, provides for wildlife habitat as well. If it is used for municipal or manufacturing purposes, it would have no impact on agriculture.

5.1.5 Alternative Strategies

The LRWPG included five alternative strategies in the 2021 Lavaca Regional Water Plan.

5.1.5.1 Expand Use of Groundwater (Alternative Strategy)

The majority of water supplies in the Lavaca Region are provided by groundwater supplies, notably from the Gulf Coast Aquifer. Groundwater in the region is pumped for domestic, agricultural, municipal, and industrial purposes.

Groundwater availability is limited to the Modeled Available Groundwater (MAG) volumes as calculated based on the Desired Future Conditions (DFCs) as established by the Groundwater Management Area (GMA) process. The Lavaca Region is within GMA 15. The Groundwater Conservation Districts (GCD) within GMA 15 collaborated to determine the DFC for the Central Gulf Coast Aquifer. The DFC, adopted April 29, 2016, states that no more than 13 feet of average drawdown can occur by 2069 relative to year 2000 conditions.

The planning requirements do allow use of a MAG Peak Factor, which is a percentage (e.g., greater than 100 percent) applied to a MAG value reflecting annual groundwater availability that, for planning purposes, shall be considered temporarily available for pumping consistent with DFCs. The Lavaca Regional Water Planning Group considered, but ultimately decided against, implementing a MAG Peak Factor in the Gulf Coast Aquifer.

This strategy proposes to use additional groundwater during drier years only, beginning in 2020, to meet irrigation needs in Wharton County (8,067 ac-ft/yr in the Lavaca Basin).

Costs

A unit cost of \$66/ac-ft was calculated as the additional pumping cost for estimated additional drawdown using the TWDB Costing Tool. No capital costs were assumed. This cost would only be assessed when needed. It is further assumed that the aquifer would recover between droughts.

Environmental and Other Impacts

The continued use of current levels of irrigation water would have the environmental benefit of ensuring that current or near-current volumes of agricultural return flows will continue to be discharged to the streams in the region. Additionally, wildlife habitats benefit from sustained return flows in drought. There are no springs, so diminished springflow from reduced aquifer levels is not a concern. If increased use continues over a long period of time, there is a potential for land subsidence with attendant environmental effects.

The Gulf Coast Aquifer underlying Wharton County has sufficient water in storage to meet short-term demands in drought-of-record conditions, so the localized impacts of increased use would be unlikely to impact other water resources of the state. However, in a widespread drought, the adjacent regions are likely to be increasing groundwater use as well, with some potential for additional drawdown. Additionally, prolonged drought-level use within the Lavaca Region portion of Wharton County could create increased drawdowns in adjacent counties and regions.

Impacts to Agriculture

Availability of water for irrigation purposes reduces the threats to agriculture by providing an additional supply of 8,067 ac-ft/yr.

5.1.5.2 Lake Texana Dredging (Alternative Strategy)

The Lavaca-Navidad River Authority (LNRA) is considering the dredging of Lake Texana as a strategy to improve the capacity of an existing water supply. Dredging is defined by the National Oceanic and Atmospheric Administration (NOAA) as the removal of sediment and debris from the bottom of a body of water such as a port, bay, river, channel, or lake. The TWDB conducted a *Volumetric Survey of Lake Texana, January-March 2010 Survey (Volumetric Survey)*, dated August 2011, in order to calculate the lost storage of the reservoir due to sediment accrual. The report estimates Lake Texana's storage volume to have decreased from 171,307 ac-ft pre-impoundment in 1980 to 159,845 ac-ft in 2010. Projected sedimentation used in evaluating the firm yield of Lake Texana, as determined by the TCEQ Lavaca River WAM Run 3, shows that by 2040, the storage volume will have decreased further to 152,179 ac-ft. This strategy would seek to restore the reservoir to its original capacity by removing 19,128 ac-ft of sediment in 2040.

Selection of end-use for dredged material is largely dependent on sediment characteristics. Per the TWDB *Volumetric Survey*, the sediments to be dredged consist of fine silty loam soils with high water content. Sediment testing of Lake Texana will be required to determine percent composition of clay, organic matter, nutrients, regulated contaminants, oil, and grease. If sand content is high, favorable end-uses include beach restoration and repurposing of dredged material for construction. For higher silt and mud contents, favorable end-uses include: riparian buffer zone augmentation, wetland restoration or creation, and agricultural/field application. If contaminants are present, confined disposal is required. Given the presence of silty loam soils in Lake Texana, the preliminary selection for end-use for this strategy is to dewater and amend dredged material for use as an agricultural product for use by nearby field owners.

Dredging methods may be categorized broadly as either mechanical or hydraulic (suction). Mechanical dredging is accomplished by lifting material via "clamshells" or buckets; material is then loaded and trucked to end use. Mechanical dredging is especially economically favorable when drought conditions lead to low lake levels, exposing and drying sediment for removal by heavy equipment. Hydraulic dredging involves the use of water jets or a suction head to take up lake sediment and a floating pipeline system to deliver material to its end use. Assuming dewatering and nearby land application as the end use, hydraulic dredging is a favorable extraction method, and is thus assumed.

For the purposes of this report, the majority of sediment removal is assumed to occur within the southern portion of Lake Texana. Per *Figure 11* in the TWDB *Volumetric Survey*, the portion of Lake Texana south of Texas State Highway 111 has accrued the most sediment since the reservoir was impounded.

While the strategy assumes removal of 19,128 ac-ft of sediment from Lake Texana, the impact on the firm yield of the reservoir is much smaller. The TCEQ Lavaca WAM Run 3 model was used to compare the firm yield of the reservoir with restoring the reservoir to its original capacity to the projected firm yield for 2040-2070 if projected sedimentation were to continue.

The firm yield of this strategy was determined to be 390 ac-ft/yr, beginning in the 2040 planning decade, and increasing each decade to 1,210 ac-ft by 2070. Based on the impacts shown in the TCEQ Lavaca WAM Run 3 for sedimentation occurring between 1980 and 2020, It is assumed that additional sediment accrual after the dredging occurs will not negatively impact the overall firm yield within the planning horizon. The yield for this strategy is shown in *Table 5-6*.

Table 5-6 LNRA Lake Texana Dredging Yield

Lake Texana Dredging Firm Yield (ac-ft/yr)							
2020	2030 2040 2050 2060						
0	0	390	663	937	1,210		

This strategy would provide yield within the existing water rights of the LNRA by restoring the reservoir to its original design capacity.

Costs

Costs for this strategy were calculated using the World Bank's simplified dredging RESCON equation, as recommended in the TWDB's *Dredging vs. New Reservoirs* report, dated December 2005:

Cost Dredging ($$US/m^3$) = 6.62 x [Vol Dredged (m^3)/106]^{-0.43}

Assuming 19,128 ac-ft (23,594,005 m³) of sediment removal, the cost of dredging was calculated to be \$2,614/ac-ft (\$2.119/m³) of sediment removed. Thus, for 19,128 ac-ft of sediment removal, the total construction cost is calculated to be \$50,001,000. The unit cost for the firm yield of 1,210 ac-ft is \$2,988/ac-ft. O&M costs are not included, as dredging is not assumed to continue after the 2040 yield is achieved.

The calculated costs assume that:

- Land costs are relatively low (\$1,500-\$3,000/acre).
- Distance from dredged water body to end-use site is ≤ 2 miles.
- Dredged material composition is silty loam; the presence of dense clay sediments substantially increases dredging costs.
- Dredged material is not contaminated.

Sediments containing contaminants (e.g. herbicides, pesticides, hydrocarbons, toxic metals, PCBs, etc.) are much more expensive to dredge, as they must be treated and/or confined prior to disposal. The TWDB *Dredging vs. New Reservoirs* report cites unit costs of \$100 to \$400 per cubic yard (approximately \$161,000/ac-ft to \$645,000/ac-ft) for dredging operations for contaminated sediments. Additional testing is needed to confirm that sediments in Lake Texana do not contain elevated levels of regulated contaminants.

The major capital costs for this strategy include:

- Hydraulic dredging equipment
- · Pumps and floating pipeline to transport dredged materials to dewatering facility
- Dewatering and soil amendment facility
- · Gravity feed line for discharge of effluent to Lake Texana

Environmental and Other Impacts

Dredging often requires a combination of environmental permits due to its invasive mechanism and varied pathways to end use. Conventional dredging methods destroy lake floor habitat, increase turbidity, decrease dissolved oxygen levels, and can volatilize contaminants. In combination, these effects lead to the death of aquatic life and reduced quality of raw water supply. Dredging must be

performed during non-spawning seasons for aquatic life and may be prohibited if endangered species are present. Refer to *Chapter 1, Table 1-5*, for the complete list by county of threatened and endangered species in the Lavaca Regional Water Planning Area.

Contemporary suction dredging methods can minimize undesired turbidity increases and reduce impact on aquatic life by using adaptive auger heads. Use of this technology can help preserve the water quality of the reservoir, prevent aquatic organism and fish population decline, and ensure compliance with environmental regulations.

If dredged material contains high levels of contaminants, the material must be properly treated and disposed of in regulated Confined Disposal Facilities (CDFs). Additionally, effluent from dewatering facilities is regulated as a discharge to the waters of the United States, and subject to permitting requirements as defined by the Clean Water Act (CWA).

Table 5-7 below shows potential applicable regulations, as reported in the TWDB's *Dredging vs. New Reservoirs* report, dated December 2005.

Statute	Regulation	Agency	Remarks
Clean Water Act Section 401	40 CFR 121	TCEQ	Dredge and fill discharges to waters of U.S.
Section 402	40 CFR 122	TCEQ	Stormwater discharges
Section 404	33 CFR 320-30	USACE	Dredge and fill discharges to waters of U.S.
R&H Act 1899	33 CFR 403	USACE	Navigable waters of the U.S.
Coastal Zone Management Act	15 CFR 923	Texas	Dredging, disposal of solids in water in coastal zone
NEPA	40 CFR 1500-1508	USEPA	Federal action or permit issuance
Fish & Wildlife Coordination Act	16 CFR 661-667e	USFWS	Federal agency projects and federal permits
Endangered Species Act	16 CFR 1531-1544	USFWS	Activities that could impact threatened or endangered species
RCRA	40 CFR 257-258	USEPA	Storage, treatment and disposal of hazardous waste
TSCA	40CFR 761	USEPA	Handling or disposal of PCB-contaminated sediments
National Historic Preservation Act	36 CFR 800	THC	Requires survey and investigation for pre- and historic sites

Table 5-7 Potential Applicable Regulations for Dredging Activities

This strategy provides a flood control benefit by providing an additional 19,128 ac-ft of flood water retention for the contributing watershed.

Impacts to Agriculture

Assuming dredged material is dewatered and amended, this strategy provides a benefit to agricultural users by offering a potentially low-cost alternative agricultural topsoil. Additional study is needed to determine agricultural user interest in this material.

5.1.5.3 LNRA Aguifer Storage and Recovery (Alternative Strategy)

The Lavaca-Navidad River Authority (LNRA) participated with the City of Victoria, the Victoria County Groundwater Conservation District, the Guadalupe-Blanco River Authority, and the Port of Victoria on

the *Victoria Area Aquifer Storage and Recovery (ASR) Feasibility Study*, prepared in 2014 by Naismith Engineering Inc., for a study area consisting of Victoria, Jackson, and Calhoun counties. The Jackson County portion of the study was limited to assessing potential locations and feasibility and did not include any modeling or cost determination efforts. Information from the feasibility study related to location and permitting issues is included in this report.

The feasibility study suggested that there are numerous suitable sites for ASR in southern Jackson County, specifically near Carancahua Bay. The site area suggested by the feasibility study was used for costing purposes. This area is in the vicinity of Highway 35 and Highway 172. The targeted interval for ASR wells in this area is between -300 feet mean sea level (msl) and -1050 feet msl, which intersects the Lissie and Willis formation of the Chicot aquifer and the Upper Goliad formation of the Evangeline aquifer. For regional water planning purposes, these are all considered part of the Gulf Coast aquifer. Sand beds are common in the area, with estimated hydraulic conductivity ranging from 5 ft/day to 18 ft/day, depending on the formation. The estimated migration rate from the ASR wells would be less than 2 ft/yr. Fresh water is expected to occur down to approximately -500 feet msl. Below -600 feet msl, TDS concentrations may range from 1,500 to 5,000 mg/L.

The source of water for the ASR project is assumed to be the Lavaca River, downstream of Lake Texana. A water right permit for a junior water right would need to be obtained from TCEQ. The firm yield of the ASR project was analyzed, using an unmodified version of the TCEQ Lavaca River WAM Run 3, to have no negative impacts to the freshwater inflows to Lavaca Bay, as dictated by the latest TCEQ environmental flow standards, adopted August 2012. An authorized diversion of 25,000 ac-ft/yr was assumed, using a 50 MGD river intake structure and pump station to divert excess flows from the river.

Due to the nature of the strategy where excess flows are stored in the aquifer for later use, the available diversions over the period of record were averaged to provide an annual supply yield. The yield for this project is 8,665 ac-ft/yr, to be implemented for the 2040 planning horizon. Modifications to the assumptions, such as authorized diversion and infrastructure size, could modify the resulting yield. The ASR modeling assumed that the Lavaca Off-Channel Reservoir strategy had already been implemented.

ASR reduces the water losses associated with evaporation from a reservoir, but there can be water losses due to recovery efficiency from the aquifer. Migration rates are estimated at less than 2 ft/yr, so impacts will depend on how long the stored water remains in the aquifer. Recovery efficiency will have some impacts on water volume but should have negligible impacts on the firm yield volume.

This yield would increase LNRA's supply as a major water provider and would be available to meet potential water needs for existing and future customers either within or outside of the region.

Costs

The following infrastructure was proposed:

- 50 MGD River Intake Structure and Pump Station
- Eleven (11) 1,000 gpm Aquifer Storage and Recovery Wells and well transmission piping
- 20 MGD Water Treatment Plant
- Approximately fifteen (15) miles of raw water transmission piping and appurtenances and seven
 (7) miles of treated water transmission piping and appurtenances
- Two (2) 20 MG Raw Water Storage Tanks (to handle peak flows to reduce water treatment plant size)

A facility cost estimate was developed using the Texas Water Development Board (TWDB) Cost Estimating Tool in September 2018 dollars. The facility cost is \$187,455,000. The Cost Estimating Tool was also used to determine total project costs and operating costs.

In September 2018 values, the project cost for this strategy is approximately \$260,074,000. This would result in a total annual cost (including operations and maintenance) of approximately \$26,567,000. The unit cost of water is \$3,066/ac-ft. The TWDB Costing Tool Cost Summary is provided in *Appendix 5D*. Note that the project cost increased as compared to the 2016 Plan, even though the same infrastructure was assumed, due to the updated version of the Costing Tool and its costing determinations.

Environmental and Other Impacts

The aquifer storage and recovery strategy will require extensive permitting to ensure it complies with all environmental considerations. The primary regulatory agencies would be the TCEQ and the Texana Groundwater Conservation District. ASR wells used for both recharge and recovery are subject to permitting requirements based on the source of the water being injected and the aquifer in which the water is stored. The primary regulatory requirements include TCEQ's administration of underground injection of water and surface water diversion permitting; and the regulation of recharge and recovery of water by the GCD.

Surface water from the Lavaca River contains more dissolved oxygen (DO) than groundwater. When DO is present in the water introduced to an aquifer, a chain of oxygen reduction reactions results in selective leaching and/or mineral dissolution, releasing metals such as arsenic.

The proposed location of the assumed diversion point is such that it is downstream of all TCEQ adopted environmental flow standard instream flow measurement points along the Lavaca River. The only TCEQ standard that needs to be met is the Bay and Estuary Freshwater Inflow standards for the Lavaca Bay System. Because the current version of the TCEQ Lavaca WAM Run 3 incorporates the environmental flow standards in the model, and the diversion for the ASR was modeled using a junior water right priority date, diversions to the ASR are made only after the environmental flow standard is met.

As described, this project could remove up to 25,000 ac-ft/yr of streamflow from the Lavaca River in any given year. Flows may ultimately be returned to river after use.

Impacts to Agriculture

The proposed strategy would have a negligible impact on local agricultural activities. Siting of the project would remove approximately 130 acres of total agricultural land from production but would have negligible influence given the large quantity of agricultural land in the area.

5.1.5.4 Irrigation Conservation – Alternate Wetting and Drying (Alternative Strategy)

Conservation via irrigation techniques – such as alternate wetting and drying (AWD) – was considered as a strategy to meet irrigation water needs in Wharton County. AWD is the implementation of intermittent irrigation. Though monitoring of soil moisture, the field is left to dry to a point when there is still sufficient water in the soil for sustained plant growth before it is re-flooded. This cycle is done repeatedly except during flowering stage of crop growth when the plants are sensitive to dry conditions and field is kept in flooded conditions. It is assumed that implementation of AWD can result in a water savings of 38 percent.

The strategy assumes AWD will be applied to 5 percent of planted rice in Wharton County, or 599 acres. Water savings from this strategy were calculated to be 633 ac-ft/yr for Wharton County. As the

practice of AWD does not require the installation of infrastructure, it was assumed to have no capital costs.

5.1.5.5 Drought Management for Manufacturing (Alternative Strategy)

Drought management is considered as a water management strategy for the portion of the Manufacturing water use category in Jackson County that relies on surface water, regardless of water needs. The purpose for the drought management strategy is to acknowledge that surface water may be restricted per LNRA's Drought Contingency Plan during times of severe drought, as well as to prepare for potential emergency situations that may occur. *Chapter 7* discusses drought response for the region in more detail.

Drought management was evaluated by reviewing LNRA's Drought Contingency Plan and applying the severe drought trigger response for demand reduction. Under severe drought, LNRA customers will be required to reduce demand by 10 percent. Since a small portion of the Manufacturing water use category in Jackson County utilizes groundwater, only the demands relying on surface water are considered for reduction. The following table shows the potential demand reductions for each WUG:

WUG	County	Basin		Dem	and Redu	ction (ac-f	t/yr)	
WUG	County	Dasiii	2020	2030	2040	2050	2060	2070
MANUFACTURING	JACKSON	COLORADO- LAVACA	1,063	1,063	1,063	1,063	1,063	1,063
MANUFACTURING	JACKSON	LAVACA	15	15	15	15	15	15
MANUFACTURING	JACKSON	LAVACA-	18	18	18	18	18	18

Table 5-8 Drought Management for Manufacturing Water Demand Reductions

Costs

To determine the costs of restricted water use during drought, the TWDB's 2019 *Socioeconomic Impacts of Projected Water Shortages* was considered. This document is included with the regional water plans and identifies the social and economic costs of not meeting the identified water needs in the plans.

The analysis showed that Manufacturing in the Lavaca Region provides \$255.0 million to the economy. Manufacturing in the Lavaca Region is projected to use 11,521 ac-ft of water in 2020. This equates to a unit cost of \$22,133/ac-ft of unavailable water. For Jackson County, this would give an annual cost of \$24,258,000 if drought restrictions were put in place.

There are no capital costs associated with this strategy. The costs reflect income losses to the facilities based on the anticipated reduced output of product due to the water restrictions.

No environmental impacts are anticipated from this strategy. No impacts to agriculture are anticipated either.

5.1.6 Strategies Considered but Not Recommended

These strategies were evaluated and considered by the LRWPG, but ultimately not recommended.

5.1.6.1 Drought Management for Irrigation (Considered)

Polypipe irrigation, implemented during periods of drought, acts as an alternative to furrow irrigation or field inundation. The strategy involves the installation of flexible poly-ethylene resin pipes. These pipe systems provide a higher irrigation efficiency and better irrigation control but can only last up to one season and may require replacement throughout the growing season. It is assumed that using flexible polypipe can result in a water savings of 25 percent.

The strategy was initially evaluated for rice irrigation. Upon receiving feedback that the strategy may not be feasible for rice, the strategy was re-evaluated assuming polypipe will be applied to 20 percent of planted cotton in Wharton County, Lavaca Basin, during periods of drought (4,919 acres). Water savings from this strategy were calculated to be 1,180 ac-ft/yr for Wharton County.

Unit costs for polypipe irrigation are \$106/ac-ft of water savings. The costs were determined using the 2005 report *Using Flexible Poly-Pipe with Surface Irrigation* by the Texas A&M System AgriLife Extension Service. The report's 2005 cost per foot installed was updated to September 2018 dollars (\$0.32) and converted to the acreage for Wharton County, Lavaca Basin, assuming it takes approximately 34 feet of pipe per acre, per the TWDB 2013 report "Best Management Practices for Agricultural Water Users." It was also assumed the polypipe would require one full replacement during growing season. Total facilities costs are \$106,000. Total project cost is \$122,000 and total annual cost is \$125,000. Costs are assumed to be paid back within one year. The capital costs shown are associated with the full demand reduction volume listed.

Minimal reductions to return flows are expected, and no impacts to agriculture are expected, other than the cost to pay for the polypipe.

Because this strategy was determined to be not as viable as other considered strategies to meet irrigation demands, the LRWPG decided not to recommend drought management as a strategy in the 2021 Lavaca Regional Water Plan.

5.1.6.2 Irrigation Conservation – Row-Irrigated Rice (Considered)

Furrow irrigation, or row-irrigated rice, was also considered as an alternative irrigation conservation technique, but it was found that there were no appreciable water savings when compared to permanent flood.

5.1.7 Strategy Allocation

The recommended management strategies to meet irrigation water needs were applied to meet the irrigation shortages in the Lavaca Basin in Wharton County. This is shown in *Appendix 5C*.

5.2 Water Conservation

The 2021 Lavaca Regional Water Plan is required to have a subsection of *Chapter 5* that discusses all of the recommended conservation strategies. Conservation is recommended as a water management strategy for Irrigation in Wharton County, Manufacturing, and for several municipal utilities in the region. The LRWPG recognizes the need for financial assistance in rural and agricultural areas for implementing conservation requiring infrastructure improvements.

5.2.1 Municipal Conservation

With no projected water needs, there is not a large incentive for municipalities in the region to implement conservation. That being said, deteriorating infrastructure can have high rates of water loss. Water loss is discussed further in *Chapter 1*. The LRWPG feels it is important to recommend municipal conservation as a water management strategy to encourage conservation in the region and to aid municipalities in obtaining funding to perform conservation measures such as leak detection and repair and installing smart meters.

A methodology was developed to determine the anticipated municipal water conservation savings for the WUGs within the Lavaca Region. First, WUGs were required to meet the following criteria to be chosen for conservation measures:

- Be a municipal WUG.
- Have a year 2030 per capita water usage of greater than 140 GPCD, indicating a potential for savings through conservation.

Conservation was considered, regardless of whether a municipality had a water need.

Specific details related to Municipal Conservation are included in Section 5.1.4.2.

5.2.2 Conservation for Manufacturing

Water for manufacturing can be used for a large number of purposes: the product manufacturing process, cooling (either removing heat from a process or air conditioning the facility), conveyance, rinsing or cleaning, and landscape irrigation.

Because of the variations in facilities and water uses, it is difficult to come up with a specific plan for each facility for regional water planning purposes. In addition, there are no identified water needs (shortages) for Manufacturing in the Lavaca Region. Even so, the Lavaca Regional Water Planning Group would like to encourage all water users in the region to reduce water wasting where possible.

There are a number of Best Management Practices (BMPs) that the TWDB recommends (*TWDB Report 362 – Best Management Practices for Industrial Water Users*) that a particular facility could implement in order to conserve water. Those BMPs include:

- 1. Water Audit
- 2. Water Waste Reduction
- 3. Industrial Submetering
- 4. Cooling Systems and Cooling Tower
- 5. Industrial Alternative Sources and Reuse of Process Water
- 6. Rinsing/Cleaning
- 7. Water Treatment
- 8. Boiler and Steam Systems
- 9. Refrigeration (including Chilled Water)
- 10. Once Through Cooling
- 11. Management and Employee Programs
- 12. Industrial Landscape

Each individual manufacturing facility should review the BMPs to determine if any of the identified measures would be feasible for the facility. The Water Audit could be one of the first BMPs

implemented to account for all of the water use within a facility and determine where efficiencies could be made and which of the other BMPs should be followed.

If a water audit has not been previously performed, water savings from implementing recommendations from the audit can range from 10 to 35 percent. For regional water planning purposes, water savings for each county and basin is determined to be 10 percent of the manufacturing water demand and is assumed to be implemented by 2030. *Table 5-9* shows the water savings in ac-ft/yr.

WUG	County	Basin		Dem	and Redu	ction (ac-	ft/yr)	
WUG	County	Dasiii	2020	2030	2040	2050	2060	2070
MANUFACTURING	JACKSON	COLORADO- LAVACA	0	1,063	1,063	1,063	1,063	1,063
MANUFACTURING	JACKSON	LAVACA	0	15	15	15	15	15
MANUFACTURING	JACKSON	LAVACA- GUADALUPE	0	23	23	23	23	23
MANUFACTURING	LAVACA	LAVACA	0	63	63	63	63	63
MANUFACTURING	WHARTON	COLORADO- LAVACA	0	3	3	3	3	3

Table 5-9 Conservation for Manufacturing Water Demand Reductions

Costs

An industrial water audit is assumed to have negligible costs for a particular facility. Any costs to implement measures determined from the audit would be borne by the private facility, which is not eligible for State funding. Therefore, it is impractical to determine overall costs by county/basin for the manufacturing water use category for the purposes of regional water planning.

Environmental and Other Impacts

No impacts to other water resources in the State are expected.

Impacts to Agriculture

Agricultural and natural resource impacts are expected to be negligible.

5.2.3 Irrigation Conservation

Several methods of conservation for agriculture were considered in the 2021 Lavaca Regional Water Plan to help meet irrigation needs. The recommended conservation measures for irrigation include On-Farm Conservation and Tail Water Recovery. Conservation is recommended as a water management strategy to meet irrigation water needs in Wharton County. Recommended conservation measures focus on Wharton County (within the Lavaca Basin), where irrigation needs are identified, but the Lavaca Regional Water Planning Group (LRWPG) supports conservation for irrigation in the whole region.

There are issues with irrigation conservation in the region; on the agricultural side, conservation savings would not result in a reduction of capital expenditures but a forced expenditure of funding to garner any savings. There is a finite upper limit to the amount of money that can be spent to conserve agricultural water and still be supported by on-farm income. The high cost of conservation and the lack of funds to pay for it make large scale conservation projects unlikely. Implementation largely depends on funding from the Natural Resources Conservation Service (NRCS). Programs such as the Environmental Quality Incentive Program (EQIP) have made the costs of improvements more

reasonable for farmers with some success. However, the way in which agricultural operations in Lavaca Region are managed prevent such programs from having substantial effects. A large portion of the irrigated acreage within Lavaca Region is farmed by tenant farmers who have only year-to-year leases. These farmers have a limited incentive for investing in conservation measures without financial backing from the owner of the property.

Increased conservation in agricultural irrigation would have a potentially negative impact on streamflows in the area. During dry months, return flows from agricultural operations represent nearly all the streamflow seen in the region. Therefore, additional conservation during these times could have adverse effects on wildlife habitat. The more efficient usage of available supply may reduce habitat if canals with current plant growth and wildlife harborage are converted to pipelines or are lined to reduce seepage and plant growth.

Water management strategies related to Irrigation Conservation are discussed in detail in *Section* 5.1.2.1.

5.2.3.1 On-Farm Conservation

On-farm conservation measures include a combination of land leveling, multiple inlets, irrigation well meters, and replacement of canal ditches with pipeline. These measures increase water efficiency and reduce water loss. All measures focused on rice production, with the exception of irrigation well meters, which could also be applied for rice production, but focused on non-rice crops in this analysis.

Specific details related to On-Farm Conservation are included in Section 5.1.2.1.1.

5.2.3.2 Tail Water Recovery

Tail water recovery is also recommended as a water management strategy. Tail water recovery is defined by the Natural Resources Conservation Service as a planned irrigation system in which all facilities utilized for the collection, storage, and transportation of irrigation tail water and/or rainfall runoff for reuse have been installed. The system allows for the capture of a portion of the irrigation field return flows, stores them until needed, and then conveys the water from the storage facility to a point of entry back into the irrigation system.

Specific details related to Tail Water Recovery are included in Section 5.1.2.1.2.

APPENDIX 5A Consideration of Strategies that are Potentially Feasible for Meeting Water Needs

Appendix 5A – Water Management Strategies Considered and Evaluated

	ppendix 5/1 – Water Managemen													1									
	Every WUG Entity with an Ident	ified Need Maximum					s REQUIRED Development of large-scale	TO BE CON	Acquisition		Development of regional	Voluntary transfer of water (incl. regional water	Emergency	System optimization, subordination,			D-ultul	Addition		A			
W		(af/yr)	Conservation		Reuse	management of existing supplies	brackish groundwater		of available	Development of new supplies	or regional management of water supply facilities	banks, sales, leases, options, subordination agreements, and financing agreements)	water under Section 11.139	leases, enhancement of yield, improvement of water quality		New GW	Brush control: precipitation enhancement	transfers of surface water	·	of water rights/permits	Rainwater harvesting	other	other
	Irrigation, Wharton	8,067	PF	PF	nPF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF		1

nPF = considered but determined 'not potentially feasible' (may include WMSs that were initially identified as potentially feasible)

PF = considered 'potentially feasible' and therefore evaluated

(all~WMS~evaluations~shall~be~presented~in~the~regional~water~plan~including~for~WMSs~considered~potentially~feasible~but~not~recommended)

APPENDIX 5B Potential Management Strategies and Impacts

Lavaca Region Potentially Feasible Water Management Strategy Screening (for 2021 Lavaca Regional Water Plan)

Water Management	Water User Group	Strategy Description	Does	Strategy Cost	Cost of Water	Max Yield	Starting	Basin	Interbasin	Impacts on	Impacts on	Additional Impacts	Cost	/ield I	ocation	Water	Screening Environmental	Matrix Factors Local	(Positive (1), Neutr Institutional		1)) Impacts on	Impacts to	Impacts or	n Total o
Strategy	or Wholesale Provider	Strategy Description	WUG/WWP Have a Need?	(\$)	(\$/ac-ft)		Decade	Basili	Transfer (Yes/No)		Landform	Additional impacts	Cost	rieiu L		Quality	and Natural Resources	Preference		Water Resources	Agricultural			Screening Factors
		During periods of drought, installation of																						
	IRRIGATION,	flexible poly-ethylene resin pipe as an alternative to furrow irrigation or field								Reduced return flows for														
Drought Management	WHARTON	inundation	Yes	\$122,000	\$106	1,180	2020 LA	AVACA	No	stream/B&E. Minimal to None	None expected	None expected	1	0	1	0	-1	-1	0	0	0	0	0	0
										dependent on type														
Drought Management	EDNA	Reduce water demands following Drought Continegency Plan	No	\$3,300	\$100	33	2020 LA	AVACA	No	of restriction imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
										Minimal to None dependent on type														
3 Drought Management	GANADO	Reduce water demands following Drought Continegency Plan	No	\$4,700	\$100	47	2020 LA	AVACA	No	of restriction imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
Drought management	CHURDO	Continue of the continue of th	110	ψ4,700	ψ100		2020 L	www	140	Imposed	Tione expected	Trone expedied				0								-
										Minimal to None dependent on type														
4 B		Reduce water demands following Drought	N.	*4.000	6400	40	20001	*****	NI.	of restriction	N	Management		_					1		0		0	
Drought Management	HALLETTSVILLE	Continegency Plan	No	\$4,800	\$100	48	2020 LA	AVACA	NO	imposed	None expected	None expected	1	0	1	0	0	-1	1	1	U	0	U	3
										Minimal to None														
		Reduce water demands following Drought								dependent on type of restriction														
5 Drought Management	MOULTON	Continegency Plan	No	\$3,600	\$100	36	2020 LA	AVACA	No	imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
										Minimal to None														
		Reduce water demands following Drought								dependent on type of restriction	'													
6 Drought Management	SHINER	Continegency Plan	No	\$4,900	\$100	49	2020 LA	AVACA	No	imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
										Minimal to None														
		Peduce water demands following Describ								dependent on type of restriction														
7 Drought Management	YOAKUM	Reduce water demands following Drought Continegency Plan	No	\$1,600	\$100	16	2020 LA	AVACA	No	of restriction imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
										Minimal to None														
										Minimal to None dependent on type														
8 Drought Management	EL CAMPO	Reduce water demands following Drought Continegency Plan	No	\$9,500	\$100	95	2020 M	ultiple	No	of restriction imposed	None expected	None expected	1	0	1	0	0	-1	1	1	0	0	0	3
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													-							
										Minimal to None dependent on type														
9 Drought Management	WHARTON COUNTY WCID 1	Reduce water demands following Drought Continegency Plan	No	\$3,200	\$100	32	2020 LA	۸۷۸۵۸	No	of restriction imposed	None expected	None expected	1	0	1	0	0	-1	0	1	0	0	0	2
9 Drought Management	MANUFACTURING,	Reduce water demands following LNRA				32			INO	imposed	None expected	Potential economic /		U	1	U	U	-1	U	I	U	U	U	2
0 Drought Management	JACKSON	Drought Contingency Plan	No	\$24,258,000	\$22,133	1,096	2020 M	ultiple	No	None expected	None expected	production impacts	-1	0	1	0	0	-1	1	1	0	0	0	1
										Impacts limited	Construction of reservoir,													
										based on	diversion													
Lavaca Off-Channel		Construct off-channel reservoir to capture flows not needed for senior water rights or the								implementation of new TCEQ Env	structure, and transmission													
1 Reservoir	LNRA (MWP)	environment	No	\$331,200,000	\$424	53,500	2030 Re	eservoir	No	Requirements	line	Local social impacts	0	1	1	0	0	0	0	1	0	1	0	4
											Wellfield, treatment													
										Increased return	plant, and transmission													
12 LNRA Desalination	LNRA (MWP)	Desalination of brackish groundwater and surface water in Jackson County	No	\$49,900,000	£4.244	4.050	2040 LA	A\/ACA	Na	flows for stream/B&E	line	Viold limited by MAC	-1		1	1	0	0	-1	1	0	0	0	1
2 LNRA Desamnation	LINKA (MWP)	surface water in Jackson County	INO	\$49,900,000	\$1,311	1,652	2040 LF	AVACA	No	Stream/b&E	construction	Yield limited by MAG	-1	0	1		U	U	-1	I	0	0	U	
										Diversion of higher														
										flows from Lavaca River while	plant, and													
LNRA Aquifer Storage and		Diverting excess flows downstream of Lake								meeting TCEQ environmental	transmission													
13 Recovery	LNRA (MWP)	Texana	No	\$260,074,000	\$3,066	8,665	2040 LA	AVACA	No	standards.	construction	None expected	-1	1	0	0	0	0	0	1	0	0	0	1
										Environmental	Potentially low- cost													
										permitting	alternative	Dredged material may												
14 Lake Texana Dredging	LNRA (MWP)	Removal of sediment and debris from bottom of Lake Texana	No	\$50,001,000	\$2,988	1,210	2040 LA	AVACA	No	required; potential damage to habitat		require treatment and disposal	-1	0	1	0	-1	1	-1	0	0	-1	0	-2
	, ,									Reduction of														
		Reuse portion of wastewater effluent for								discharge flows to Tres Palacios	I ransmission line	Reduction of demand on												
15 Reuse	EL CAMPO	municipal and/or agricultural purposes	No	\$7,800,000	\$1,368	560	2030 M	ultiple	No	Creek	construction	aquifer	0	0	1	0	-1	0	0	1	0	0	0	1
		If 2030 GPCD is > 140, apply a 5% reduction in GPCD per decade until 140 is reached.								Reduced return														
16 Conservation - Municipal	HALLETTSVILLE	Leak detection & repair, smart meters, and education/public outreach	No	\$1,502,000	\$1,911	124	2030 LA	AVACA	No	flows for stream/B&E	None expected	None expected	-1	0	1	0	-1	0	1	1	0	0	0	1
Jonaci vauon - Municipal	. WILLE I TOVILLE	If 2030 GPCD is > 140, apply a 5% reduction	INO	ψ1,302,000	ا ا قراب	124	2030 LF		. 10		. TOTIC EXPECTED	. Torio expedieu		Ŭ	'	0		U	<u> </u>	<u> </u>	U	U	J	'
		in GPCD per decade until 140 is reached. Leak detection & repair, smart meters, and								Reduced return flows for														
7 Conservation - Municipal	MOULTON	education/public outreach	No	\$410,000	\$2,031	32	2030 LA	AVACA	No	stream/B&E	None expected	None expected	-1	0	1	0	-1	0	1	1	0	0	0	1
		If 2030 GPCD is > 140, apply a 5% reduction in GPCD per decade until 140 is reached.								Reduced return														
10 Camanus 11 25	CHINES	Leak detection & repair, smart meters, and	A1-	0010.00			2000	A)/ACA	Na	flows for	Name	Nana aur : -t - t				_		^			_	_		
8 Conservation - Municipal	SHINEK	education/public outreach If 2030 GPCD is > 140, apply a 5% reduction	No	\$810,000	\$1,404	94	2030 LA	AVACA	No	stream/B&E	ivone expected	None expected	-1	0	1	0	-1	0	1	1	0	0	0	1
		in GPCD per decade until 140 is reached.								Reduced return														
9 Conservation - Municipal	YOAKUM	Leak detection & repair, smart meters, and education/public outreach	No	\$1,515,000	\$4,681	47	2030 LA	AVACA	No	flows for stream/B&E	None expected	None expected	-1	0	1	0	-1	0	1	1	0	0	0	1
		If 2030 GPCD is > 140, apply a 5% reduction						-																
		in GPCD per decade until 140 is reached. Leak detection & repair, smart meters, and								Reduced return flows for														
20 Conservation - Municipal	EL CAMPO	education/public outreach	No	\$3,671,000	\$1,812	309	2030 AI	II	No	stream/B&E	None expected	None expected	-1	0	1	0	-1	0	1	1	0	0	0	1
		If 2030 GPCD is > 140, apply a 5% reduction in GPCD per decade until 140 is reached.								Reduced return														
	·	Leak detection & repair, smart meters, and	1	ĺ						flows for												ĺ		
Conservation - Municipal	WHARTON	education/public outreach	No	\$409,000	\$6,000	10	2030 LA	۸۱/۸۵۸	No	stream/B&E	None sure and	None expected	4	0	4	^	4	^	4	4		^	^	

Lavaca Region Potentially Feasible Water Management Strategy Screening (for 2021 Lavaca Regional Water Plan)

																	Screening	Matrix Factors (Positive (1), Neutral	I (0), Negative (-1))			/
Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Does WUG/WWP Have a Need?	Strategy Cost (\$)	Cost of Water (\$/ac-ft)	Max Yield (ac-ft/yr)		Basin	Interbasin Transfer (Yes/No)	Impacts on Habitat / Stream / B&E Flows	Impacts on Landform	Additional Impacts	Cost	Yield		Water Quality	Environmental and Natural Resources	Local Preference		Impacts on Water Resources		Impacts to Recreation		Screeni Factor
Conservation - 22 Manufacturing	MANUFACTURING, JACKSON	, Individual manufacturing facilities follow Best Management Practices (BMPs)	No	\$	0 \$0	1,101	2030 Mu	ultiple	No	None expected	None expected	None expected	1	1	0	0	0	0	0	0	0	0	0	2
Conservation - 3 Manufacturing	MANUFACTURING, LAVACA	Individual manufacturing facilities follow Best Management Practices (BMPs)	No	\$	0 \$0	63	2030 LA	AVACA	No	None expected	None expected	None expected	1	0	0	0	0	0	0	0	0	0	0	1
Conservation - 24 Manufacturing	MANUFACTURING, WHARTON	Individual manufacturing facilities follow Best Management Practices (BMPs)	No	\$	0 \$0	3	2030 LA	OLORADO- AVACA	No	None expected	None expected	None expected	1	0	0	0	0	0	0	0	0	0	0	1
25 Conservation - Irrigation	IRRIGATION, WHARTON	Row-Irrigated Rice	Yes	N/A	N/A	N/A	2020 LA	AVACA	No	N/A	N/A	N/A	0	-1	0	0	-1	-1	0	1	0	0	0	-2
26 Conservation - Irrigation	IRRIGATION, WHARTON	Alternate wetting and drying	Yes	\$	0 \$0	633	3 2020 LA	AVACA	No	None expected	None expected	Increased labor	1	0	1	0	0	-1	0	0	0	0	0	1
27 Conservation - Irrigation	IRRIGATION, WHARTON	On-farm conservation including land leveling, multiple inlets, irrigation well meters meters, and irrigation pipelines instead of ditches	Yes	\$7,200,000	0 \$54	9,496	6 2020 LA	AVACA	No	Reduced return flows for stream/B&E	None expected	No appreciable water savings	1	1	1	0	0	-1	0	0	1	0	0	3
28 Conservation - Irrigation	IRRIGATION, WHARTON	Tailwater recovery	Yes	\$19,100,000	0 \$442	5,733	3 2020 LA	AVACA	No	Reduced return flows for stream/B&E	Reduced acreage for farming	Cost prohibitive to irrigators	1	0	1	-1	-1	-1	0	1	0	0	0	0
Expand Use of 29 Groundwater	IRRIGATION, WHARTON	Alternative strategy - Pump additional groundwater needed for dry years only, allowing aquifer to recharge during wet periods, acknowledging that the MAG is a long term average.	Yes, but not as a recommended strategy	\$532,42:	2 \$66	S 8,067	, 2020 LA	AVACA	No	Increased return flows for stream/B&E	pumping could negatively impact the aquifer and increase	Prolonged drought-level use within the Lavaca Region portion of Wharton County could create increased drawdowns in adjacent counties	1	1	1	0	4	0	4	-1	1	0	0	1

Rating Criteria for Decision Matrix Factors for Identifying Potential Water Managment Strategies

		Rating Criteria	
Category	-1	0	1
Cost	>\$1,000/ac-ft	<\$1,000/ac-ft	<\$500/ac-ft
Yield	Size of project is too small or too large for likely need	Size of project is flexible or meets needs of service area	Size of project is flexible and can be adjusted to fit optimum requirements
Location	IBT required. Large distance from demand. Outside of Region K area.	No IBT required. Significant conveyance required. May cross watersheds.	No IBT required. Located within Region K area. Relatively close to demand.
Water Quality	Quality of supply is reduced. May aggravate water quality issues in source supply.	No known water quality issues.	Existing water quality problems are reduced due to this strategy.
Environmental and Natural Resources	Significant environmental issues and community opposition. Negative impacts to natural resources, including reduction in instream or B&E flows.	Environmental impacts can be easily mitigated. Limited concerns by environmental community. No impacts to natural resources or instream/B&E flows.	Positive or limited or no known negative environmental impacts. Positive impacts to natural resources, including increased instream/B&E flows.
Local Preference	No local support. Significant local opposition.	Some local support. Limited opposition.	Widespread local support. Multi- use benefits likely. No local opposition.
Institutional Constraints / Risk of Implementability	Permits opposed. Significant property acquisition required. Construction will be complex.	Permits expected with minimal problems. Necessary property available. No expected construction difficulties.	Permits issued. Facilities constructed or land owned. Water available to contract.
Impacts on Water Resources	Negative impact on other water supplies. (groundwater or surface water)	No impact.	Positive impact on other water supplies. (groundwater or surface water)
Impacts on Agricultural Resources	Negative impact.	No impact.	Positive impact.
Impacts on Recreation	Negative impact.	No impact.	Positive impact.
Impacts on Other Management Strategies	Negative impact.	No impact.	Positive impact.

Strategy Conservation for Irrigation

Identified WUG/MWP Irrigation in Wharton County

Shortage Amount Wharton County, Lavaca Basin – 8,067 ac-ft/yr

Supply Quantity Irrigation, Wharton County – 15,828 ac-ft/yr, online in 2020

Water Source Conservation through On-Farm Conservation, Tail Water Recovery, and Alternate Wetting

and Drying (AWD)

Quality Negligible changes in treated water quality.

Cost (\$/acre-foot) On-Farm Conservation – \$54/acre-foot

Tail Water Recovery -- \$442/acre-foot Alternate Wetting and Drying – Negligible

Environmental Impacts

AWD increases nitrous oxide (N2O) emissions.

Impacts on other Water Resources of the State

No impacts to other water resources in the State are expected.

Impacts on Threats to Agriculture and other Natural Resources of the State

Tail water recovery may result in a decrease of water quality and disease problems that result from the reuse of irrigation water. Natural resource impacts are expected to be

negligible.

Other Impacts N/A

Strategy LNRA Lavaca Off-Channel Reservoir (Lake Texana Yield Enhancement)

Identified WUG/MWP LNRA

Shortage Amount Potential existing and future customers of LNRA within Region P or neighboring Region L

(unallocated supply for future needs).

Supply Quantity Phase 1 – 23,500 ac-ft/yr, online in 2030

Phase 2 – 30,000 ac-ft/yr, online in 2040

Water Source Lavaca River

Quality No change in treated water quality to end user.

Treatment Raw water

Cost (\$/acre-foot) Phase 1 - \$176/ac-ft

Phase 2 - \$618/ac-ft

Environmental Impacts

The impact of the proposed off-channel reservoir appears to have minimal or no impact on threatened and endangered species.

Because the current version of the TCEQ Lavaca WAM Run 3 incorporates the environmental flow standards in the model, and the diversion for the reservoir was modeled using a junior water right priority date, diversions to the reservoir are made only after the environmental flow standard is met.

As a result of constructing a diversion dam to either send water to Lake Texana or to a new reservoir to capture and store flow from the river, up to 50,000 ac-ft/yr would be diverted to storage in any given year. Additionally, the new reservoir could provide up to 2,000 acres of new waterfowl habitat.

Impacts on other Water Resources of the State

The Lavaca off-channel reservoir project was modeled to divert water without detracting from the required TCEQ Bay and Estuary Freshwater Inflow standards for the Lavaca Bay System.

Impacts on Threats to Agriculture and other Natural Resources of the State

The proposed off-channel reservoir would have a marginal impact on local agricultural activities in that siting of the project and inundation of the off-channel reservoir would remove approximately 2,500 acres of agricultural land from production.

LNRA Desalination Strategy

Identified WUG/MWP LNRA

Potential existing and future customers of LNRA within Region P and possibly neighboring **Shortage Amount**

Region L.

Supply Quantity 6,452 ac-ft/yr, online in 2040. Project yield based on available groundwater from Gulf Coast

> Aquifer (4,800 ac-ft/yr) and brackish surface water from the tidal stream of the Navidad River (1,652 ac-ft/yr). Brackish surface water modeling assumes Lavaca Off-Channel Reservoir

strategy has already been implemented.

Water Source Gulf Coast Aquifer and tidal stream of the Navidad River

Quality Increased quality from brackish to fresh

Treatment Treated

\$1,311/ac-ft. Project cost is \$49,883,000; facilities include a raw water intake and pump Cost (\$/acre-foot)

station, 3 – 1,000 gpm supply wells, a 5.8 MGD water treatment plant, two additional pump stations for the finished water and brine concentrate, one (1) finished water storage tank,

and associated pipelines and appurtenances.

Environmental Impacts

LNRA customers are currently surface water users, so the increased use from groundwater would increase return flows to the streams. Up to 1,652 ac-ft/year would be diverted from the

tidal stream of the Navidad River, while meeting or exceeding SB3 bay and estuary

requirements. A discharge permit would be required for brine disposal.

Impacts on other Water Resources of the State

Permitting by Texana GCD and TCEQ would be required. This strategy stays within the

MAG, so no impacts to other water resources.

Impacts on Threats to Agriculture and other Natural Resources of the State

There should be no impacts to agriculture from this strategy. See Chapter 1 for list of rare,

threatened, and endangered species in the region.

Strategy Drought Management (Municipal)

Identified WUG/MWP Edna, Ganado, Hallettsville, Moulton, Shiner, Yoakum, El Campo, Wharton County WCID 1

Shortage Amount None

Supply Quantity Strategy assumes entity would follow drought contingency plans and reduce demands.

Potential water savings: Edna – 33 ac-ft/yr Ganado – 47 ac-ft/yr Hallettsville – 46 ac-ft/yr Moulton – 34 ac-ft/yr Shiner – 46 ac-ft/yr Yoakum – 15 ac-ft/yr El Campo – 95 ac-ft/yr

Wharton County WCID 1 - 32 ac-ft/yr

Water Source Drought Management

Quality No change in treated water quality to end user.

Cost (\$/acre-foot) Costs for municipalities were assumed at \$100/ac-ft, based on assumed effort for public

outreach and enforcement. No capital costs.

Environmental Impacts

Reduced streamflow from irrigation return flows in second half of year. May reduce habitat

for migratory birds.

Impacts on other Water Resources of the State

None expected.

Impacts on Threats to Agriculture and other Natural Resources of the State

Drought Management for municipal utilities would have negligible impact to the amount of

water available to meet Irrigation needs in Wharton County.

Strategy Municipal Conservation

Identified WUG/MWP Hallettsville, Moulton, Shiner, Yoakum, El Campo, Wharton County WCID 1

Shortage Amount None

Supply Quantity Online in 2030 – maximum water demand reduction for:

Hallettsville – 124 ac-ft/yr Moulton – 32 ac-ft/yr Shiner – 94 ac-ft/yr Yoakum – 47 ac-ft/yr El Campo – 309 ac-ft/yr

Wharton County WCID 1 - 10 ac-ft/yr

Water Source Conservation

Quality No Change in treated water quality to end user

Treatment N/A

Cost (\$/acre-foot) Hallettsville (\$1,911/ac-ft), Moulton (\$2,031/ ac-ft), Shiner (\$1,404/ ac-ft), Yoakum (\$4,681/

ac-ft), El Campo (\$1,812/ ac-ft), Wharton County WCID 1 (\$6,000/ ac-ft). Higher unit costs represent WUGs where a higher portion of the demand reduction is met with capital cost

measures.

Environmental Impacts

Yield amounts are relatively low, so impacts would be negligible, but any reductions in water

use that is treated by WWTP would reduce return flows to the local creeks.

Impacts on other Water Resources of the State

None expected.

Impacts on Threats to Agriculture and other Natural Resources of the State

Minimal reduction in municipal groundwater use would have negligible impacts on the

amount of groundwater available for irrigation use.

Strategy Reuse of municipal effluent

Identified WUG/MWP El Campo

Shortage Amount None

Supply Quantity 560 ac-ft/yr (50% of total effluent), online in 2030

Water Source Groundwater based municipal wastewater effluent

Quality Increased dissolved solids and bacterial content, plus some beneficial nutrients

Treatment Treated (non-potable)

Cost (\$/acre-foot) Project Cost is \$7,881,000, with a unit cost of \$1,368/ac-ft; Calculated based information

from El Campo and assumed transmission distance. Sand filtration system and 5 miles of

12" transmission line were included in costs.

Environmental Impacts

Water that is currently discharged into streams in the basin would be consumed instead, by a volume of up to 560 ac-ft/yr. In addition, if effluent is used for agricultural purpose, it would start with higher dissolved solids levels than either groundwater or surface water in the area. Agricultural use would further increase dissolved solids levels. Agricultural demand would continue to be met, with associated discharges to the watercourses of agricultural return flows.

Impacts on other Water Resources of the State

Stress on the groundwater in the area would be reduced. However, return flows to the streams in the area would also be reduced and dissolved solids concentrations would increase slightly. The overall effect would be minimal because of the limited amount of effluent available.

Impacts on Threats to Agriculture and other Natural Resources of the State

If water is used for irrigation purposes, it would provide up to an additional 560 ac-ft/yr of water supply, and as noted previously, provides for wildlife habitat as well. If it is used for municipal or manufacturing purposes, it would have no impact on agriculture.

Strategy Conservation for Manufacturing

Identified WUG/MWP Manufacturing in Jackson, Lavaca, and Wharton counties

Shortage Amount None

Supply Quantity Manufacturing, Jackson County – 1,101 ac-ft/yr, online in 2030

Manufacturing, Lavaca County – 63 ac-ft/yr, online in 2030 Manufacturing, Wharton County – 3 ac-ft/yr, online in 2030

Water Source Conservation

Quality Negligible changes in treated water quality. Decreased water quality if landscape irrigation

changes from potable to non-potable as an implemented measure.

Cost (\$/acre-foot) Negligible

Environmental Impacts

Environmental impacts are expected to be negligible.

Impacts on other Water Resources of the State

No impacts to other water resources in the State are expected.

Impacts on Threats to Agriculture and other Natural Resources of the State

Agricultural and natural resource impacts are expected to be negligible.

Other Impacts N/A

Strategy Alternative Strategy: Expand Use of the Gulf Coast Aquifer – Wharton County

Identified WUG/MWP Wharton County Irrigation (Lavaca Basin)

Shortage Amount Wharton County Irrigation, Lavaca Basin – 8,067 ac-ft

Supply Quantity 8,067 ac-ft/yr

Water Source Gulf Coast Aquifer

Quality No Change

Treatment Raw

Cost (\$/acre-foot) \$66/ac-ft. Calculated as the additional pumping cost for estimated additional drawdown

using the TWDB Costing Tool. This cost would only be assessed when needed. It is further

assumed that the aquifer would recover between droughts.

Environmental Impacts

The continued use of current levels of irrigation water would have the environmental benefit of ensuring that current or near-current volumes of agricultural return flows will continue to be discharged to the streams in the region. There are no springs, so diminished springflow from reduced aquifer levels is not a concern. If increased use continues over a long period of time, there is a potential for land subsidence with attendant environmental effects.

Impacts on other Water Resources of the State

The Gulf Coast Aquifer underlying Wharton County has sufficient water in storage to meet short-term demands in drought-of-record conditions, so the localized impacts of increased use would be unlikely to impact other water resources of the state. However, in a widespread drought, the adjacent regions are likely to be increasing groundwater use as well, with some potential for additional drawdown. Additionally, prolonged drought-level use within the LRWPA portion of Wharton County could create increased drawdowns in adjacent counties and regions.

Impacts on Threats to Agriculture and other Natural Resources of the State

Availability of water for irrigation purposes reduces the threats to agriculture, by providing an additional supply of 8,067 ac-ft/yr. Additionally, wildlife habitats benefit from sustained return flows in drought.

Strategy LNRA Lake Texana Dredging

Identified WUG/MWP LNRA

Shortage Amount Potential existing and future customers of LNRA within Region P (unallocated supply for

future needs)

Supply Quantity 390 ac-ft/yr (2040) – 1,210 ac-ft/yr (2070), online in 2040

Water Source Lake Texana (tributaries: Brushy Creek, Navidad River, Mustang Creek)

Quality Strategy may elevate suspended solids levels in Lake Texana due to sediment disturbance.

Treatment Raw water

Cost (\$/acre-foot) \$2,988/ac-ft

Environmental Impacts

Conventional dredging methods elevate turbidity and can lower dissolved oxygen levels and

overall water quality. This strategy could have direct negative impacts on aquatic

ecosystems in Lake Texana.

Impacts on other Water Resources of the State

No impacts to water resources are anticipated as a result of implementing this strategy.

Impacts on Threats to Agriculture and other Natural Resources of the State

This strategy may provide benefit to agricultural users by providing an alternative soil

amendment product.

Other Impacts This strategy provides a flood control benefit by providing an additional 19,128 ac-ft of flood

water retention for the contributing watershed.

Strategy LNRA Aquifer Storage and Recovery

Identified WUG/MWP LNRA

Shortage Amount Potential existing and future customers of LNRA within Region P and possibly neighboring

Region L.

Supply Quantity 8,665 ac-ft/yr, online in 2040. Project yield based on available excess flows from Lavaca

River, averaged over period of record, while meeting the TCEQ environmental flow standards. ASR modeling assumes Lavaca Off-Channel Reservoir strategy has already

been implemented.

Water Source Lavaca River

Quality No change in treated water quality to end user

Treatment Treated going into aquifer, not treated in recovery

Cost (\$/acre-foot) Project cost is \$260,074,000, with unit cost of \$3,066/ac-ft. Facility costs were developed

using the current version of the TWDB Costing tool. Facilities would include a 50 MGD raw water intake and pump station on the Lavaca River, 11 – 1,000 gpm wells for injection and recovery, a 20 MGD water treatment plant to treat the water before injection, two 20 MG raw water storage tanks to reduce need for peaking-sized treatment plant, and associated pipelines and appurtenances to pump water from the Lavaca River and deliver to the ASR

site, and then return the recovered water to the LNRA system.

Environmental Impacts

Permitting would be required for ASR and diversion. New TCEQ environmental flow standards are met, but up to 25,000 ac-ft/yr that would normally reach the bay would be diverted for storage. Flows may ultimately be returned to river after use. When dissolved oxygen is present in the water introduced to an aquifer, a chain of oxygen reduction reactions results in selective leaching and/or mineral dissolution, releasing metals such as

arsenic.

Impacts on other Water Resources of the State

Study needed to determine any potential impacts to local groundwater. Treatment of water prior to injection should prevent water quality issues.

Impacts on Threats to Agriculture and other Natural Resources of the State

The proposed ASR project should have a negligible impact on local agricultural activities. Siting of the project may remove approximately 130 acres of agricultural land from production, depending on actual location, but would have negligible influence given the large quantity of agricultural land in the area. See *Chapter 1* for list of rare, threatened, and endangered species in the region.

Strategy Drought Management (Manufacturing)

Identified WUG/MWP Manufacturing in Jackson County

Shortage Amount None

Supply Quantity Colorado-Lavaca Basin – 1,063 ac-ft/yr, online in 2020

Lavaca Basin – 15 ac-ft/yr, online in 2020

Lavaca-Guadalupe Basin – 18 ac-ft/yr, online in 2020

Water Source Drought Management

Quality No change in treated water quality to end user.

Cost (\$/acre-foot) \$22,133/ac-ft, to reflect dollar impact on economy due to reduced water based on data in the

2019 TWDB Socioeconomic Impacts of Projected Water Shortages.

Environmental Impacts

No environmental impacts anticipated.

Impacts on other Water Resources of the State

None expected.

Impacts on Threats to Agriculture and other Natural Resources of the State

No agricultural impacts anticipated.

APPENDIX 5C Recommended and Alternative Water Management Strategy Summaries

APPENDIX 5C - LAVACA REGION WUG NEEDS AND RECOMMENDED WATER MANAGEMENT STRATEGIES

							Rec	ommende	d Water I (ac-f	Manageme t/yr)	ent Strateg	jies
WUG Name	County	River Basin	Water Management Strategy Name	Region of Source	Source County Name	Source Name	2020	2030	2040	2050	2060	2070
		Sh	ortage/Surplus				(8,067)	(8,067)	(8,067)	(8,067)	(8,067)	(8,067)
IRRIGATION	WHARTON	LAVACA	Conservation (On-Farm, including land-leveling, multipe inlets, well meters, and irrigation pipeline)				9,496	9,496	9,496	9,496	9,496	9,496
IRRIGATION	WHARTON	LAVACA	Conservation (Tail Water Recovery)				5,733	5,733	5,733	5,733	5,733	5,733
		Remaini	ng Surplus/Shortage				7,162	7,162	7,162	7,162	7,162	7,162

Recommended Water Management Strategy Summary Table

						Wat	er Supply Vo	olume (ac-ft	:/yr)	
Region	ID	Recommended Water Management Strategy	Total Capital Costs (\$)	Estimated Annual Average Unit Cost (\$/ac-ft/yr)	2020	2030	2040	2050	2060	2070
Р	P1	Municipal Conservation	\$8,317,000	\$1,404 - \$6,000	0	223	345	475	542	600
Р	P2	Reuse of Municipal Effluent - El Campo	\$3,272,000	\$1,368	560	560	560	560	560	560
Р	Р3	Irrigation Conservation - On-farm Conservation	\$7,239,000	\$54	9,496	9,496	9,496	9,496	9,496	9,496
Р	P4	Irrigation Conservation - Tail water Recovery	\$19,092,000	\$442	5,733	5,733	5,733	5,733	5,733	5,733
Р	P5	Lavaca River Off-Channel Reservoir	\$331,200,000	\$794	0	23,500	30,000	30,000	30,000	30,000
Р	P6	Drought Management - Municipalities	\$0	\$100	343	343	340	341	344	348
Р	P7	LNRA Desalination	\$49,883,000	\$1,311	0	0	6,452	6,452	6,452	6,452
Р	P8	Conservation for Manufacturing	\$130,169,000	\$1,641	14,163	14,163	14,163	14,163	14,163	14,163

						Wat	er Supply V	olume (ac-f	t/yr)	
Region	ID	Alternative Water Management Strategy	Total Capital Costs (\$)	Estimated Annual Average Unit Cost (\$/ac-ft/yr)		2030	2040	2050	2060	2070
Р	PA1	LNRA Aquifer Storage and Recovery	\$260,074,000	\$3,066	0	0	8,665	8,665	8,665	8,665
Р	PA2	Lake Texana Dredging	\$51,377,000	\$2,988	0	0	390	663	937	1,210
Р	PA3	Drought Management - Manufacturing	\$0	\$4,570	1,096	1,096	1,096	1,096	1,096	1,096
		Irrigation Conservation - Alternate Wetting								
Р	PA4	and Drying	\$0	\$0	633	633	633	633	633	633
		Expand Use of the Gulf Coast Aquifer -								
Р	PA5	Wharton County	\$0	\$66	8,067	8,067	8,067	8,067	8,067	8,067

APPENDIX 5D Water Management Strategy Cost Tables

Wharton County Irrigation - On-Farm Conservation

ltem	Estimated Costs for Facilities
Integration, Relocations, & Other	\$6,358,000
TOTAL COST OF FACILITIES	\$6,358,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (10% for pipes & 10% for all other facilities)	\$626.000
Interest During Construction (4% for 1 years with a 1% ROI)	\$636,000 \$245,000
TOTAL COST OF PROJECT	\$7,239,000
TOTAL COST OF PROJECT	\$1,239,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$509,000
Operation and Maintenance	
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.09 \$/kW-hr)	\$0
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$509,000
Available Project Yield (acft/yr)	9,496
Annual Cost of Water (\$ per acft), based on PF=1	\$54
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$0
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$0.16
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$0.00
Note: One or more cost element has been calculated externally	
Jaime Burke/Alicia Smiley	8/12/2019

Irrigation - Wharton County, Lavaca Basin - Tail Water Recovery

Item	Estimated Costs for Facilities
Integration, Relocations, & Other	\$16,769,000
TOTAL COST OF FACILITIES	\$16,769,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	.
Contingencies (10% for pipes & 10% for all other facilities)	\$1,677,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$646,000
TOTAL COST OF PROJECT	\$19,092,000
ANNUAL COST	
Debt Service (3.5 percent, 10 years)	\$2,296,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$168,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (893854 kW-hr @ 0.08 \$/kW-hr)	\$72,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$2,536,000
Available Project Yield (acft/yr)	5,733
Annual Cost of Water (\$ per acft), based on PF=1	\$442
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$42
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$1.36
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$0.13
Note: One or more cost element has been calculated externally	
Alicia Smiley/Jaime Burke	7/1/2019

LNRA - LNRA Lavaca Off-Channel Reservoir Phase 1

	Estimated Costs
Item	for Facilities
Primary Pump Station (0 MGD)	\$20,700,000
Transmission Pipeline (0 in dia., miles)	\$9,670,000
TOTAL COST OF FACILITIES	\$30,370,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	
Contingencies (30% for pipes & 35% for all other facilities)	\$10,146,000
Environmental & Archaeology Studies and Mitigation	\$83,000
Land Acquisition and Surveying (14 acres)	\$63,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$1,119,000</u>
TOTAL COST OF PROJECT	\$41,781,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$2,940,000
Operation and Maintenance	+ =,• ·•,•••
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$97,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$517,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (7132124 kW-hr @ 0.08 \$/kW-hr)	\$571,000
Purchase of Water (acft/yr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$4,125,000
Available Project Yield (acft/yr)	23,500
Annual Cost of Water (\$ per acft), based on PF=2	\$176
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2	\$50
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2	\$0.54
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2	\$0.15
Note: One or more cost element has been calculated externally	
Kiera Brown	12/11/2019

LNRA - LNRA Lavaca Off-Channel Reservoir Phase 2

ltem	Estimated Costs for Facilities
Dam and Reservoir (Conservation Pool 50000 acft, 2500 acres)	\$154,795,000
Transmission Pipeline (0 in dia., miles)	\$38,680,000
Integration, Relocations, & Other	\$6,627,000
TOTAL COST OF FACILITIES	\$200,102,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	#00.400.000
Contingencies (30% for pipes & 35% for all other facilities)	\$68,102,000
Environmental & Archaeology Studies and Mitigation	\$3,523,000
Land Acquisition and Surveying (2541 acres)	\$10,488,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$7,762,000</u>
TOTAL COST OF PROJECT	\$289,977,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$4,550,000
Reservoir Debt Service (3.5 percent, 40 years)	\$10,551,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$453,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$2,322,000
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (8232580 kW-hr @ 0.08 \$/kW-hr)	\$659,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$18,535,000
Available Project Yield (acft/yr)	30,000
Annual Cost of Water (\$ per acft), based on PF=2	\$618
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2	\$114
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2	\$1.90
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2	\$0.35
Note: One or more cost element has been calculated externally	
Kiera Brown	1/10/2020

Lavaca-Navidad River Authority - LNRA Desalination

ltem	Estimated Costs for Facilities
Intake Pump Stations (8.6 MGD)	\$7,671,000
Transmission Pipeline (24 in dia., miles)	\$2,044,000
Well Fields (Wells, Pumps, and Piping)	\$4,175,000
Storage Tanks (Other Than at Booster Pump Stations)	\$1,297,000
Water Treatment Plant (5.8 MGD)	\$20,363,000
TOTAL COST OF FACILITIES	\$35,550,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$12,340,000
Environmental & Archaeology Studies and Mitigation	\$367,000
Land Acquisition and Surveying (54 acres)	\$290,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$1,336,000</u>
TOTAL COST OF PROJECT	\$49,883,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$3,510,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$75,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$192,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$4,073,000
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (7625589 kW-hr @ 0.08 \$/kW-hr)	\$610,000
Purchase of Water (6452 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$8,460,000
Available Project Yield (acft/yr)	6,452
Annual Cost of Water (\$ per acft), based on PF=2	\$1,311
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2	\$767
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2	\$4.02
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2	\$2.35
КВ	7/19/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices El Campo - Conservation

ltem	Estimated Costs for Facilities
Conservation (Leaking Pipe/Meter Replacement)	\$2,748,000
TOTAL COST OF FACILITIES	\$2,748,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$824,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$99,000</u>
TOTAL COST OF PROJECT	\$3,671,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$258,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$275,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Non-Capital Costs (106 acft/yr @ \$250/acft)	<u>\$27,000</u>
TOTAL ANNUAL COST	\$560,000
Available Project Yield (acft/yr)	309
Annual Cost of Water (\$ per acft), based on PF=1	\$1,812
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$890
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$5.56
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$2.73
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices Hallettsville - Conservation

Marin.	Estimated Costs for Facilities
Item	
Conservation (Leaking Pipe/Meter Replacement)	\$1,124,000
TOTAL COST OF FACILITIES	\$1,124,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	
Contingencies (30% for pipes & 35% for all other facilities)	\$337,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$41,000</u>
TOTAL COST OF PROJECT	\$1,502,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$106,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$112,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Non-Capital Costs (75 acft/yr @ \$250/acft)	<u>\$19,000</u>
TOTAL ANNUAL COST	\$237,000
Available Project Yield (acft/yr)	124
Annual Cost of Water (\$ per acft), based on PF=1	\$1,911
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$903
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$5.86
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$2.77
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices Moulton - Conservation

ltem	Estimated Costs for Facilities
Conservation (Leaking Pipe/Meter Replacement)	\$307,000
TOTAL COST OF FACILITIES	\$307,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$92,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$11,000</u>
TOTAL COST OF PROJECT	\$410,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$29,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$31,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Non-Capital Costs (18 acft/yr @ \$250/acft)	<u>\$5,000</u>
TOTAL ANNUAL COST	\$65,000
Available Project Yield (acft/yr)	32
Annual Cost of Water (\$ per acft), based on PF=1	\$2,031
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$969
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$6.23
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$2.97
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices Shiner - Conservation

ltem	Estimated Costs for Facilities
Conservation (Leaking Pipe/Meter Replacement)	\$606,000
TOTAL COST OF FACILITIES	\$606,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$182,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$22,000</u>
TOTAL COST OF PROJECT	\$810,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$57,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$61,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Non-Capital Costs (57 acft/yr @ \$250/acft)	<u>\$14,000</u>
TOTAL ANNUAL COST	\$132,000
Available Project Yield (acft/yr)	94
Annual Cost of Water (\$ per acft), based on PF=1	\$1,404
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$649
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$4.31
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$1.99
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices

Wharton County WCID 1 - Conservation

Item	Estimated Costs for Facilities
Conservation (Leaking Pipe/Meter Replacement)	\$306,000
TOTAL COST OF FACILITIES	\$306,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	#00.000
	\$92,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	\$11,000 \$400,000
TOTAL COST OF PROJECT	\$409,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$29,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$31,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Non-Capital Costs (0 acft/yr @ \$250/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$60,000
Available Project Yield (acft/yr)	10
Annual Cost of Water (\$ per acft), based on PF=1	\$6,000
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$3,100
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$18.41
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$9.51
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices Yoakum - Conservation

ltem	Estimated Costs for Facilities
Conservation (Leaking Pipe/Meter Replacement)	\$1,134,000
TOTAL COST OF FACILITIES	\$1,134,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	
Contingencies (30% for pipes & 35% for all other facilities)	\$340,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$41,000</u>
TOTAL COST OF PROJECT	\$1,515,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$107,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (10% of Cost of Facilities)	\$113,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0.08 \$/kW-hr)	\$0
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$220,000
Available Project Yield (acft/yr)	47
Annual Cost of Water (\$ per acft), based on PF=1	\$4,681
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$2,404
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$14.36
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$7.38
Alicia Smiley/Jaime Burke	7/25/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices El Campo - Water Reuse

	Estimated Costs
Item	for Facilities
Primary Pump Station (0 MGD)	\$3,216,000
Transmission Pipeline (12 in dia., miles)	\$2,038,000
Water Treatment Plant (0 MGD)	\$363,000
TOTAL COST OF FACILITIES	\$5,617,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	
Contingencies (30% for pipes & 35% for all other facilities)	\$1,864,000
Environmental & Archaeology Studies and Mitigation	\$125,000
Land Acquisition and Surveying (7 acres)	\$8,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$267,000</u>
TOTAL COST OF PROJECT	\$7,881,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$659,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$20,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$80,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (75153 kW-hr @ 0.09 \$/kW-hr)	\$7,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$766,000
Available Project Yield (acft/yr)	560
Annual Cost of Water (\$ per acft), based on PF=2	\$1,368
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2	\$191
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2	\$4.20
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2	\$0.59
Note: One or more cost element has been calculated externally	
Jaime Burke/Alicia Smiley	5/14/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices

Irrigation - Wharton County, Lavaca Basin - Expand use of Groundwater

ltem	Estimated Costs for Facilities
ANNUAL COST	
Operation and Maintenance	
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (6666777 kW-hr @ 0.08 \$/kW-hr)	\$533,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$533,000
Available Project Yield (acft/yr)	8,067
Annual Cost of Water (\$ per acft), based on PF=2	\$66
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2	\$66
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2	\$0.20
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2	\$0.20
JB	7/29/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices LNRA - Lake Texana Dredging

Item	Estimated Costs for Facilities
Integration, Relocations, & Other	\$50,001,000
TOTAL COST OF FACILITIES	\$50,001,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$1,376,000</u>
TOTAL COST OF PROJECT	\$51,377,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$3,615,000
Operation and Maintenance	
Intakes and Pump Stations (0% of Cost of Facilities)	\$0
Dam and Reservoir (0% of Cost of Facilities)	\$0
Water Treatment Plant	\$0
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (0 kW-hr @ 0 \$/kW-hr)	\$0
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$3,615,000
Available Project Yield (acft/yr)	1,210
Annual Cost of Water (\$ per acft), based on PF=1	\$2,988
Annual Cost of Water After Debt Service (\$ per acft), based on PF=1	\$0
Annual Cost of Water (\$ per 1,000 gallons), based on PF=1	\$9.17
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=1	\$0.00
Note: One or more cost element has been calculated externally	
KB	7/22/2019

Cost Estimate Summary Water Supply Project Option September 2018 Prices

LNRA - LNRA Aquifer Storage and Recovery

Item	Estimated Costs for Facilities
Intake Pump Stations (50.2 MGD)	\$37,474,000
Transmission Pipeline (54 in dia., miles)	\$38,442,000
Well Fields (Wells, Pumps, and Piping)	\$13,208,000
Storage Tanks (Other Than at Booster Pump Stations)	\$22,903,000
Water Treatment Plant (20 MGD)	\$75,428,000
TOTAL COST OF FACILITIES	\$187,455,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and	
Contingencies (30% for pipes & 35% for all other facilities)	\$63,687,000
Environmental & Archaeology Studies and Mitigation	\$1,057,000
Land Acquisition and Surveying (170 acres)	\$914,000
Interest During Construction (3% for 1 years with a 0.5% ROI)	<u>\$6,961,000</u>
TOTAL COST OF PROJECT	\$260,074,000
ANNUAL COST	
Debt Service (3.5 percent, 20 years)	\$18,299,000
Operation and Maintenance	
Pipeline, Wells, and Storage Tanks (1% of Cost of Facilities)	\$746,000
Intakes and Pump Stations (2.5% of Cost of Facilities)	\$937,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant	\$5,280,000
Advanced Water Treatment Facility	\$0
Pumping Energy Costs (16316874 kW-hr @ 0.08 \$/kW-hr)	\$1,305,000
Purchase of Water (10974 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$26,567,000
Available Project Yield (acft/yr)	8,665
Annual Cost of Water (\$ per acft), based on PF=2.25	\$3,066
Annual Cost of Water After Debt Service (\$ per acft), based on PF=2.25	\$954
Annual Cost of Water (\$ per 1,000 gallons), based on PF=2.25	\$9.41
Annual Cost of Water After Debt Service (\$ per 1,000 gallons), based on PF=2.25	\$2.93
KB	11/15/2019

			Region P Gallons per Capita per Day (GPCD) Projections						Conservation	Conservation Demand Reduction (AFY)					Advanced Metering Infrastructure			
County	WUG Name	Basin	2020	2030	2040	2050	2060	2070	applied? (2030 GPCD > 140)	2020	2030	2040	2050	2060	2070	Smart Meters Installed by 2070	Project Yield 2070 (5% Demand)	AMI Facilities Cost (Assuming \$150/SM)
JACKSON	COUNTY-OTHER, JACKSON	COLORADO-LAVACA	94	89	86	85	84	84	No	-	-	-	-	-	-	-	-	-
JACKSON	COUNTY-OTHER, JACKSON	LAVACA	94	89	86	85	84	84	No	-	-	-	-	-	-	-	-	-
JACKSON	COUNTY-OTHER, JACKSON	LAVACA-GUADALUPE	94	89	86	85	84	84	No	-	-	-	-	-	-	-	-	-
JACKSON	EDNA	LAVACA	136	132	129	127	127	127	No	-	-	-	-	-	-	-	-	-
JACKSON	GANADO	LAVACA	102	98	95	93	93	93	No	-	-	-	-	-	-	-	-	-
LAVACA	COUNTY-OTHER, LAVACA	GUADALUPE	115	111	107	105	105	105	No	-	-	-	-	-	-	-	-	-
LAVACA	COUNTY-OTHER, LAVACA	LAVACA	115	111	107	105	105	105	No	-	-	-	-	-	-	-	-	-
LAVACA	COUNTY-OTHER, LAVACA	LAVACA-GUADALUPE	115	111	107	105	105	105	No	-	-	-	-	-	-	-	-	-
LAVACA	HALLETTSVILLE	LAVACA	203	199	195	193	193	193	Yes	-	31	50	73	98	124	940	31	\$ 141,000
LAVACA	MOULTON	LAVACA	183	179	175	174	173	173	Yes	-	9	13	20	26	32	291	8	\$ 43,700
LAVACA	SHINER	LAVACA	211	206	203	201	201	201	Yes	-	24	38	56	75	94	685	23	\$ 102,700
LAVACA	YOAKUM	LAVACA	159	155	151	149	149	149	Yes	-	32	47	39	38	38	1234	31	\$ 185,050
WHARTON	COUNTY-OTHER, WHARTON	COLORADO	118	113	110	109	109	109	No	-	-	-	-	-	-	-	-	-
WHARTON	COUNTY-OTHER, WHARTON	COLORADO-LAVACA	118	113	110	109	109	109	No	-	-	-	-	-	-	-	-	-
WHARTON	COUNTY-OTHER, WHARTON	LAVACA	118	113	110	109	109	109	No	-	-	-	-	-	-	-	-	-
WHARTON	EL CAMPO	TOTAL	169	165	161	160	159	159	Yes	-	117	190	283	302	309	4728	127	\$ 709,150
WHARTON	WHARTON COUNTY WCID 1	LAVACA	153	148	145	143	143	143	Yes	1	10	7	4	4	4	444	11	\$ 66,550

AMI Assumptions: 3 people per household; 100% of household will install smart meters by 2070; Installation of smart meters saves ~ 5% of demand.

			Leak	Detection and F	Repair					Municipal C	onservation					
County	WUG Name	Basin	Project Yield 2070 (3% Demand)	Pipe Replaced (Miles)	LDR Facilities Cost	Max Conservation Reduction	Total Capital Yield 2070 (AMI + LDR)	Percent WUG Capital Implemented	Meters	AMI Facilities Cost	Actual Pipe Replaced	LDR Facilities Cost	Savings from Capital Improve- ments	Savings from Non-Capital Improve- ments	Non-Capital Costs (\$250/ac-ft)	Total Facilities Cost
JACKSON	COUNTY-OTHER, JACKSON	COLORADO-LAVACA	-	-	-	-	-	-	_	-	-	-	-	_		-
JACKSON	COUNTY-OTHER, JACKSON	LAVACA	-	-	-	-	-	_	_	-	-	-	-	_		
JACKSON	COUNTY-OTHER, JACKSON	LAVACA-GUADALUPE	-	-	-	-	-	_	_	-	-	-	-	_		
JACKSON	EDNA	LAVACA	-	-	-	-	-	-	-	-	-	-	-	_		
JACKSON	GANADO	LAVACA	-	-	-	-	-	_	_	-	-	-	-	_		
LAVACA	COUNTY-OTHER, LAVACA	GUADALUPE	-	-	-	-	-	_	_	-	-	-	-	_		
LAVACA	COUNTY-OTHER, LAVACA	LAVACA	-	-	-	-	-	-	_	-	-	-	-	_		
LAVACA	COUNTY-OTHER, LAVACA	LAVACA-GUADALUPE	-	-	-	-	-	-	_	-	-	-	-	_		-
LAVACA	HALLETTSVILLE	LAVACA	18	4.1	\$ 983,224	124	49	100%	940	\$ 141,000	4.1	\$ 983,224	49	75	\$ 18,750	\$ 1,124,224
LAVACA	MOULTON	LAVACA	5	1.1	\$ 263,792	32	14	100%	291	\$ 43,700	1.1	\$ 263,792	14	18	\$ 4,500	\$ 307,492
LAVACA	SHINER	LAVACA	14	2.1	\$ 503,603	94	37	100%	685	\$ 102,700	2.1	\$ 503,603	37	57	\$ 14,250	\$ 606,303
LAVACA	YOAKUM	LAVACA	19	4.2	\$ 1,007,421	47	49	95%	1173	\$ 175,917	4.0	\$ 957,702	47	0	\$ -	\$ 1,133,652
WHARTON	COUNTY-OTHER, WHARTON	COLORADO	-	-	-	-	-	-	_	-	-	-	-	-		-
WHARTON	COUNTY-OTHER, WHARTON	COLORADO-LAVACA	-	-	-	-	-		_	-	-	-	-	_		-
WHARTON	COUNTY-OTHER, WHARTON	LAVACA	-	-	-	-	-	_	_	-	-	-	-	_		
WHARTON	EL CAMPO	TOTAL	76	8.5	\$ 2,038,391	309	203	100%	4728	\$ 709,150	8.5	\$ 2,038,391	203	106	\$ 26,500	\$ 2,747,541
WHARTON	WHARTON COUNTY WCID 1	LAVACA	6	1.9	\$ 455,640	10	17	59%	260	\$ 39,055	1.1	\$ 267,395	10	0	\$ -	\$ 306,395

LDR Assumptions: Assumes 3% of 2030 demand is reduced by replacement of 10% of the pipe. 80% of the replaced pipeline is 8", 20% is 12".

APPENDIX 5E TWDB DB22 Reports

Region P Water User Group (WUG) Second-Tier Identified Water Needs

Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)									
	2020	2030	2040	2050	2060	2070				
JACKSON COUNTY - COLORADO-LAVACA BASIN	·				•					
COUNTY-OTHER	0	0	0	0	0	(
MANUFACTURING	0	0	0	0	0	(
MINING	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
IRRIGATION	0	0	0	0	0	(
JACKSON COUNTY - LAVACA BASIN		_			_					
EDNA	0	0	0	0	0	(
GANADO	0	0	0	0	0	(
COUNTY-OTHER	0	0	0	0	0	(
MANUFACTURING	0	0	0	0	0	(
MINING	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
IRRIGATION	0	0	0	0	0	(
JACKSON COUNTY - LAVACA-GUADALUPEBASIN	<u> </u>	<u> </u>	<u> </u>							
COUNTY-OTHER	0	0	0	0	0	(
MANUFACTURING	0	0	0	0	0	(
MINING	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
IRRIGATION	0	0	0	0	0	(
LAVACA COUNTY - GUADALUPE BASIN	<u> </u>		•	1						
COUNTY-OTHER	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
LAVACA COUNTY - LAVACA BASIN	<u>'</u>			,						
HALLETTSVILLE	0	0	0	0	0	(
MOULTON	0	0	0	0	0	(
SHINER	0	0	0	0	0	(
YOAKUM*	0	0	0	0	0	(
COUNTY-OTHER	0	0	0	0	0	(
MANUFACTURING	0	0	0	0	0	(
MINING	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
IRRIGATION	0	0	0	0	0	(
LAVACA COUNTY - LAVACA-GUADALUPEBASIN										
COUNTY-OTHER	0	0	0	0	0	(
LIVESTOCK	0	0	0	0	0	(
WHARTON COUNTY - COLORADO BASIN										
EL CAMPO*	0	0	0	0	0					
COUNTY-OTHER*	0	0	0	0	0	(
WHARTON COUNTY - COLORADO-LAVACA BASIN										
EL CAMPO*	0	0	0	0	0	(
COUNTY-OTHER*	0	0	0	0	0	(
MANUFACTURING*	0	0	0	0	0					
MINING*	0	0	0	0	0	(
LIVESTOCK*	0	0	0	0	0					
		<u> </u>	<u> </u>	v	ŭ_					

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Second-Tier Identified Water Needs

		WUG S	SECOND-TIER NEI	DS (ACRE-FEET PE	R YEAR)	
	2020	2030	2040	2050	2060	2070
WHARTON COUNTY - COLORADO-LAVACA BASIN						
IRRIGATION*	0	0	0	0	0	0
WHARTON COUNTY - LAVACA BASIN						
EL CAMPO*	0	0	0	0	0	0
WHARTON COUNTY WCID 1	0	0	0	0	0	0
COUNTY-OTHER*	0	0	0	0	0	0
MINING*	0	0	0	0	0	0
STEAM ELECTRIC POWER*	0	0	0	0	0	0
LIVESTOCK*	0	0	0	0	0	0
IRRIGATION*	0	0	0	0	0	0

 $^{^*}$ A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Second-Tier Identified Water Needs Summary

Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

			NEEDS (ACRE-I	EET PER YEAR)		
WUG CATEGORY	2020	2030	2040	2050	2060	2070
MUNICIPAL	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	0	0	0
MANUFACTURING	0	0	0	0	0	0
MINING	0	0	0	0	0	0
STEAM ELECTRIC POWER	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0

TWDB: WUG Unmet Needs Page 1 of 1

Region P Water User Group (WUG) Unmet Needs

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. In order to display only unmet needs associated with the WUG split, these surplus volumes are updated to a zero and the unmet needs water volumes are shown as absolute values.

		G UNMET NEEDS	(ACRE-FEET PER Y	EAR)	
2020	2030	2040	2050	2060	2070

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Water User Group (WUG) Unmet Needs Summary

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs Summary report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG category level, calculated surpluses are updated to zero so that only the WUGs with unmet needs in the decade are included with the Needs totals. Unmet needs water volumes are shown as absolute values.

				NEEDS (ACRE-F	EET PER YEAR)		
w	UG CATEGORY	2020	2030	2040	2050	2060	2070
MUNICIPAL		0	0	0	0	0	0
COUNTY-OTHER		0	0	0	0	0	0
MANUFACTURING		0	0	0	0	0	0
MINING		0	0	0	0	0	0
STEAM ELECTRIC POWER		0	0	0	0	0	0
LIVESTOCK		0	0	0	0	0	0
IRRIGATION		0	0	0	0	0	0

Region P Recommended Water User Group (WUG) Water Management Strategies (WMS)

								ANAGEMEI ACRE-FEET		GY SUPPLY)	,
WUG ENTITY NAME	WMS SPONSOR REGION	WMS NAME	SOURCE NAME	UNIT COST 2020	UNIT COST 2070	2020	2030	2040	2050	2060	2070
EDNA	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	33	33	33	33	33	33
EL CAMPO*	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	86	88	89	91	93	95
EL CAMPO*	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1812	0	117	190	283	301	308
GANADO	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	47	47	47	47	47	47
HALLETTSVILLE	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	48	47	46	46	46	46
HALLETTSVILLE	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1911	0	31	50	73	98	124
IRRIGATION, WHARTON*	Р	IRRIGATION CONSERVATION	DEMAND REDUCTION	\$200	\$200	15,229	15,229	15,229	15,229	15,229	15,229
MANUFACTURING, JACKSON	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	1,101	1,101	1,101	1,101	1,101
MANUFACTURING, LAVACA	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	63	63	63	63	63
MANUFACTURING, WHARTON*	Р	CONSERVATION FOR MANUFACTURING	DEMAND REDUCTION	N/A	\$0	0	3	3	3	3	3
MOULTON	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	36	35	34	34	34	34
MOULTON	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$2031	0	9	13	20	26	32
SHINER	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	49	48	47	46	46	46
SHINER	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$1404	0	24	38	56	75	94
WHARTON COUNTY WCID 1	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	28	29	29	30	31	32
WHARTON COUNTY WCID 1	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$6000	0	10	7	4	4	4
YOAKUM*	Р	DROUGHT MANAGEMENT - MUNICIPAL	DEMAND REDUCTION	\$100	\$100	16	16	16	15	15	15
YOAKUM*	Р	MUNICIPAL CONSERVATION	DEMAND REDUCTION	N/A	\$4681	0	32	47	39	38	38
			EGION P RECOMMENDED								
		Ri	15,572	16,962	17,082	17,213	17,283	17,344			

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Recommended Projects Associated with Water Management Strategies

SPONSOR NAME	SPONSOR IS WWP?	ONLINE DECADE	PROJECT NAME	PROJECT DESCRIPTION	CAPITAL COST
EL CAMPO	YES	2030	MUNICIPAL CONSERVATION - EL CAMPO	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$3,671,000
EL CAMPO	YES	2030	REUSE	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; WATER TREATMENT PLANT EXPANSION	\$7,881,000
HALLETTSVILLE	YES	2030	MUNICIPAL CONSERVATION - HALLETTSVILLE	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$1,502,000
IRRIGATION, WHARTON	NO	2020	IRRIGATION CONSERVATION - ON FARM	CONSERVATION - AGRICULTURAL	\$7,239,000
IRRIGATION, WHARTON	NO	2020	IRRIGATION CONSERVATION - TAILWATER RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; RESERVOIR CONSTRUCTION	\$19,092,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2030	LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; DIVERSION AND CONTROL STRUCTURE; PUMP STATION	\$41,781,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; RESERVOIR CONSTRUCTION	\$289,977,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LNRA DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW SURFACE WATER INTAKE; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$49,900,000
MOULTON	NO	2030	MUNICIPAL CONSERVATION - MOULTON	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$410,000
SHINER	YES	2030	MUNICIPAL CONSERVATION - SHINER	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$810,000
WHARTON COUNTY WCID 1	NO	2030	MUNICIPAL CONSERVATION - WHARTON COUNTY WCID 1	CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); DATA GATHERING/MONITORING TECHNOLOGY; WATER LOSS CONTROL	\$409,000
YOAKUM	YES	2020	MUNICIPAL CONSERVATION - YOAKUM	DATA GATHERING/MONITORING TECHNOLOGY; CONSERVATION - MUNICIPAL (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$85,984

REGION P RECOMMENDED CAPITAL COST TOTAI \$422,757,984

Region P Alternative Water User Group (WUG) Water Management Strategies (WMS)

						WATER MANAGEMENT STRATEGY SUPPLY (ACRE-FEET PER YEAR)					
WUG ENTITY NAME	WMS SPONSOR REGION	WMS NAME	SOURCE NAME	UNIT COST 2020	UNIT COST 2070	2020	2030	2040	2050	2060	2070
IRRIGATION, WHARTON*	Р	EXPAND USE OF GROUNDWATER	P GULF COAST AQUIFER SYSTEM WHARTON COUNTY	\$66	\$66	8,067	8,067	8,067	8,067	8,067	8,067
IRRIGATION, WHARTON*	Р	IRRIGATION CONSERVATION	DEMAND REDUCTION	\$0	\$0	633	633	633	633	633	633
MANUFACTURING, JACKSON	Р	DROUGHT MANAGEMENT - MANUFACTURING	DEMAND REDUCTION	\$4570	\$4570	1,096	1,096	1,096	1,096	1,096	1,096
REGION P ALTERNATIVE WMS SUPPLY TOTA						9,796	9,796	9,796	9,796	9,796	9,796

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

Region P Alternative Projects Associated with Water Management Strategies

SPONSOR NAME	SPONSOR IS WWP?	ONLINE DECADE	PROJECT NAME	PROJECT DESCRIPTION	CAPITAL COST
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	AQUIFER STORAGE AND RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; DIVERSION AND CONTROL STRUCTURE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$260,074,000
LAVACA NAVIDAD RIVER AUTHORITY	YES	2040	LAKE TEXANA DREDGING	DREDGE TO RECOVER CAPACITY	\$51,377,000

REGION P ALTERNATIVE CAPITAL COST TOTAL	\$311,451,000
---	---------------

Region P Water User Group (WUG) Management Supply Factor

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. To calculate the Management Supply Factor for each WUG as a whole, <u>not split</u> by region-county-basin, the combined total of existing and future supply is divided by the total projected demand. If a WUG is split by more than one planning region, the whole WUG's management supply factor will show up in each of its planning region's management supply factor reports.

		W	UG MANAGEMEI	NT SUPPLY FACTO	OR .	
WUG NAME	2020	2030	2040	2050	2060	2070
COUNTY-OTHER, JACKSON	1.4	1.4	1.5	1.5	1.5	1.5
COUNTY-OTHER, LAVACA	1.3	1.3	1.4	1.4	1.4	1.4
COUNTY-OTHER, WHARTON*	1.3	1.3	1.3	1.2	1.2	1.1
EDNA	1.5	1.5	1.5	1.5	1.5	1.5
EL CAMPO*	1.1	1.2	1.2	1.2	1.2	1.2
GANADO	1.6	1.6	1.7	1.7	1.7	1.7
HALLETTSVILLE	1.4	1.5	1.5	1.6	1.6	1.7
IRRIGATION, JACKSON	1.0	1.0	1.0	1.0	1.0	1.0
IRRIGATION, LAVACA	1.0	1.0	1.0	1.0	1.0	1.0
IRRIGATION, WHARTON*	1.0	1.0	1.0	1.0	1.1	1.1
LIVESTOCK, JACKSON	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, LAVACA	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, WHARTON*	1.1	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, JACKSON	1.0	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, LAVACA	1.1	1.1	1.1	1.1	1.1	1.1
MANUFACTURING, WHARTON*	1.1	1.0	1.0	1.0	1.0	1.0
MINING, JACKSON	1.0	1.0	1.3	1.8	2.8	3.8
MINING, LAVACA	1.0	1.4	1.8	2.6	4.7	8.6
MINING, WHARTON*	1.0	1.0	1.3	1.8	2.8	4.4
MOULTON	1.5	1.6	1.6	1.7	1.7	1.8
SHINER	1.4	1.5	1.6	1.6	1.6	1.7
STEAM ELECTRIC POWER, WHARTON*	1.0	1.0	1.0	1.0	1.0	1.0
WHARTON COUNTY WCID 1	1.3	1.3	1.3	1.2	1.2	1.2
YOAKUM*	1.3	1.3	1.3	1.3	1.3	1.4

^{*}A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

Region P Recommended Water Managment Strategy (WMS) Supply Associated with a New or Amended Inter-Basin Transfer (IBT) Permit

IBT WMS supply is the portion of the total WMS benefitting WUGs that will require a new or amended IBT permit that is not considered exempt under the Texas Water Code § 11.085.

			IBT WMS SUPPLY (ACRE-FEET PER YEAR)					
WMS NAME	SOURCE BASIN	RECIPIENT WUG BASIN	2020	2030	2040	2050	2060	2070

Region P Water User Groups (WUGs) Recommended Water Managment Strategy (WMS) Supply Associated with a New or Amended Inter-Basin Transfer (IBT) Permit and Total Recommended Conservation WMS Supply

IBT WMS supply is the portion of the total WMS benefitting the WUG basin split listed that will require a new or amended IBT permit that is not considered exempt under the Texas Water Code § 11.085. Total conservation supply represents all conservation WMS volumes recommended within the WUG's region-basin geographic split.

BENEFITTING			WMS S	UPPLY (AC	RE-FEET PE	R YEAR)	
WUG NAME BASIN	WMS SOURCE ORIGIN BASIN WMS NAME	2020	2030	2040	2050	2060	2070

Region P Sponsored Recommended Water Management Strategy (WMS) Supplies Unallocated* to Water User Groups (WUG)

			UNALLOCATED STRATEGY SUPPLY (ACRE-FEET PER YEAR					YEAR)
WMS NAME	WMS SPONSOR	SOURCE NAME	2020	2030	2040	2050	2060	2070
DIRECT REUSE - EL CAMPO	EL CAMPO	P DIRECT NON-POTABLE REUSE	0	560	560	560	560	560
LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	LAVACA NAVIDAD RIVER AUTHORITY	P LAVACA RIVER OFF- CHANNEL LAKE/RESERVOIR	0	23,500	0	0	0	0
LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	LAVACA NAVIDAD RIVER AUTHORITY	P LAVACA RIVER OFF- CHANNEL LAKE/RESERVOIR	0	0	30,000	30,000	30,000	30,000
LNRA DESALINATION - BRACKISH GROUNDWATER	LAVACA NAVIDAD RIVER AUTHORITY	P GULF COAST AQUIFER SYSTEM JACKSON COUNTY	0	0	4,800	4,800	4,800	4,800
LNRA DESALINATION - BRACKISH SURFACE WATER	LAVACA NAVIDAD RIVER AUTHORITY	P NAVIDAD RIVER TIDAL FRESH/BRACKISH	0	0	1,652	1,652	1,652	1,652
TOTAL UNALLOCATED STRATEGY SUPPLIES			0	24,060	37,012	37,012	37,012	37,012

^{*} Strategy supplies created through the WMS that have not been assigned to a WUG will be allocated to the entity responsible for the water through an'unassigned water volumes' entity. Only strategy supplies associated with an 'unassigned water volume' entity are shown in this report, and may not represent all strategy supplies associated with the listed WMS.

Region P Water User Group (WUG) Strategy Supplies by Water Management Strategy (WMS) Type

	STRATEGY SUPPLY (ACRE-FEET PER YEAR)						
WMS TYPE *	2020	2030	2040	2050	2060	2070	
DROUGHT MANAGEMENT	343	343	341	342	345	348	
GROUNDWATER WELLS & OTHER	0	0	0	0	0	0	
IRRIGATION CONSERVATION	15,229	15,229	15,229	15,229	15,229	15,229	
MUNICIPAL CONSERVATION	0	223	345	475	542	600	
OTHER CONSERVATION	0	1,167	1,167	1,167	1,167	1,167	
NEW MAJOR RESERVOIR	0	0	0	0	0	0	
SEAWATER DESALINATION	0	0	0	0	0	0	
AQUIFER STORAGE & RECOVERY	0	0	0	0	0	0	
CONJUNCTIVE USE	0	0	0	0	0	0	
OTHER STRATEGIES	0	0	0	0	0	0	
INDIRECT REUSE	0	0	0	0	0	0	
OTHER DIRECT REUSE	0	0	0	0	0	0	
DIRECT POTABLE REUSE	0	0	0	0	0	0	
OTHER SURFACE WATER	0	0	0	0	0	0	
GROUNDWATER DESALINATION	0	0	0	0	0	0	
TOTAL STRATEGY SUPPLIES	15,572	16,962	17,082	17,213	17,283	17,344	

^{*} WMS type descriptions can be found on the interactive state water plan website at http://texasstatewaterplan.org/ using the 'View data for' drop-down menus to navigate to a specific WMS Type page. The data used to create each WMS type value is available in Appendix 3 of the Guidelines for Regional Water Planning Data Deliverable (Exhibit D) document at http://www.twdb.texas.gov/waterplanning/rwp/planningdocu/2021/doc/current_docs/contract_docs/ExhibitD.pdf.

Region P Water User Group (WUG) Recommended Water Management Strategy (WMS) Supplies by Source Type

	STRATEGY SUPPLY (ACRE-FEET PER YEAR)					
SOURCE SUBTYPE*	2020	2030	2040	2050	2060	2070
AQUIFER STORAGE & RECOVERY	0	0	0	0	0	0
GROUNDWATER	0	0	0	0	0	0
GROUNDWATER TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
DIRECT NON-POTABLE REUSE	0	0	0	0	0	0
DIRECT POTABLE REUSE	0	0	0	0	0	0
INDIRECT NON-POTABLE REUSE	0	0	0	0	0	0
INDIRECT POTABLE REUSE	0	0	0	0	0	0
REUSE TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
ATMOSPHERE	0	0	0	0	0	0
GULF OF MEXICO	0	0	0	0	0	0
LIVESTOCK LOCAL SUPPLY	0	0	0	0	0	0
OTHER LOCAL SUPPLY	0	0	0	0	0	0
RAINWATER HARVESTING	0	0	0	0	0	0
RESERVOIR	0	0	0	0	0	0
RESERVOIR SYSTEM	0	0	0	0	0	0
RUN-OF-RIVER	0	0	0	0	0	0
SURFACE WATERTOTAL STRATEGY SUPPLIES	0	0	0	0	0	0
REGION P TOTAL STRATEGY SUPPLIES	0	0	0	0	0	0

^{*} A full list of source subtype definitions can be found in section 3 of the Guidelines for Regional Water Planning Data Deliverable (Exhibit D) document at http://www.twdb.texas.gov/waterplanning/rwp/planningdocu/2021/doc/current_docs/contract_docs/ExhibitD.pdf.

Region P Major Water Provider (MWP) Existing Sales and Transfers

Major Water Providers are entities of particular significance to a region's water supply as defined by the Regional Water Planning Group (RWPG), and may be a Water User Group (WUG) entity, Wholesale Water Provider (WWP) entity, or both (WUG/WWP).

Retail denotes WUG projected demands and existing water supplies used by the WUG. Wholesale denotes a WWP or WUG/WWP selling water to another entity.

LAVACA NAVIDAD RIVER AUTHORITY- WWP	WATER VOLUMES (ACRE-FEET PER YEAR)					
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070
PROJECTED WHOLESALE CONTRACT DEMANDS	73,850	73,850	73,850	73,850	73,850	73,850
TOTAL PROJECTED WHOLESALE CONTRACT AND RETAIL DEMANDS	73,850	73,850	73,850	73,850	73,850	73,850
SURFACE WATER SALES TO WHOLESALE CUSTOMERS	73,850	73,850	73,850	73,850	73,850	73,850
TOTAL WHOLESALE AND RETAIL SALES TO CUSTOMERS	73,850	73,850	73,850	73,850	73,850	73,850

Region P Major Water Provider (MWP) Water Management Strategy (WMS) Summary

MWPs are entities of significance to a region's water supply as defined by the Regional Water Planning Group (RWPG) and may be a Water User Group (WUG) entity, Wholesale Water Provider (WWP) entity, or both (WUG/WWP). 'MWP Retail Customers' denotes recommended WMS supply used by the WUG. 'Transfers Related to Wholesale Customers' denotes a WWP or WUG/WWP selling or transferring recommended WMS supply to another entity. Supply associated with the MWP's wholesale transfers will only display if it is listed as the main seller in the State Water Planning database, even if multiple sellers are involved with the sale or water to WUGs. Unallocated water volumes represent MWP recommended WMS supply not currently allocated to a customer of the MWP.'Total MWP Related WMS Supply' will display if the MWP's WMS is related to more than one WMS supply type (retail, wholesale, and/or unallocated). Associated WMS Projects are listed when the MWP is one of the project's sponsors. Report contains draft data and is subject to change.

LAVACA NAVIDAD RIVER AUTHORITY LAVACA OFF-CHANNEL RESERVOIR								
		WATER VOLUMES (ACRE-FEET PER YEAR)						
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070		
RELATED UNALLOCATED WMS WATER VOLUMES	0	23,500	30,000	30,000	30,000	30,000		
WMS RELATED MWP SPONSORED PROJECTS		PROJECT DESCRIPTION						
LAVACA OFF-CHANNEL RESERVOIR - PHASE 1	'	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; DIVERSION AND CONTROL STRUCTURE; PUMP STATION						
LAVACA OFF-CHANNEL RESERVOIR - PHASE 2	CONVEYANCE/	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; RESERVOIR CONSTRUCTION						

LAVACA NAVIDAD RIVER AUTHORITY LNRA DESALINATION								
	WATER VOLUMES (ACRE-FEET PER YEAR)							
DATA DESCRIPTION	2020	2030	2040	2050	2060	2070		
RELATED UNALLOCATED WMS WATER VOLUMES	0	0	6,452	6,452	6,452	6,452		
WMS RELATED MWP SPONSORED PROJECTS	PROJECT DESCRIPTION							
LNRA DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW SURFACE WATEF INTAKE; NEW WATER RIGHT/PERMIT NO IBT; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK							

APPENDIX 5F Strategy WAM Coding

```
Т1
        WRAP MODEL
Т2
       Lavaca River Basin Water Availability Model - original from BR/LNRA modifications completed
by staff September 2001
Т3
        KA 09/02/2014 DRAFT SUBJECT TO REVISION - INCLUDES DRAFT REPRESENTATION OF ADOPTED
ENVIRONMENTAL FLOW STANDARDS
** AECOM Strategy Model to evaluate yield for LNRA OCR 111419 50,000AFY capacity
** Run 3: full diversion amounts, authorized area capacity, no term permits, and one-hundred percent
      57
            1940
                              -1
                                                       5
JD
                       1
                                      -1
RO
      -1
**Activation of the FY record for the Lavaca OCR - written to .YRO file
FY
           50000
                    1000
                             100
                                      10 NewWR1
                                                                       1
** UC FOR COLLINS APPLICATION 5579
                            0
                                      60
                                             200
                                                     403
UC 5579
             0
                      0
UC
             403
                     200
                               0
                                       0
                                                       0
                                               0
                                         0.0800
                                                  0.1000
UC
       1 0.0700
                 0.0600
                         0.0700
                                 0.0700
UC
          0.1300 0.1200 0.0900
                                  0.0800
                                          0.0600
                          0.092
UC
         0.076
                  0.074
                                  0.088
                                          0.092
                                                   0.085
          0.079
                  0.087
                          0.083
                                   0.086
                                           0.082
UC
                                                   0.077
UC
           0.000
                   0.001
                           0.003
                                   0.083
                                           0.149
                                                   0.261
                                           0.002
UC
           0.333
                  0.154
                          0.008
                                  0.005
                                                   0.000
UC
       7 0.0833 0.0833
                          0.0833
                                  0.0833
                                          0.0833
                                                  0.0834
UC
          0.0834 0.0834
                          0.0834
                                  0.0833
                                          0.0833
                                                  0.0833
UC
       8 0.0833
                 0.0833
                          0.0833
                                  0.0833
                                          0.0833
                                                  0.0834
          0.0834
                                  0.0833
UC
                  0.0834
                          0.0834
                                          0.0833
                                                  0.0833
UC IF214
         0.0000
                 0.0000
                          0.0000
                                 0.1595
                                          0.1738
                                                  0.1595
          0.1738 0.1738
                          0.1595 0.0000
                                         0.0000
UC
                                                  0.0000
         0.1117
                  0.1009
                          0.1117
                                  0.1081
                                          0.1117
                                                  0.1081
          0.0479
UC
                 0.0479
                         0.0463 0.0479
                                          0.0463
                                                  0.1117
UCIF1023
         0.0768
                  0.0694
                          0.0768
                                  0.0743
                                          0.0768
                                                  0.1699
          0.0768
                  0.0768
                          0.0743
                                  0.0768
                                          0.0743
                                                  0.0768
UCIF1021
         0.0770
                 0.0695
                          0.0770
                                  0.0745
                                          0.0770
                                                  0.1677
          0.0770
                  0.0770
                          0.0745
                                  0.0770
                                          0.0745
                                                  0.0770
UCIF1001
         0.0565
                                 0.0546
                 0.0510
                          0.0565
                                          0.1129
                                                  0.1093
UC
          0.1129
                  0.1129
                          0.1093
                                  0.1129
                                          0.0546
                                                  0.0565
UC IF816
         0.0307
                  0.0278
                          0.0307
                                  0.1192
                                          0.1232
                                                  0.1192
UC
          0.1232 0.1232
                          0.1192 0.1232
                                          0.0297
                                                  0.0307
UC IF815 0.0242 0.0219
                          0.0242
                                 0.1406
                                         0.1454
                                                  0.1406
                         0.1406 0.0242
UC
          0.1454 0.1454
                                         0.0234
                                                  0.0242
UC IF814
         0.0321
                 0.0291
                          0.0321
                                 0.1183
                                          0.1222
                                                  0.1183
          0.1222
                  0.1222
                          0.1183
                                  0.1222
                                          0.0311
                                                  0.0321
UC
UC IF807
         0.0557
                                  0.0539
                 0.0503
                          0.0557
                                          0.1254
                                                  0.1213
          0.1254
                 0.1254
                          0.1213 0.0557
UC
                                          0.0539
                                                  0.0557
UC IF887
         0.0462
                 0.0417
                          0.0462 0.1341
                                         0.1386
                                                  0.1341
          0.1386
UC
                  0.1386
                          0.0447
                                  0.0462
                                          0.0447
                                                  0.0462
UC IF843
         0.0630
                  0.0568
                          0.0630
                                  0.1116
                                          0.1154
                                                  0.1116
                                  0.0630
UC
          0.1154
                  0.1154
                          0.0609
                                          0.0609
                                                  0.0630
UC
            3050
                    3040
                            3050
                                    3050
                                            4100
      TA
                                                    4100
            4100
                    4100
                            4100
                                    3050
                                            3050
                                                    3050
** UC for instream flow restriction for App 5168
             254
                     253
                                     253
                                                     253
UC
   1018
                             254
                                             253
             254
                     253
                                     253
                                                     253
UC
                             253
                                             254
** UC for instream flow restriction for App. 5370
UC
     916
            60.2
                    60.2
                            60.2
                                    60.2
                                            60.2
                                                    60.3
                    60.2
UC
            60.3
                            60.2
                                    60.2
                                            60.2
                                                    60.3
                    7908
                                   48007
UCBAYEST
            5196
                            5337
                                           71897
                                                   70892
UC
            7778
                   16337
                           61128
                                   43551
                                            4064
                                                    4876
              0
                       0
                               0
                                       0
UC
     TNT
                                              Ω
                                                      0
UC
               0
                       0
                               0
                                       0
                                               0
                                                   12000
```

```
UCBAYES1 0.0150 0.0228 0.0154 0.1384 0.2072 0.2043
           0.0224 0.0471 0.1762 0.1255 0.0117
UC
*** Start Eflows UC
** LE UCs
                      476
                                        595
                                                         595
UC LESUB
              523
                                                 615
                               615
                                                                         4318
                       80
                                71
                                         74
                                                  71
                                                         523
               80
UC LEDRY
             1844
                     1681
                              1844
                                       1785
                                                1844
                                                        1785
                                                                        18694
UC
             1229
                     1229
                              1190
                                       1229
                                                1190
                                                        1844
UC LEAVG
             3381
                     3081
                              3381
                                       3272
                                                3381
                                                        3272
                                                                        33162
                                               1963
                     2029
UC
             2029
                              1963
                                       2029
                                                        3381
UC LEWET
             5778
                     5266
                              5778
                                       5592
                                                5778
                                                        5592
                                                                        55929
UC
             2951
                     2951
                              3450
                                       3565
                                                3450
                                                        5778
** SG UCs
UC SGSUB
               61
                        56
                                61
                                         59
                                                  61
                                                           59
                                                                          719
UC
                        61
                                59
                                                  59
               61
                                         61
                                                           61
                      280
                               307
                                                 307
UC SGDRY
              307
                                        297
                                                         297
                                                                         4831
UC
              553
                      553
                               535
                                        553
                                                 535
                                                         307
              861
                      784
                                        833
                                                 861
UC SGAVG
                               861
                                                         833
                                                                        12265
                                                                  =
             1291
                     1291
                              1249
                                       1291
UC
                                                1249
                                                         861
UC SGWET
             1844
                     1681
                              1844
                                       1785
                                                1844
                                                        1785
                                                                        24458
             2397
                     2397
                              2320
                                       2397
                                                2320
                                                        1844
UC
** WM UCs
                                61
                                         59
                                                           59
UC WMSUB
               61
                        56
                                                  61
                                                                          719
UC
               61
                        61
                                59
                                         61
                                                  59
                                                           61
                      224
                                                 307
UC WMDRY
              246
                               307
                                        297
                                                          297
                                                                  =
                                                                         4237
                      615
                               357
                                        369
                                                 357
                                                         246
UC
              615
UC WMAVG
              553
                      504
                               676
                                        654
                                                 676
                                                         654
                                                                         9011
UC
             1107
                     1107
                               833
                                        861
                                                 833
                                                         553
UC WMWET
             1229
                     1120
                              1229
                                       1190
                                                1229
                                                        1190
                                                                        17042
UC
             1967
                     1967
                              1547
                                       1598
                                                1547
                                                        1229
** EM UCs
UC EMSUB
               61
                        56
                                61
                                         59
                                                  61
                                                           59
                                                                          719
                        61
                                59
                                                  59
UC
               61
                                         61
                                                           61
UC EMDRY
               61
                        56
                                61
                                         59
                                                  61
                                                           59
                                                                          843
UC
              123
                      123
                                59
                                         61
                                                  59
                                                           61
UC EMAVG
              123
                      112
                               184
                                        178
                                                 184
                                                         178
                                                                         2236
                                                                  =
                      307
                               178
UC
              307
                                        184
                                                 178
                                                         123
                               369
UC EMWET
              369
                                                 369
                                                                         4954
                      336
                                        357
                                                          357
UC
              492
                      492
                               476
                                        492
                                                 476
                                                         369
**END E-FLOWS UCs
** All 100, 200, 300 and 400 control point numbers are on the Lavaca River or one of its tributaries
** All 500 and 600 control point numbers are on the Navidad River or one of its tributaries
** All 700 control point numbers are on Mustang Creek or East Mustang Creek
** All 800 control point numbers are on West Mustang Creek
** All 900 and 1000 control point numbers are on the Sandy, West Sandy, or
** Middle Sandy Creek or one of their tributaries
** For the control point numbers T=Tributary, W=West, M=Middle, and E=East
** For the control point numbers DV=DiVersion, WW=Waste Water discharge,
   GS=Gage Station, CB=ComBine point, RF=Return Flow, OS=On Stream reservoir,
** WQ=Water Quality point, and EP=End Point
       2
                3
                         4
                                 5
                                          6
                                                            8
                                                                    9
                                                                            10
** COMPUTATIONAL CP FOR INTERRUPTIBLE WATER
CPINTER1
              OUT
                                          2
                                                NONE
                                                        NONE
CP DV402
           WW401
                                          7
                                                       GS400
                                                                   - 1
CP WW401
            GS400
                                          7
                                                       GS400
                                                                   -1
CP GS400
           CB330
                                          1
CPTDV333
          TDV332
                                          7
                                                       GS300
                                                                   -1
CPTDV332
           CB330
                                          7
                                                       GS300
                                                                   -1
                                          7
CPTWW331
            CB330
                                                       GS300
                                                                   -1
```

GS300

GS300

GS300

GS300

GS300

-1

-1

-1

-1

-1

CP CB330

CPTOS323

CPTWW322

CPTOS321

CP CB320

CB320

TWW322

TOS321

CB320

CB310

CPTOS313 CPTOS312 CPTOS311 CP CB310 CP DV301 **CP GS300 CPLESUBS CPLESUBS CPLEBASE CPLESPUL CPLELPUL CPLEAPUL **	CB310 CB310 DV301 GS300 ODV214 LESUBS LEBASE LESPUL LELPUL LEAPUL DV214	7 7 7 7 7 1 1 2 2 2 2 2	GS300 GS300 GS300 GS300 GS300	GS300 GS300 GS300 GS300 GS300 NONE NONE NONE NONE	-1 -1 -1 -1 -1
**					
CP DV214	DV215	7		GS300	-2
CP DV215	DV216	7		GS300	-2
CP DV216	DV213	7		GS300	-2 -2
CP DV213 **CP WQ00	WQ002)2 DV212	7 5		GS300 GS300	-2 -2
CP WQ002	20955	7		GS300	-2
CP 20955	DV212	7		GS300	-2
CP DV212	DV211	7		GS300	-2
CP DV211	CB220	7		GS300	-2
CPTWW217	CB220	7		GS300	-1
CP CB220	CB210	7		GS300	-2
CP OS623	CB620	7		GS600	-1
CP WW622	CB620	7		GS600	-1
CP WW621	CB620	7		GS600	-1
CPTDV626 CP CB620	CB620 CB610	7 7		GS600 GS600	-1 -1
CP CB620	GS600	7		GS600	-1
CP GS600	CB560	1		G5000	_
CPTOS554	CB560	7		GS550	-1
CP CB560	DV553	7		GS550	-1
CP DV553	DV551	7		GS550	-1
CP DV551	GS550	7		GS550	-1
CP GS550	DV504	1			
CP DV504	DV503	7		GS500	-1
CP RF505	DV503	7		GS500	-1
CP DV503 CP RF502	RF502	7 7		GS500	-1
CP RF502 CP WQ005	DV501 DV501	7		GS500 GS500	-1 -1
CP DV501	CB510	7		GS500	-1
CPOS1052	CB1040	7		GS1000	-1
CPOS1051	CB1040	7		GS1000	-1
CPDV1042	CB1040	7		GS1000	-1
CPCB1040	CB1010	7		GS1000	-1
CPDV1034	OS1033	7		GS1000	-1
CPOS1033	DV1031	7		GS1000	-1
CPDV1031	CB1030	7		GS1000	-1
CPCB1030 CPDV1023	DV1023 DV1021	7 7		GS1000 GS1000	-1 -1
CPDV1023	DV1021 DV1020	7		GS1000 GS1000	-1
CPDV1021	DV1020	7		GS1000	-1
CPDV1018	RF1017	7		GS1000	-1
CPRF1017	RF1016	7		GS1000	-1
CPRF1016	RF1015	7		GS1000	-1
CPRF1015	RF1014	7		GS1000	-1
CPRF1014	RF1012	7		GS1000	-1
CPRF1012	RF1011	7		GS1000	-1
CPRF1011	CB1010	7		GS1000	-1
CPCB1010	DV1002	7		GS1000	-1
CPDV1002	DV1001	7		GS1000	-1
CPDV1001	CB1005	7		GS1000	-1

CPOS1003	CB1005		7		GS1000	-1
CPCB1005	GS1000		7		GS1000	-1
**CPGS1000				1		
CPGS1000	SGSUBS		1			
CPSGSUBS	SGBASE		2	GS1000	NONE	
CPSGBASE	SGSPUL		2	GS1000	NONE	
CPSGSPUL	SGLPUL		2	GS1000	NONE	
CPSGLPUL	SGAPUL		2	GS1000	NONE	
CPSGAPUL	CB910		2	GS1000	NONE	
* *						
CP RF902	CB910		7		GS1000	-1
CPTRF918	TDV916		7		GS1000	-1
CPTDV916	TRF915		7		GS1000	-1
CPTRF915	TRF914		7		GS1000	-1
CPTRF914	TRF913		7		GS1000	-1
** add cor	ntrol point	for Application	No.	5595		
CPTRF913	5595		7		GS1000	-1
CP 5595	TDV911		7		GS1000	-1
**CPTRF913	3 TDV911			4	GS1000	-1
CPTDV911	CB910		7		GS1000	-1
CP CB910	CB905		7		GS1000	-1
CPTDV901	CB905		7		GS1000	-1
CP CB905	GS900		7		GS1000	-1
CP GS900	CB510		7		GS1000	-1
CP CB510	GS500		7		GS500	-1
CP GS500	CB230		1			
CP WM824	WRF824		7		WGS800	-1
CPWRF824	WCB825		7		WGS800	-1
CPWRF823	WRF822		7		WGS800	-1
CPWRF822	WCB825		7		WGS800	-1
CPWCB825	WCB821		7		WGS800	-1
CPWRF821	WCB821		7		WGS800	-1
CP WM827	WCB821		7		WGS800	-1
CPWRF828	WCB821		7		WGS800	-1
CPWCB821	WCB820		7		WGS800	-1
CPWDV818	WDV817		7		WGS800	-1
CPWDV817	WDV816		7		WGS800	-1
CPWDV816	WDV815		7		WGS800	-1
CPWDV815	WDV814		7		WGS800	-1
CPWDV814	WDV813		7		WGS800	-1
CPWDV813	WDV811		7		WGS800	-1
CPWDV812	WDV811		7		WGS800	-1
CPWDV811	WDV810		7		WGS800	-1
CPWDV810	WDV809		7		WGS800	-1
CPWDV809	WDV808		7		WGS800	-1
CPWDV808	WDV807		7		WGS800	-1
CPWDV807			7		WGS800	-1
		to add Brandl ap	p. 5	706		
** CPWRF80				5	WGS800	-1
CPWRF805	5706		7		WGS800	-1
CP 5706	WDV804		7		WGS800	-1
CPWDV804	WDV803		7		WGS800	-1
CPWDV803	WRF802		7		WGS800	-1
CPWRF802	WCB840		7		WGS800	-1
CPWDV887	WRF881		7		WGS800	-1
CPWRF882	WRF881		7		WGS800	-1
CPWRF881	WCB890		7		WGS800	-1
CPWRF888	WCB890		7		WGS800	-1
CPWCB890	WDV868		7		WGS800	-1
CPWDV868	WCB880		7		WGS800	-1
CPWCB880	WDV867		7		WGS800	-1
CPWDV867	WRF866		7		WGS800	-1
CPWRF866	WDV865		7		WGS800	-1
CPWDV865	WRF864		7		WGS800	-1

CPWRF864 CPWRF863 CPWDV862 CPWRF861 CPWRF872 CPWDV871 CPWCB860 CPWRF857 CPWRF858 CPWRF856 CPWDV855 CPWDV853 CPWRF851 CPWRF851	WRF863 WDV862 WRF861 WCB860 WDV871 WCB860 WCB850 WRF858 WRF856 WDV853 WDV853 WDV853 WDV853 WRF851 WCB845 WCB845	7 7 7 7 7 7 7 7 7 7 7		WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800 WGS800	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
** CPWCB8			4	WGS800	-1
CPWCB845	557901	7		WGS800	-1
CP557901	WCB850	7		WGS800	-1
CPWCB850	WRF844	7		WGS800	-1
CPWRF844	WDV843	7		WGS800	-1
CPWDV843	WRF842	7		WGS800	-1
CPWRF842	WRF841	7		WGS800	-1
CPWRF841	WCB840	7		WGS800	-1
CPWCB840	WDV801	7		WGS800	-1
CPWDV801	WCB830	7		WGS800	-1
CPWRF832	WRF831	7		WGS800	-1
CPWRF831	WCB830	7		WGS800	-1
CPWCB830	WCB820	7		WGS800	-1
CPWCB820	WGS800	7		WGS800	-1
**CPWGS80	0 MCB710		1		
CPWGS800	WMSUBS	1			
CPWMSUBS	WMBASE	2	WGS800	NONE	
CPWMBASE	WMSPUL	2	WGS800	NONE	
CPWMSPUL	WMLPUL	2	WGS800	NONE	
CPWMLPUL	WMAPUL	2	WGS800	NONE	
CPWMAPUL **	MCB710	2	WGS800	NONE	
CPERF728	EDV726	7		WGS800	-1
CPEDV726	ERF725	7		WGS800	-1
CPERF725	EDV724	7		WGS800	-1
CPEDV724	EDV723	7		WGS800	-1
CPEDV723	ERF722	7		WGS800	-1
CPERF722	EDV721	7		WGS800	-1
CPEDV721	ECB720	7		WGS800	-1
CPEDV734	EDV733	7		WGS800	-1
CPEDV733	EDV731	7		WGS800	-1
CPEDV731	ECB720	7		WGS800	-1
CPECB720	EDV712	7		WGS800	-1
**** East	t Mustang Creek near Louise				
**CPEDV71	2 ERF711		7	WGS800	-1
CPEDV712	EMSUBS	7		WGS800	-1
CPEMSUBS	EMBASE	7		WGS800	-1
CPEMBASE	EMSPUL	7		WGS800	-1
CPEMSPUL	EMLPUL	7		WGS800	-1
CPEMLPUL	EMAPUL	7		WGS800	-1
CPEMAPUL	ERF711	7		WGS800	-1
* *					
* *					
CPERF711	MCB710	7		WGS800	-1
CPMCB710	GS700	7		WGS800	-2
CP GS700	CB230	7		WGS800	-2
CP CB230	DV221A	7		GS300	-2
CPDV221A	DV221B	7		GS300	-2

```
CPDV221B RSRTRN
                               7
                                         GS300
                                                  -2
                               7
CPRSRTRN WQ004
                                         GS300
                                                  - 2
       CB210
CP WQ004
                                         GS300
                                                  -2
CP CB210
        WQ003
                                         GS300
                                                  -1
CP WO003
                               7
        GS200
                                                  - 1
                                        GS300
CP GS200
                               7
       DV201
                                        GS300
                                                  -1
CP DV201
       GS100
                               7
                                        GS300
                                                  -1
CP GS100
        WO001
                                         GS300
                                                  -1
CP WQ001
        EP000
                               7
                                         GS300
                                                  -1
CP EP000
                               7
        OUT
                                         GS300
                                                  -1
* *
** AECOM entered control points for off-channel reservoir
20956
CPWQ002A
                                         GS300
                                                  -2
CP 20956 WQ002B
                                         GS300
                                                  -2
CPNEWOCR
          OUT
                               2 NONE GS300
                                                  -3
CPWO002B WO002C
                               5
                                         NONE
                                                  -2
       WQ002D
CPWQ002C
                                          NONE
                                                  -2
CPWQ002D WQ002E
                               5
                                         NONE
                                                 -2
CPWQ002E DV212
                               5
                                         NONE
                                                 -2
* *
* *
Reservoirs
                               2
                                 ZERO GS1000
CP537041
          OUT
CP397841
         OUT
                               2 ZERO GS300
         OUT
                                        GS550
CP207741
                               2 ZERO
                                  ZERO
CP391241
          OUT
                               2
                                        GS500
                                   ZERO GS1000
CP391041
          OUT
                               2
         OUT
                                 ZERO GS1000
CP390541
                               2.
CP425241
         OUT
                               2 ZERO GS1000
CP424141 OUT
                                 ZERO WGS800
                               2
CP390941
          OUT
                               2
                                   ZERO WGS800
** fake CP for Texana's offchannel reservoir used to simulate interruptible water availability.
CP NOUT OUT
                              2 ZERO ZERO
                                              -1
** end fake CP record
**************
**-----Start Environmental Flows Dummy CPs-----
CPDAYSPY OUT
                               2
                                  ZERO ZERO
**** LE Base Flows CPS
CPLESEVT
        OUT
                              2
                                 NONE
                                         NONE
CPLESVD1
         OUT
                              2
                                 NONE
                                         NONE
CPLESVT2
         OUT
                              2
                                  NONE
                                         NONE
CPLESVT3
         OUT
                              2
                                  NONE
                                         NONE
                              2
CPLEBDRY
         OUT
                                  NONE
                                         NONE
CPLEBAVG
         OUT
                              2
                                 NONE
                                         NONE
CPLEBWET
         OUT
                              2
                                 NONE
                                         NONE
** LE Pulse CPS
CPLESPND
          OUT
                               2
                                  ZERO
                                         ZERO
                               2
                                  ZERO
CPLELPND
          OUT
                                         ZERO
CPLEAPND
                               2 ZERO
CPFKLE01
          OUT
                               2
                                   NONE
                                          NONE
                                  NONE
CPFKLE02
          OUT
                               2
                                          NONE
CPFKLE03
                               2.
                                  NONE
          OUT
                                         NONE
CPFKLE04
                                  NONE
                                  NONE
CPFKLE05
          OUT
                               2
                                         NONE
CPFKLE06
          OUT
                               2
                                   NONE
                                          NONE
CPFKLE07
          OUT
                               2
                                   NONE
                                          NONE
                                  NONE
                               2
CPFKLE08
          OUT
                                         NONE
CPFKLE09
                                  NONE
                                         NONE
CPFKLE10
         OUT
                               2 NONE
                                         NONE
```

CPFKLE11	OUT		2	NONE	NONE
CPFKLE12	OUT		2	NONE	NONE
CPFKLE13	OUT		2	NONE	NONE
CPFKLE14	OUT		2	NONE	NONE
CPFKLE15	OUT		2	NONE	NONE
CPFKLE16	OUT		2	NONE	NONE
CPFKLE17	OUT		2	NONE	NONE
CPFKLE18	OUT		2	NONE	NONE
CPFKLE19	OUT		2	NONE	NONE
CPFKLE20	OUT		2	NONE	NONE
CPFKLE21	OUT		2	NONE	NONE
CPFKLE22	OUT		2	NONE	NONE
CPLEAPFA	OUT		2	NONE	NONE
CPLEAPFB	OUT		2	NONE	NONE
**	001		2	NONE	NONE
	. Elevia	CDC			
DO DUDO	Flows	CPS	•		
CPSGSEVT	OUT		2	NONE	NONE
CPSGSVD1	OUT		2	NONE	NONE
CPSGSVT2	OUT		2	NONE	NONE
CPSGSVT3	OUT		2	NONE	NONE
CPSGBDRY	OUT		2	NONE	NONE
CPSGBAVG	OUT		2	NONE	NONE
CPSGBWET	OUT		2	NONE	NONE
**	001		2	NONE	MOINE
	ana				
50 14150	CPS				
CPSGSPND	OUT		2	ZERO	ZERO
CPSGLPND	OUT		2	ZERO	ZERO
CPSGAPND	OUT		2	ZERO	ZERO
**					
CPFKSG01	OUT		2	NONE	NONE
CPFKSG02	OUT		2	NONE	NONE
CPFKSG03	OUT		2	NONE	NONE
CPFKSG04	OUT		2	NONE	NONE
CPFKSG05			2		
	OUT			NONE	NONE
CPFKSG06	OUT		2	NONE	NONE
CPFKSG07	OUT		2	NONE	NONE
CPFKSG08	OUT		2	NONE	NONE
CPFKSG09	OUT		2	NONE	NONE
CPFKSG10	OUT		2	NONE	NONE
CPFKSG11	OUT		2	NONE	NONE
CPFKSG12	OUT		2	NONE	NONE
CPFKSG13	OUT		2	NONE	NONE
CPFKSG14	OUT		2	NONE	NONE
CPFKSG15			2		
	OUT			NONE	NONE
CPFKSG16	OUT		2	NONE	NONE
CPFKSG17	OUT		2	NONE	NONE
CPFKSG18	OUT		2	NONE	NONE
CPFKSG19	OUT		2	NONE	NONE
CPFKSG20	OUT		2	NONE	NONE
CPFKSG21	OUT		2	NONE	NONE
CPFKSG22	OUT		2	NONE	NONE
CPSGAPFA	OUT		2	NONE	NONE
CPSGAPFB	OUT		2	NONE	NONE
		CDC	۷	NONE	INOINE
**** WM Base		CFD	0	NIONT	NIONTE
CPWMSEVT	OUT		2	NONE	NONE
CPWMSVD1	OUT		2	NONE	NONE
CPWMSVT2	OUT		2	NONE	NONE
CPWMSVT3	OUT		2	NONE	NONE
CPWMBDRY	OUT		2	NONE	NONE
CPWMBAVG	OUT		2	NONE	NONE
CPWMBWET	OUT		2	NONE	NONE
**					
** WM Pulse	CPS				
CPWMSPND	OUT		2	ZERO	ZERO
OT MUDE IND	001		2	2510	2510

CPWMLPND CPWMAPND **	OUT			2 2	ZERO ZERO	ZERO ZERO
CPFKWM01	OUT			2	MONE	NONE
				2	NONE	
CPFKWM02	OUT			2	NONE	NONE
CPFKWM03	OUT				NONE	NONE
CPFKWM04	OUT			2	NONE	NONE
CPFKWM05	OUT			2	NONE	NONE
CPFKWM06	OUT			2	NONE	NONE
CPFKWM07	OUT			2	NONE	NONE
CPFKWM08	OUT			2	NONE	NONE
CPFKWM09	OUT			2	NONE	NONE
CPFKWM10	OUT			2	NONE	NONE
CPFKWM11	OUT			2	NONE	NONE
CPFKWM12	OUT			2	NONE	NONE
CPFKWM13	OUT			2	NONE	NONE
CPFKWM14	OUT			2	NONE	NONE
CPFKWM15	OUT			2	NONE	NONE
CPFKWM16	OUT			2	NONE	NONE
CPFKWM17	OUT			2	NONE	NONE
CPFKWM18	OUT			2	NONE	NONE
CPFKWM19	OUT			2	NONE	NONE
CPFKWM20	OUT			2	NONE	NONE
CPFKWM21	OUT			2	NONE	NONE
CPFKWM22	OUT			2	NONE	NONE
CPWMAPFA	OUT			2	NONE	NONE
CPWMAPFB	OUT			2	NONE	NONE
**						
**	Start	Environmental	Flows	Dummy	CPs Fo	r
EM						*
**** EM Base	e Flow	vs CPS				
CPEMSEVT	OUT			2	NONE	NONE
CPEMSVD1	OUT			2	NONE	NONE
CPEMSVT2	OUT			2	NONE	NONE
CPEMSVT3	OUT			2	NONE	NONE
CPEMBDRY	OUT			2	NONE	NONE
CPEMBAVG	OUT			2	NONE	NONE
CPEMBWET	OUT			2	NONE	NONE
**						
** EM Pulse	CPS					
CPEMSPND	OUT			2	ZERO	ZERO
CPEMLPND	OUT			2	ZERO	ZERO
CPEMAPND	OUT			2	ZERO	ZERO
**					-	_
CPFKEM01	OUT			2	NONE	NONE
CPFKEM02	OUT			2	NONE	NONE
CPFKEM03	OUT			2	NONE	NONE
CPFKEM04	OUT			2	NONE	NONE
CPFKEM05	OUT			2	NONE	NONE
CPFKEM06	OUT			2	NONE	NONE
CPFKEM07	OUT			2	NONE	NONE
CPFKEM08	OUT			2	NONE	NONE
CPFKEM09	OUT			2	NONE	NONE
CPFKEM10	OUT			2	NONE	NONE
CPFKEM10	OUT			2	NONE	NONE
CPFKEM11	OUT			2	NONE	NONE
CPFKEM12	OUT			2	NONE	NONE
CPFKEM13	OUT			2	NONE	NONE
				2		
CPFKEM15 CPFKEM16	OUT			2	NONE	NONE
CPFKEM16	OUT			2	NONE NONE	NONE NONE
					TACHAT	1.4(ハ)1.4 足
CPFKEM18	OUT					
CDEKEM10	OUT			2	NONE	NONE
CPFKEM19	OUT OUT			2 2	NONE NONE	NONE NONE
CPFKEM19 CPFKEM20	OUT			2	NONE	NONE

CPFKEM21	OUT			2	NONE	NONE
CPFKEM22	OUT			2	NONE	NONE
CPEMAPFA	OUT			2	NONE	NONE
CPEMAPFB	OUT			2	NONE	NONE
**						
**	++++ am		70 OT~++:	*****		
CIDAYSPY	31	ART EFLOW 28.25	31	30	31	30
CI	31	31	30	31	30	31
		r near Ed		CIs	3.0	31
CILESEVT	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILESVD1	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILESVT2	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILESVT3	9999999 9999999	9999999	9999999	9999999	9999999	9999999
CILEBDRY	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILEBAVG	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILEBWET	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
	LSE CIS					
	ılse Dura		_	_	_	_
CILESPND	6	6	7	7	7	7
CI CILELPND	4 7	4 7	5 7	5 7	5 7	6 7
CILELPND	6	6	6	6	6	7
CILEAPND	7	7	7	7	7	7
CI	7	7	7	7	7	7
*** LE Pu	ılse Cal	culation				
CIFKLE01	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE02	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE03	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE04	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE05	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE06	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE07	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999		9999999		9999999
CIFKLE08	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE09	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	
CIFKLE10	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE11	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE12		9999999	9999999		9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE13		9999999	9999999	9999999	9999999	9999999
CI CIFKLE14	9999999	9999999	9999999	9999999	9999999	9999999
CIFKLE14	9999999	9999999	9999999		9999999	9999999
CIFKLE15	9999999	9999999	9999999		9999999	9999999
CI	9999999		9999999	9999999	9999999	9999999
CIFKLE16	9999999	9999999	9999999	9999999	9999999	9999999

```
CT
999999 9999999 9999999 9999999 9999999
CT
CT
CT
CT
**** Sandy Creek near Ganado BASE CIs
CI
CI
** SG PULSE CIS
*** SG Pulse Duration
CISGSPND 6 6
  6
   6
    6
     6
  6
CI
   6
    6
     6
 8 8
6 6
10 10
   10
CISGLPND
  10
    10
     10
 6 6
10 10
10 10
CI
  6
   6
    6
     8
CISGAPND
  10
   10
    10
     10
   10
  10
    1.0
     10
*** SG Pulse Calculation
CI
CI
CT
CI
CI
```

```
CT
CI
CT
CI
CT
CI
CT
CI
CT
**** West Mustange Creek near Ganado BASE CIs
CI
CI
CT
CT
** WM PULSE CIS
*** WM Pulse Duration
  6
6
8
8
CIWMSPND
6 6
   6
   6
    6
 4
   6
CI
 4
   6
    6
 8
   8
 8
CIWMLPND
   8
    8
 6
CI
 6
   8
   8
 8
 8
CIWMAPND
  8
   8
  8
 8
 8
CT
*** WM Pulse Calculation
CT
CI
CT
```

```
CT
CI
CT
CI
CI
CT
CT
CT
**** West Mustange Creek near Ganado BASE CIs
** EM PULSE CIS
*** EM Pulse Duration
5 5 7 7 7
5 5 6 6 6
8 8 9 9 9
6 6 7 7 7
10 10 10 10
    7
CIEMSPND 5 5
    5
CT
    9
8
CIEMLPND
CI
10 10
10 10
CIEMAPND
    1.0
  10
*** EM Pulse Calculation
```

```
CT
999999 999999 9999999 9999999 9999999
CT
CT
 CT
CI
CI
CI
CT
CI
**
* *
***************
** Constant Inflow Cards (based on monthly min of last 5 years of USBR's FAD cards).
 11107 6993 10627
30 26 41
35 42 45
52 54
**CIDV1034 0 0 1863 4478 6351
0
        41
        32
        28
        25
       2201
        0
**CI WW401 36 31 35 34 35

**CI WW621 7 7 6 7 8

**CI WW622 7 7 6 7 8
        34
* *
```

```
**WR GS300 9999999 XMONTH20131231
                                                                 TESTFLOWS
**WRGS1000 9999999 XMONTH20131231
                                                                 TESTELOWS
**WRWGS800 9999999 XMONTH20131231
**WREDV712 9999999 XMONTH20131231
                                                                 TESTFLOWS
                                                                 TESTFLOWS
***** START E-FLOWS *********
**Dry, Average or Wet Hydrologic Condition in HIS File.
**Start Base LE
** During Severe Conditions set Sub or Base trigger
WRLESVD1 18694
               LEDRY20110301
                                                               FKLESEVD1
WRLESEVT
                XMONTH20110301
                                                              SEVTRIGGER
   2
TO
                  ADD
                                      GS300
                                                                   CONT
                                                       FKLESEVD1
     6
                  DIV
**** Severe Condition Subsistence or Base
WRLESVT2 18694 LEDRY20110301
                                                               FKLESEVD2
                LIM 1
1 0
TO 16
                                  1 DV221A
     5 LESEVT
                                  1 9999999
         4318
WRLESVT3
               LESUB20110301
                                                              FKLESEVSUB
                 LIM 1
                                  1 DV221A
TO 16
    5 LESVT2
                   1
                          0
                                  0
                                        1
                                             1
\ensuremath{^{***}}\xspace Dry, Average, Wet Conditions, see .HIS file for Hydrologic conditions
WRLEBDRY
        18694 LEDRY20110301
                                                                FKLEBASD
                                  2 DV221A
TO 16
                  LIM
WRLEBAVG 33162 LEAVG20110301
                                                                FKLEBASM
TO 16
                 LIM 3
                                  3 DV221A
WRLEBWET 55929 LEWET20110301
                                                                FKLEBASW
    16
                 LIM 4
                                  4 DV221A
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
                                                LEBASEFIN
TELEBASE
                   20110301 2
                  ADD
                                                       FKLESEVSUB
   13
TO
                  ADD
                                                        FKLESEVD2
                                                                   CONT
                  ADD
TO
    13
                                                         FKLEBASD
                                                                    CONT
TO
     13
                  ADD
                                                         FKLEBASM
                                                                    CONT
    13
TO
                  ADD
                                                         FKLEBASW
***
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKLE01
           XMONTH20110301
                                                              BF-LEB-SP1
TO
      2
                  ADD
                                     DAYSPY
                                                                   CONT
TO
      2
                  SUB
                                     LESPND
WRFKLE01
               XMONTH20110301
                                                              BF-LEB-SP2
TO 6
                 ADD
                                                       BF-LEB-SP1 CONT
TO
      2
                  DIV
                                     DAYSPY
WRFKLE01
                XMONTH20110301
                                                              BF-LEB-SP3
   13
TO
                  ADD
                                                        LEBASEFIN
                                                                  CONT
                  MUL
                                                       BF-LEB-SP2
** Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target
WRFKLE04 8000 XMONTH20110301
                                                               FKLESPULW
                  ADD
                                                       BF-LEB-SP3
TO 6
WRFKLE05
                XMONTH20110301
                                                              LEWINONOFF
                                      GS300
TO
      2
                  ADD
                                                                   CONT
TΟ
                  DTV
                                                        FKLESPULW
      6
* *
WRFKLE06
         18400 XMONTH20110301
                                                               FKLESPUSP
TO
      6
                  ADD
                                                       BF-LEB-SP3
WRFKLE07
                XMONTH20110301
                                                              LESPRONOFF
TO 2
                                      GS300
                ADD
                                                                   CONT
                  DIV
                                                        FKLESPUSP
TO
* *
```

```
WRFKLE08
           370 XMONTH20110301
                                                                    FKLESPULS
TO
      6
                   ADD
                                                           BF-LEB-SP3
WRFKLE09
                 XMONTH20110301
                                                                   LESUMONOFF
TO
      2
                    ADD
                                         GS300
                                                                        CONT
                                                            FKLESPULS
TO
      6
                    DIV
* *
WRFKLE10
           6100 XMONTH20110301
                                                                    FKLESPULF
TO
                                                           BF-LEB-SP3
      6
                    ADD
WRFKLE11
                 XMONTH20110301
                                                                   LEFALONOFF
                                         GS300
TO
      2
                   ADD
                                                                        CONT
      6
                    DIV
                                                            FKLESPULF
** ENGAGING PULSE
IFLESPUL
         8000 XMONTH20110301
                                                     LESPULW1
                    ADD
                                                          BF-LEB-SP3
      6
        FKLE05
                                     1 9999999
                                                        2
                                                           2 12
      5
FS
                    1
         8000
                 XMONTH20110301
IFLESPUL
                                                     LESPULW2
TΟ
      6
                    ADD
                                                           BF-LEB-SP3
      5 FKLE05
                                     1 9999999
                                                       2
FS
                    1
                             0
                                                 2
                                                           0 12
IFLESPUL
         18400
                 XMONTH20110301
                                                     LESPUSP1
TO
      6
                    ADD
                                                           BF-LEB-SP3
      5 FKLE07
                    1
                                     1 9999999
                                                 2
                                                        2
FS
                                                           3 3 6
IFLESPUL
         18400
                 XMONTH20110301
                                                     LESPUSP2
                                                          BF-LEB-SP3
TO
      6
                    ADD
FS
      5
         FKLE07
                     1
                                     1 9999999
                                                           0 3 6
                 XMONTH20110301
IFLESPUL
          370
                                                     LESPULS1
                   ADD
                                                           BF-LEB-SP3
TO
      6
                                                       2
      5
         FKLE09
                    1
                             0
                                     1 9999999
                                                 2
                                                           1 7 8
FS
                                                     LESPULS2
IFLESPUL
         370
                 XMONTH20110301
                                 3
TO
      6
                    ADD
                                                           BF-LEB-SP3
FS
      5
         FKLE09
                    1
                                     1 9999999
                                                 2
                                                        2
                                                           0
         6100
                 XMONTH20110301
                                                     LESPULF1
TELESPIIL
      6
                    ADD
                                                           BF-LEB-SP3
      5
        FKLE11
                    1
                                     1 9999999
                                                 2
                                                        2
FS
                             Ω
                                                           2 9 11
         6100
                 XMONTH20110301
IFLESPUL
                                                     LESPULF2
TO
      6
                    ADD
                                                           BF-LEB-SP3
                    1
FS
      5 FKLE11
                             0
                                     1 9999999
                                                 2
                                                        2
                                                           0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFLESPUL
                       20110301
                                                      LESPFIN
TO
     13
                    ADD
                                                             LESPULW2
                                                                         CONT
TO
     13
                    ADD
                                                             LESPUSP2
                                                                         CONT
                                                                         CONT
TO
     13
                    ADD
                                                             LESPIILS2
TO
     13
                    ADD
                                                             LESPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKLE02
                 XMONTH20110301
                                                                   BF-LEB-LP1
TΟ
      2
                    ADD
                                                                         CONT
                                        DAYSPY
      2
                    SUB
TO
                                        LELPND
WRFKLE02
                 XMONTH20110301
                                                                   BF-LEB-LP2
                   ADD
                                                                        CONT
TO
      6
                                                           BF-LEB-LP1
TO
      2
                    DIV
                                        DAYSPY
WRFKLE02
                 XMONTH20110301
                                                                   BF-LEB-LP3
TO
    13
                    ADD
                                                            LEBASEFIN
                                                                       CONT
TO
      6
                    MUL
                                                           BF-LEB-LP2
** Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target
          18400 XMONTH20110301
WRFKLE12
                                                                    FKLELPULW
TO
      6
                    ADD
                                                           BF-LEB-LP3
WRFKLE13
                 XMONTH20110301
                                                                  LELWINONOFF
                   ADD
                                         GS300
TO
      2
                                                                         CONT
                    DIV
                                                            FKLELPULW
TO
* *
```

WRFKLE14 TO 6 WRFKLE15 TO 2 TO 6 ** WRFKLE16	1800	XMONTH20110301 ADD XMONTH20110301 ADD DIV XMONTH20110301		GS300		FKLELPUSP BF-LEB-LP3 LELSPRONOFF CONT FKLELPUSP FKLELPULS
TO 6 WRFKLE17 TO 2 TO 6 **		ADD XMONTH20110301 ADD DIV		GS300		BF-LEB-LP3 LELSUMONOFF CONT FKLELPULS
TO 6 WRFKLE19 TO 2 TO 6		XMONTH20110301 ADD XMONTH20110301 ADD DIV		GS300		FKLELPULF BF-LEB-LP3 LELFALONOFF CONT FKLELPULF
** ENGAGI	NG PULS	SE				
IFLELPUL TO 6	18400	XMONTH20110301 ADD				LELPULW1 BF-LEB-LP3
FS 5	FKLE13	1 0	1	9999999	2	1 1 2 12 2
IFLELPUL TO 6		XMONTH20110301 ADD	3			LELPULW2 BF-LEB-LP3
FS 5			1	9999999	2	1 1 0 12 2
TO 6	18400	XMONTH20110301 ADD				LELPUSP1 BF-LEB-LP3
FS 5	FKLE15		1	9999999	2	1 1 3 3 6
IFLELPUL	18400	XMONTH20110301	3			LELPUSP2
TO 6		ADD				BF-LEB-LP3
FS 5	FKLE15	1 0	1	9999999	2	1 1 0 3 6
	1800	XMONTH20110301				LELPULS1
TO 6		ADD			_	BF-LEB-LP3
	FKLE17	1 0		9999999	2	1 1 1 7 8
IFLELPUL	1800	XMONTH20110301	3			LELPULS2
TO 6 FS 5	FKLE17	ADD 1 0	1	9999999	2	BF-LEB-LP3 1 1 0 7 8
-		XMONTH20110301			2	LELPULF1
TO 6	10000	ADD				BF-LEB-LP3
-	FKLE19		1	9999999	2	1 1 2 9 11
		XMONTH20110301	3		-	LELPULF2
TO 6		ADD				BF-LEB-LP3
FS 5	FKLE19	1 0	1	9999999	2	1 1 0 9 11
** COMBIN	E TO CRE	CATE IF FOR ENTIR	E YEAR.			
IFLELPUL		20110301				LELPFIN
TO 13		ADD				LELPULW2 CONT
TO 13		ADD				LELPUSP2 CONT
TO 13		ADD				LELPULS2 CONT
TO 13	******	ADD				LELPULF2
			*****	*****	*****	******
						ARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
						AND DETERMINE FACTORS TO
** BE APP	LIED TO	BASE FLOWS TO RE	PRESENT	THE PER	IOD OF	THE MONTH OUTSIDE OF PULSE
WRFKLE03		XMONTH20110301				BF-LEB-AP1
TO 2		ADD		DAYSPY		CONT
TO 2		SUB		LELPND		
WRFKLE03		XMONTH20110301				BF-LEB-AP2
TO 6		ADD		מטטעמ		BF-LEB-AP1 CONT
TO 2 WRFKLE03		DIV XMONTH20110301		DAYSPY		BF-LEB-AP3
TO 13		ADD				LEBASEFIN CONT
TO 6		MUL				BF-LEB-AP2
**						

^{**} Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target

```
WRFKLE20 18400 XMONTH20110301
                                                         FKLEAPUL
TΩ 6
                ADD
                                                 BF-LEB-AP3
                                                  LEANNONOFF
WRFKLE21
              XMONTH20110301
                                  GS300
TO
     2
                ADD
                                                            CONT
                                                   FKLEAPUL
TO
     6
                 DIV
** ENGAGING PULSE
IFLEAPFA 18400 XMONTH20110301
                                             LEAPLA1
              ADD
                                            BF-LEB-AP3
1 1 5 1 6
TO 6
                       0
FS
     5 FKLE21
                 1
                               1 9999999
                                         2
                                                               1
IFLEAPFA 18400 XMONTH20110301
                           3
                                             LEAPLA2
TO 6
              ADD
                                                BF-LEB-AP3
   5 FKLE21
                                            1 1 0 1 6
FS
                1
                     0
                               1 9999999
                                         2
                                                               1
IFLEAPFB 18400 XMONTH20110301
                                             LEAPLB1
                ADD
TO 6
                                                 BF-LEB-AP3
                                               1 5 7 12
     5 FKLE21
                 1
                               1 9999999
FS
                                                               1
IFLEAPFB 18400 XMONTH20110301
                                             LEAPLB2
TO 6
                ADD
                                                 BF-LEB-AP3
                                               1 0 7 12
     5 FKLE21
                 1
                               1 9999999
FS
                        0
                                         2
                                                               1
                   20110301
                                                        LEFRSTHALF
WRFKLE22
TO 13
                                                    LEAPLA2
                  20110301
                                             LEAPLB3
TFLEAPER
TO 13
                                                    LEAPLB2
                            1 9999999
                 0
                     1
   10
                                         2
                                              1 11 1 6
                                                              1
                                                                   LEFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFLEAPUL
                   20110301
                                             LEAPFIN
                                                           CONT
TO 13
                 ADD
                                                    LEAPLA2
TO
    13
                                                    LEAPLB3
*******
************ End E-FLOWS FOR GS300 Lavaca River near Edna
** Start BASE SG
** During Severe Conditions set Sub or Base trigger
WRSGSVD1 4831 SGDRY20110301
                                                         FKSGSEVD1
WRSGSEVT
              XMONTH20110301
                                                        SEVTRIGGER
TO 2
TO 6
               ADD
                                 GS1000
                                                            CONT
                DIV
                                                  FKSGSEVD1
**** Severe Condition Subsistence or Base
WRSGSVT2 4831 SGDRY20110301
                                                         FKSGSEVD2
TO 16
FS 5 SGSEVT
               LIM 1
1 0
                               1 DV221A
                               1 9999999
WRSGSVT3 719 SGSUB20110301
                                                        FKSGSEVSUB
TO 16
               LIM 1
                               1 DV221A
    5 SGSVT2
                 1
                        0
                               0 1
                                        1
*** Dry, Average, Wet Conditions, see .HIS fiSG for Hydrologic conditions
WRSGBDRY 4831 SGDRY20110301
                                                         FKSGBASD
TO 16
               LIM 2
                               2 DV221A
WRSGBAVG 12265
               SGAVG20110301
                                                          FKSGBASM
               LIM 3
                               3 DV221A
TO 16
       24458
              SGWET20110301
                                                          FKSGBASW
WRSGBWET
               LIM 4
TO 16
                             4 DV221A
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFSGBASE
                 20110301 2
                                           SGBASEFIN
TO 13
                ADD
                                                 FKSGSEVSUB
                                                           CONT
TO
    13
                 ADD
                                                  FKSGSEVD2
                                                            CONT
TO
    13
                 ADD
                                                   FKSGBASD
                                                             CONT
TO
   1.3
                 ADD
                                                   FKSGBASM
                                                             CONT
TO
                 ADD
                                                   FKSGBASW
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
```

BF-SGB-SP1

WRFKSG01

XMONTH20110301

TO 2		ADD			DAYSPY		CONT	
TO 2		SUB			SGSPND		_	
WRFKSG01		XMONTH20110301					BF-SGB-SP2	
TO 6		ADD					BF-SGB-SP1 CONT	
TO 2		DIV			DAYSPY		DT GGD GD3	
WRFKSG01		XMONTH20110301					BF-SGB-SP3	
TO 13		ADD					SGBASEFIN CONT	
TO 6		MUL					BF-SGB-SP2	
	ning nul	gothago flow tare	rot a	D	tormining	-i -F	Reg Flow at SG300 exceeded targe	+
WRFKSG04	4000	XMONTH20110301	jets,	שע	cermining	TT	FKSGSPULW	L
TO 6	4000	ADD					BF-SGB-SP3	
WRFKSG05		XMONTH20110301					SGWINONOFF	
TO 2		ADD			GS1000		CONT	
TO 6		DIV					FKSGSPULW	
* *								
WRFKSG06	7300	XMONTH20110301					FKSGSPUSP	
TO 6		ADD					BF-SGB-SP3	
WRFKSG07		XMONTH20110301					SGSPRONOFF	
TO 2		ADD			GS1000		CONT	
TO 6		DIV					FKSGSPUSP	
**								
WRFKSG08	500	XMONTH20110301					FKSGSPULS	
TO 6		ADD					BF-SGB-SP3	
WRFKSG09		XMONTH20110301			001000		SGSUMONOFF	
TO 2 TO 6		ADD DIV			GS1000		CONT	
TO 6		DIA					FKSGSPULS	
WRFKSG10	3100	XMONTH20110301					FKSGSPULF	
TO 6	3100	ADD					BF-SGB-SP3	
WRFKSG11		XMONTH20110301					SGFALONOFF	
TO 2		ADD			GS1000		CONT	
TO 6		DIV					FKSGSPULF	
** ENGAGI	NG PULS	E						
IFSGSPUL	4000	XMONTH20110301					SGSPULW1	
TO 6		ADD					BF-SGB-SP3	
FS 5	FKSG05	1 0	_	1	9999999	2	1 2 2 12 2	
IFSGSPUL	4000	XMONTH20110301	3				SGSPULW2	
TO 6	EKGGOE	ADD 1 0		1	000000	2	BF-SGB-SP3 1 2 0 12 2	
FS 5 IFSGSPUL	FKSG05 7300	1 0 XMONTH20110301		Τ	9999999	2	1 2 0 12 2 SGSPUSP1	
TO 6	7300	ADD					BF-SGB-SP3	
FS 5	FKSG07	1 0		1	9999999	2	1 2 3 3 6	
IFSGSPUL	7300	XMONTH20110301	3	_		-	SGSPUSP2	
TO 6		ADD	-				BF-SGB-SP3	
FS 5	FKSG07	1 0		1	9999999	2	1 2 0 3 6	
IFSGSPUL	500	XMONTH20110301					SGSPULS1	
TO 6		ADD					BF-SGB-SP3	
		1 0		1	9999999	2	1 2 1 7 8	
IFSGSPUL	500	XMONTH20110301	3				SGSPULS2	
TO 6		ADD				_	BF-SGB-SP3	
	FKSG09			Τ	9999999	2	1 2 0 7 8	
IFSGSPUL TO 6	3100	XMONTH20110301 ADD					SGSPULF1 BF-SGB-SP3	
FS 5	FKCC11	1 0		1	9999999	2	1 2 2 9 11	
IFSGSPUL		XMONTH20110301		Τ	222222	۷	SGSPULF2	
TO 6	3100	ADD	5				BF-SGB-SP3	
	FKSG11			1	9999999	2	1 2 0 9 11	
		ATE IF FOR ENTIRE				_		
IFSGSPUL		20110301					SGSPFIN	
TO 13		ADD					SGSPULW2 CONT	
TO 13		3.00					GGGDTIGD Q GOVT	
		ADD					SGSPUSP2 CONT	
TO 13 TO 13		ADD ADD ADD					SGSPUSP2 CONT SGSPULS2 CONT SGSPULF2	

* * ** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT ** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO ** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE XMONTH20110301 BF-SGB-LP1 TO 2 ADD DAYSPY CONT ТО 2 SUB SGLPND WRFKSG02 XMONTH20110301 BF-SGB-LP2 TO 6 ADD BF-SGB-LP1 CONT TO DIV DAYSPY WRFKSG02 XMONTH20110301 BF-SGB-LP3 TO 13 ADD SGBASEFIN CONT TO MUL BF-SGB-LP2 6 ** Developing pulse+base flow targets, Determining if Reg Flow at GS1000 exceeded target WRFKSG12 10000 XMONTH20110301 FKSGLPULW BF-SGB-LP3 TO 6 ADD WRFKSG13 XMONTH20110301 SGLWINONOFF TO 2 ADD GS1000 CONT DIV FKSGLPULW TO * * 12200 XMONTH20110301 WRFKSG14 FKSGLPUSP TO 6 ADD BF-SGB-LP3 WRFKSG15 XMONTH20110301 SGLSPRONOFF GS1000 TO 2 ADD CONT TO 6 DIV **FKSGLPUSP** * * 1600 XMONTH20110301 WRFKSG16 **FKSGLPULS** TO BF-SGB-LP3 XMONTH20110301 WRFKSG17 SGLSUMONOFF TO 2 ADD GS1000 **FKSGLPULS** TO 6 DIV * * WRFKSG18 9200 XMONTH20110301 FKSGLPULF TO BF-SGB-LP3 6 ADD WRFKSG19 XMONTH20110301 SGLFALONOFF 2 GS1000 TO ADD CONT 6 DIV FKSGLPULF ** ENGAGING PULSE IFSGLPUL 10000 XMONTH20110301 SGT.PIII.W1 BF-SGB-LP3 TO ADD 5 FKSG13 1 9999999 1 2 12 2 FS 1 Ω IFSGLPUL 10000 XMONTH20110301 SGLPULW2 3 ADD BF-SGB-LP3 TO 6 5 FKSG13 1 9999999 1 0 12 2 FS 1 IFSGLPUL 12200 XMONTH20110301 SGLPUSP1 ADD BF-SGB-LP3 1 9999999 5 FKSG15 0 2 3 3 6 FS 1 1 12200 XMONTH20110301 SGLPUSP2 IFSGLPUL TO 6 ADD BF-SGB-LP3 5 FKSG15 1 1 9999999 FS 0 3 6 IFSGLPUL 1600 XMONTH20110301 SGLPULS1 BF-SGB-LP3 ADD TO6 FS 5 FKSG17 1 1 9999999 1 1 7 8 XMONTH20110301 IFSGLPUL 1600 3 SGLPULS2 6 BF-SGB-LP3 TO ADD 5 FKSG17 1 9999999 1 0 7 8 1 9200 XMONTH20110301 SGLPULF1 IFSGLPUL TO 6 ADD BF-SGB-LP3 FS 5 FKSG19 1 0 1 9999999 2 9 11 XMONTH20110301 IFSGLPUL 9200 3 SGLPULF2 BF-SGB-LP3 ADD 5 FKSG19 1 Ω 1 9999999 2

1 0 9 11

FS

```
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFSGLPUL
                    20110301
                                                 SGLPFIN
TO
   13
                  ADD
                                                       SGLPULW2
                                                                 CONT
TO
     13
                  ADD
                                                       SGLPUSP2
                                                                  CONT
                                                       SGLPULS2
                                                                  CONT
TO
     13
                  ADD
                                                       SGLPULF2
*******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKSG03
               XMONTH20110301
                                                            BF-SGB-AP1
TO
      2
                 ADD
                                    DAYSPY
                                                                 CONT
TO
      2
                  SUB
                                    SGLPND
WRFKSG03
               XMONTH20110301
                                                            BF-SGB-AP2
TO 6
                ADD
                                                     BF-SGB-AP1 CONT
TΟ
      2
                 DIV
                                    DAYSPY
WRFKSG03
               XMONTH20110301
                                                            BF-SGB-AP3
TO
   13
                 ADD
                                                      SGBASEFIN
TO
      6
                  MITT.
                                                     BF-SGB-AP2
** Developing pulse+base flow targets, Determining if Reg Flow at SG300 exceeded target
WRFKSG20 12200 XMONTH20110301
                                                             FKSGAPUL
TO
      6
                 ADD
                                                     BF-SGB-AP3
               XMONTH20110301
                                                            SGANNONOFF
WRFKSG21
TO 2
                                    GS1000
                ADD
                                                                 CONT
      6
                  DIV
                                                       FKSGAPUL
** ENGAGING PULSE
IFSGAPFA 12200 XMONTH20110301
                                                 SGAPLA1
TO
                  ADD
                                                     BF-SGB-AP3
      5 FKSG21
                                 1 9999999
FS
                  1
                                                   1 5 1 6
                                                                    1
IFSGAPFA
        12200
               XMONTH20110301
                                                 SGAPLA2
                  ADD
                                                    BF-SGB-AP3
TO
      6
      5 FKSG21
                                 1 9999999
                                                   1
                                                     0 1 6
FS
                  1
IFSGAPFB
        12200
               XMONTH20110301
                                                 SGAPLB1
                 ADD
                                                    BF-SGB-AP3
TO 6
      5 FKSG21
                                                   1 5 7 12
                  1
                                 1 9999999
                                            2
IFSGAPFB 12200 XMONTH20110301
                              3
                                                 SGAPLB2
TO
                                                     BF-SGB-AP3
      6
                 ADD
FS
      5
        FKSG21
                                 1 9999999
                                            2
                                                     0 7
                                                           12
WRFKSG22
                    20110301
                                                            SGFRSTHALF
TO
   13
                                                        SGAPLA2
IFSGAPFB
                    20110301
                              3
                                                 SGAPLB3
TO 13
                                                        SGAPLB2
     10
                   0
                         1
                                 1 9999999
                                            2
                                                   1 11 1 6
                                                                    1
                                                                          SGFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFSGAPUL
                    20110301
                                                 SGAPFIN
                  ADD
                                                        SGAPLA2
                                                                  CONT
                                                        SGAPLB3
TO
     13
                 ADD
******
***END E-Flows for Sandy Creek near Ganado ********
** During Severe Conditions set Sub or Base trigger
WRWMSVD1 4237
                WMDRY20110301
                                                             FKWMSEVD1
WRWMSEVT
               XMONTH20110301
                                                            SEVTRIGGER
TO 2
                 ADD
                                    WGS800
                                                                 CONT
     6
                 DIV
                                                     FKWMSEVD1
**** Severe Condition Subsistence or Base
               WMDRY20110301
WRWMSVT2 4237
                                                             FKWMSEVD2
TO 16
                 LIM
                          1
                                 1 DV221A
    5 WMSEVT
                 1
                          Ω
                                 1 9999999
FS
                                            1
        719
WRWMSVT3
                WMSUB20110301
                                                            FKWMSEVSUB
```

1 DV221A

TO 16

LIM

1

```
5 WMSVT2
                            0
                                   0
*** Dry, Average, Wet Conditions, see .HIS fiGS for Hydrologic conditions
                  WMDRY20110301
WRWMBDRY
          4237
                                                                     FKWMBASD
TO
    16
                   LIM
                                     2 DV221A
WRWMBAVG
           9011
                  WMAVG20110301
                                                                     FKWMBASM
                                     3 DV221A
TO
    16
                   LIM
WRWMBWET
          17042
                  WMWET20110301
                                                                     FKWMBASW
    16
                             4
                                     4 DV221A
TO
                    LIM
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFWMBASE
                     20110301 2
                                                    WMBASEFIN
TO
    13
                    ADD
                                                            FKWMSEVSUB
TO
     13
                    ADD
                                                             FKWMSEVD2
                                                                         CONT
TO
     13
                    ADD
                                                              FKWMBASD
                                                                         CONT
TO
     13
                    ADD
                                                              FKWMBASM
                                                                         CONT
TO
     13
                    ADD
                                                             FKWMBASW
***
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKWM01
                 XMONTH20110301
                                                                   BF-WMB-SP1
TO
      2
                    ADD
                                        DAYSPY
                                                                         CONT
      2
TO
                    SUB
                                        WMSPND
WRFKWM01
                 XMONTH20110301
                                                                   BF-WMB-SP2
TO
      6
                    ADD
                                                            BF-WMB-SP1
                                                                        CONT
TO
       2
                    DIV
                                        DAYSPY
WRFKWM01
                 XMONTH20110301
                                                                   BF-WMB-SP3
T \cap
     13
                    ADD
                                                            WMBASEFIN
                                                                        CONT
TO
                    MUL
                                                            BF-WMB-SP2
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
           2400 XMONTH20110301
                                                                    FKWMSPULW
                                                            BF-WMB-SP3
TO
      6
                    ADD
WRFKWM05
                 XMONTH20110301
                                                                   WMWINONOFF
TO
      2
                    ADD
                                        WGS800
                                                                         CONT
                                                             FKWMSPULW
TO
                    DIV
      6
* *
                                                                    FKWMSPUSP
WRFKWM06
           4400 XMONTH20110301
                                                            BF-WMB-SP3
TΟ
      6
                    ADD
WRFKWM07
                 XMONTH20110301
                                                                   WMSPRONOFF
                                        WGS800
TO
      2
                    ADD
                                                                         CONT
                                                             FKWMSPUSP
TO
                    DIV
WRFKWM08
            420 XMONTH20110301
                                                                    FKWMSPULS
                                                            BF-WMB-SP3
TO
                    ADD
WRFKWM09
                 XMONTH20110301
                                                                   WMSUMONOFF
TO
      2
                   ADD
                                        WGS800
                                                                         CONT
                    DIV
                                                             FKWMSPULS
TO
WRFKWM10
           2200 XMONTH20110301
                                                                    FKWMSPULF
TO
      6
                    ADD
                                                            BF-WMB-SP3
WRFKWM11
                 XMONTH20110301
                                                                   WMFALONOFF
TO
      2
                    ADD
                                        WGS800
                                                                         CONT
                                                             FKWMSPULF
TO
      6
                    DTV
** ENGAGING PULSE
           2400 XMONTH20110301
                                                      WMSPULW1
IFWMSPUL
TΟ
                                                           BF-WMB-SP3
      6
                    ADD
      5
         FKWM05
                                     1 9999999
                                                            2 12 2
                 XMONTH20110301
TEWMSPIIL
           2400
                                                      WMSPULW2
TO
      6
                    ADD
                                                           BF-WMB-SP3
FS
      5
         FKWM05
                      1
                                     1 9999999
                                                           0 12
                 XMONTH20110301
IFWMSPUL
           4400
                                                      WMSPUSP1
                                                           BF-WMB-SP3
                    ADD
                             0
FS
      5 FKWM07
                     1
                                     1 9999999
                                                 2
                                                         2
                                                           3 3 6
```

```
IFWMSPUL
         4400 XMONTH20110301
                                                     WMSPUSP2
                    ADD
                                                          BF-WMB-SP3
TO
      6
                                     1 9999999
                                                         2
FS
      5
         FKWM07
                     1
                                                           0 3 6
IFWMSPUL
          420
                 XMONTH20110301
                                                     WMSPULS1
                                                          BF-WMB-SP3
TO
      6
                    ADD
         FKWM09
                                     1 9999999
                                                           1 7 8
IFWMSPUL
            420
                 XMONTH20110301
                                 3
                                                     WMSPULS2
TO
      6
                   ADD
                                                           BF-WMB-SP3
FS
      5
         FKWM09
                     1
                                     1 9999999
                                                 2
                                                        2
                                                           0
                 XMONTH20110301
IFWMSPUL
         2200
                                                     WMSPULF1
TO
      6
                    ADD
                                                           BF-WMB-SP3
      5 FKWM11
                                                        2 2 9 11
                    1
                             Ω
                                     1 9999999
                                                 2
IFWMSPUL
         2200
                 XMONTH20110301
                                                     WMSPULF2
TO
      6
                    ADD
                                                           BF-WMB-SP3
      5 FKWM11
                             Ω
                                     1 9999999
                                                 2
                                                         2
                                                           0 9 11
                    1
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMSPUL
                       20110301
                                                       WMSPFIN
     13
                    ADD
                                                             WMSPULW2
TO
                                                                         CONT
TO
     13
                    ADD
                                                                         CONT
                                                             WMSPUSP2
TO
     13
                    ADD
                                                             WMSPIII.S2
                                                                         CONT
TO
                    ADD
                                                             WMSPULF2
     13
* *
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKWM02
                 XMONTH20110301
                                                                   BF-WMB-LP1
T \cap
      2
                   ADD
                                        DAYSPY
                                                                         CONT
      2
TO
                    SUB
                                        WMLPND
WRFKWM02
                 XMONTH20110301
                                                                   BF-WMB-LP2
TO
      6
                   ADD
                                                           BF-WMB-LP1
                                                                       CONT
TO
                    DTV
                                        DAYSPY
WRFKWM02
                 XMONTH20110301
                                                                   BF-WMB-LP3
TO
   13
                   ADD
                                                            WMBASEFIN
                                                                       CONT
TO
      6
                    MUL
                                                           BF-WMB-LP2
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
        5600 XMONTH20110301
WRFKWM12
                                                                    FKWMLPULW
TO
      6
                    ADD
                                                           BF-WMB-LP3
WRFKWM13
                 XMONTH20110301
                                                                  WMLWINONOFF
                                        WGS800
TO
      2
                   ADD
                                                                         CONT
                                                            FKWMLPULW
TO
      6
                    DIV
* *
WRFKWM14
           5600 XMONTH20110301
                                                                    FKWMLPUSP
                   ADD
                                                           BF-WMB-LP3
TO
      6
WRFKWM15
                 XMONTH20110301
                                                                  WMLSPRONOFF
TO
      2
                   ADD
                                        WGS800
                                                                        CONT
TO
                    DIV
                                                            FKWMLPUSP
WRFKWM16
           1200 XMONTH20110301
                                                                    FKWMLPULS
TO
      6
                    ADD
                                                            BF-WMB-LP3
WRFKWM17
                 XMONTH20110301
                                                                  WMLSUMONOFF
TO
      2
                    ADD
                                        WGS800
                                                                         CONT
TΟ
      6
                    DIV
                                                            FKWMLPULS
* *
           5600 XMONTH20110301
WRFKWM18
                                                                    FKWMLPULF
                                                            BF-WMB-LP3
TO
      6
                   ADD
WRFKWM19
                 XMONTH20110301
                                                                  WMLFALONOFF
                                        WGS800
TO
      2
                    ADD
                                                                         CONT
                                                            FKWMLPULF
TO
      6
                    DIV
** ENGAGING PULSE
IFWMLPUL
           5600 XMONTH20110301
                                                     WMLPULW1
                    ADD
                                                           BF-WMB-LP3
      5 FKWM13
                             0
                                                            2 12 2
FS
                    1
                                     1 9999999
                                                 2
                                                        1
```

```
IFWMLPUL 5600 XMONTH20110301 3
                                               WMLPULW2
                 ADD
                                                 BF-WMB-LP3
1 0 12 2
TO
      6
                                 1 9999999
FS
      5 FKWM13
                  1
                                           2
IFWMLPUL
        5600
               XMONTH20110301
                                               WMLPUSP1
                                                   BF-WMB-LP3
                 ADD
TO 6
                                              1 1 3 3 6
      5 FKWM15
                                 1 9999999
                  1
IFWMLPUL 5600 XMONTH20110301
                             3
                                               WMLPUSP2
               ADD
                                              BF-WMB-LP3
1 1 0 3 6
TO 6
FS
      5 FKWM15
                  1
                                 1 9999999
                                           2
        1200 XMONTH20110301
IFWMLPUL
                                               WMLPULS1
      6
                 ADD
                                                BF-WMB-LP3
                                 1 9999999
      5 FKWM17
                 1
                       Ω
                                              1 1 1 7 8
IFWMLPUL 1200
               XMONTH20110301
                                               WMLPULS2
                 ADD
                                              BF-WMB-LP3
1 1 0 7 8
TO 6
      5 FKWM17
                 1
                                 1 9999999
FS
IFWMLPUL 5600 XMONTH20110301
                                               WMLPULF1
               ADD
                                                   BF-WMB-LP3
TO 6
                                              1 1 2 9 11
     5 FKWM19
                 1
                                 1 9999999
FS
                          0
                                           2
IFWMLPUL 5600 XMONTH20110301
                                               WMLPULF2
                 ADD
TO
      6
                                                    BF-WMB-LP3
                 1
      5 FKWM19
                                1 9999999
                                           2
                                                 1 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMLPUL 20110301
                                                WMLPFIN
TO 13
                 ADD
                                                      WMLPULW2
                                                                CONT
                 ADD
TO
     13
                                                      WMLPUSP2
                                                                CONT
TO 13
                 ADD
                                                      WMLPULS2
                                                                CONT
TO
    13
                 ADD
                                                      WMLPULF2
*******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
          XMONTH20110301
WRFKWM03
                                                           BF-WMB-AP1
TO 2
               ADD
                                   DAYSPY
TO
      2.
                 SUB
                                   WMLPND
WRFKWM03
              XMONTH20110301
                                                           BF-WMB-AP2
TO 6
               ADD
                                                    BF-WMB-AP1 CONT
      2
                                   DAYSPY
TO
                 DTV
WRFKWM03
               XMONTH20110301
                                                           BF-WMB-AP3
TO 13
                 ADD
                                                     WMBASEFIN
                                                              CONT
                                                    BF-WMB-AP2
TO
                 MITT.
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
WRFKWM20 5600 XMONTH20110301
                                                            FKWMAPUL
TO 6
                 ADD
                                                    BF-WMB-AP3
               XMONTH20110301
                                                           WMANNONOFF
WRFKWM21
TO 2
                ADD
                                   WGS800
                                                               CONT
      6
                  DIV
                                                      FKWMAPUL
** ENGAGING PULSE
IFWMAPFA 5600 XMONTH20110301
                                                WMAPLA1
                                                 BF-WMB-AP3
1 5 1 6
TO 6
                  ADD
      5 FKWM21
                  1
                                 1 9999999
FS
IFWMAPFA 5600
               XMONTH20110301
                                                WMAPLA2
                                                  BF-WMB-AP3
                 ADD
TO
      6
FS
      5 FKWM21
                  1
                                 1 9999999
                                           2
                                                 1
                                                    0 1 6
                                                                   1
        5600 XMONTH20110301
IFWMAPFB
                                                WMAPLB1
TO 6
               ADD
                                                 BF-WMB-AP3
      5 FKWM21
                                 1 9999999
                                                  1 5 7 12
                  1
        5600
              XMONTH20110301
TFWMAPFR
                             3
                                                WMAPLB2
                 ADD
TO
      6
                                                    BF-WMB-AP3
                                           2
      5 FKWM21
                                 1 9999999
                                                    0 7
                                                          12
                                                                   1
                   20110301
                                                           WMFRSTHALF
WRFKWM22
                                                       WMAPLA2
TO 13
IFWMAPFB
                   20110301
                             3
                                                WMAPLB3
```

```
TO 13
                                                       WMAPLB2
                         1 1 9999999 2 1 1 11 1 6
   10
                  0
                                                                 1
                                                                       WMFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMAPUL
                  20110301
                                                WMAPFIN
TO 13
                                                       WMAPLA2
                                                               CONT
                                                       WMAPLB3
                 ADD
******
** END E-Flows for West Mustang Creek near Ganado
**START E-Flows for East Mustang Creek near Louise
** During Severe Conditions set Sub or Base trigger
WREMSVD1 843 EMDRY20110301
                                                            FKEMSEVD1
WREMSEVT
               XMONTH20110301
                                                           SEVTRIGGER
TO 2
                 ADD
                                   EDV712
                                                               CONT
     6
                                                    FKEMSEVD1
                 DIV
**** Severe Condition Subsistence or Base
WREMSVT2 843 EMDRY20110301
                                                            FKEMSEVD2
               LIM 1 1 0
TO 16
FS 5 EMSEVT
                                 1 DV221A
                                 1 9999999
        719 EMSUB20110301
                                                           FKEMSEVSUB
WREMSVT3
                LIM 1
                                1 DV221A
TO 16
   5 EMSVT2
                 1
                         0
                                0 1
                                           1
\ensuremath{^{***}}\xspace Dry, Average, Wet Conditions, see .HIS figs for Hydrologic conditions
WREMBDRY
        843 EMDRY20110301
                                                             FKEMBASD
                                 2 DV221A
TO 16
                 LIM 2
WREMBAVG 2236 EMAVG20110301
                                                             FKEMBASM
TO 16
                LIM 3
                                3 DV221A
WREMBWET 4954 EMWET20110301
                                                             FKEMBASW
TO 16
                LIM 4
                                4 DV221A
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
                                             EMBASEFIN
TEEMBASE
                 20110301 2
                 ADD
                                                    FKEMSEVSUB
   13
TO
                 ADD
                                                     FKEMSEVD2
                                                               CONT
    13
                 ADD
TO
                                                      FKEMBASD
                                                                CONT
TO
     13
                 ADD
                                                      FKEMBASM
                                                                CONT
    13
TO
                 ADD
                                                      FKEMBASW
***
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKEM01
         XMONTH20110301
                                                           BF-EMB-SP1
TO 2
                 ADD
                                   DAYSPY
                                                                CONT
TO
      2
                 SUB
                                   EMSPND
WRFKEM01
               XMONTH20110301
                                                           BF-EMB-SP2
TO 6
               ADD
                                                    BF-EMB-SP1 CONT
TO
      2
                 DIV
                                  DAYSPY
WRFKEM01
               XMONTH20110301
                                                           BF-EMB-SP3
TO 13
                 ADD
                                                     EMBASEFIN CONT
                                                    BF-EMB-SP2
                 MUL
** Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target
WRFKEM04 680 XMONTH20110301
                                                            FKEMSPULW
                 ADD
                                                    BF-EMB-SP3
TO 6
WRFKEM05
               XMONTH20110301
                                                           EMWINONOFF
TO
      2
                 ADD
                                   EDV712
                                                               CONT
TΟ
                 DIV
                                                     FKEMSPULW
      6
* *
WRFKEM06
          1400 XMONTH20110301
                                                            FKEMSPUSP
TO
      6
                 ADD
                                                    BF-EMB-SP3
WRFKEM07
               XMONTH20110301
                                                           EMSPRONOFF
TO 2
                                   EDV712
               ADD
                                                               CONT
                 DIV
                                                     FKEMSPUSP
TO
```

* *

```
WRFKEM08
           100 XMONTH20110301
                                                                      FKEMSPULS
TO
       6
                    ADD
                                                             BF-EMB-SP3
WRFKEM09
                  XMONTH20110301
                                                                     EMSUMONOFF
TO
       2
                    ADD
                                         EDV712
                                                                           CONT
                                                              FKEMSPULS
TO
       6
                    DIV
* *
WRFKEM10
            650 XMONTH20110301
                                                                      FKEMSPULF
                                                             BF-EMB-SP3
TO
       6
                    ADD
WRFKEM11
                  XMONTH20110301
                                                                     EMFALONOFF
                                         EDV712
TO
       2
                    ADD
                                                                           CONT
       6
                    DIV
                                                              FKEMSPULF
** ENGAGING PULSE
IFEMSPUL
             680 XMONTH20110301
                                                       EMSPULW1
                    ADD
                                                             BF-EMB-SP3
       6
         FKEM05
                                      1 9999999
                                                          2
       5
                                                  2
                                                             2 12
FS
                     1
                 XMONTH20110301
IFEMSPUL
             680
                                                       EMSPULW2
TΟ
       6
                    ADD
                                                             BF-EMB-SP3
       5
         FKEM05
                                      1 9999999
                                                             0 12
FS
                     1
                              0
                                                  2
                                                          2
IFEMSPUL
           1400
                 XMONTH20110301
                                                       EMSPUSP1
TO
       6
                    ADD
                                                             BF-EMB-SP3
       5
         FKEM07
                     1
                                      1 9999999
                                                  2
                                                          2
FS
                                                             3
                                                                 3 6
IFEMSPUL
           1400
                  XMONTH20110301
                                                       EMSPUSP2
TO
       6
                    ADD
                                                             BF-EMB-SP3
FS
       5
         FKEM07
                      1
                                      1 9999999
                                                          2
                                                             Ω
                                                                 3 6
                 XMONTH20110301
IFEMSPUL
            100
                                                       EMSPULS1
                    ADD
                                                             BF-EMB-SP3
TO
       6
                                                          2
       5
         FKEM09
                     1
                              0
                                      1 9999999
                                                  2
                                                             1 7 8
FS
IFEMSPUL
            100
                 XMONTH20110301
                                  3
                                                       EMSPULS2
TO
       6
                    ADD
                                                             BF-EMB-SP3
FS
       5
         FKEM09
                     1
                                      1 9999999
                                                  2
                                                          2
                                                             0
                 XMONTH20110301
TFEMSPUL.
            650
                                                       EMSPULF1
       6
                    ADD
                                                             BF-EMB-SP3
       5
         FKEM11
                                      1 9999999
                                                  2
                                                          2
                                                             2
FS
                     1
                              Ω
                                                                 9 11
                 XMONTH20110301
IFEMSPUL
            650
                                                       EMSPULF2
TO
       6
                    ADD
                                                             BF-EMB-SP3
       5 FKEM11
FS
                     1
                              0
                                      1 9999999
                                                  2
                                                          2
                                                             0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFEMSPUL
                       20110301
                                                        EMSPFIN
ТО
     13
                    ADD
                                                               EMSPULW2
                                                                           CONT
TO
      13
                    ADD
                                                               EMSPUSP2
                                                                           CONT
                                                                           CONT
TO
     13
                    ADD
                                                               EMSPIII.S2
TO
      13
                    ADD
                                                               EMSPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKEM02
                 XMONTH20110301
                                                                     BF-EMB-LP1
TΟ
       2
                    ADD
                                                                           CONT
                                         DAYSPY
TO
       2
                    SUB
                                         EMLPND
WRFKEM02
                 XMONTH20110301
                                                                     BF-EMB-LP2
                    ADD
                                                             BF-EMB-LP1
                                                                           CONT
TO
       6
TO
       2
                    DIV
                                         DAYSPY
WRFKEM02
                 XMONTH20110301
                                                                     BF-EMB-LP3
TO
     13
                    ADD
                                                              EMBASEFIN
                                                                           CONT
TO
       6
                    MUL
                                                             BF-EMB-LP2
** Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target
           1700 XMONTH20110301
WRFKEM12
                                                                      FKEMLPULW
TO
       6
                    ADD
                                                             BF-EMB-LP3
WRFKEM13
                  XMONTH20110301
                                                                    EMLWINONOFF
TΟ
                    ADD
                                         EDV712
       2
                                                                           CONT
                    DIV
                                                              FKEMLPULW
TO
* *
```

MAPPEMENT MAD	WRFKEM14 TO 6 WRFKEM15 TO 2 TO 6		XMONTH20110301 ADD XMONTH20110301 ADD DIV		EDV712		FKEMLPUSP BF-EMB-LP3 EMLSPRONOFF CONT FKEMLPUSP
Markemia	TO 6 WRFKEM17 TO 2 TO 6	310	ADD XMONTH20110301 ADD		EDV712		EMLSUMONOFF CONT
THEMILUT TO	TO 6 WRFKEM19 TO 2 TO 6		ADD XMONTH20110301 ADD DIV		EDV712		BF-EMB-LP3 EMLFALONOFF CONT
TO	** ENGAGI	NG PULS	SE				
THEMILUE	TO 6		ADD				BF-EMB-LP3
Note	-				9999999	2	
FS				3			
No				1	9999999	2	
Figural Figu							EMLPUSP1
TEMLPUL 3000							
Note				_	9999999	2	
FS				3			
THEMLPUL	-			1	0000000	2	
TO				1	222222	4	
FS							
THEMLPUL 310	-			1	9999999	2	
FS	IFEMLPUL	310					EMLPULS2
TIMESHIPUL S100			ADD				
TO				1	9999999	2	
FS 5 FKEM19 1 0 1 9999999 2 1 1 2 9 11 IFEMLPUL 2100 XMONTH20110301 3 EMLPULF2 TO 6 ADD BF-EMB-LP3 FS 5 FKEM19 1 0 1 9999999 2 1 1 0 9 11 ** COMBINE TO CREATE IF FOR ENTIRE YEAR. IFEMLPUL 20110301 EMLPFIN TO 13 ADD EMLPULS2 CONT ***********************************							
FEMLPUL 2100	-			1	000000	2	
TO 6 ADD					9999999	4	
FS		2100		J			
** COMBINE TO CREATE IF FOR ENTIRE YEAR. IFEMLPUL 20110301 EMLPFIN TO 13 ADD EMLPULW2 CONT TO 13 ADD EMLPULS2 CONT ***********************************		FKEM19		1	9999999	2	
TO	** COMBIN	E TO CRE					
TO	IFEMLPUL		20110301				EMLPFIN
TO 13 ADD EMLPULS2 CONT TO 13 ADD EMLPULS2 ***********************************							
TO 13 ADD **********************************	-						

**************************************	-	******					EMP50Pt.5
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT ** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO ** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE WRFKEM03 XMONTH20110301 BF-EMB-AP1 TO 2 ADD DAYSPY CONT TO 2 SUB EMLPND WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP1 TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 13 ADD BF-EMB-AP2				*****	*****	****	*******
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO ** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE WRFKEM03 XMONTH20110301 BF-EMB-AP1 TO 2 ADD DAYSPY CONT TO 2 SUB EMLPND WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2							
WRFKEM03 XMONTH20110301 BF-EMB-AP1 TO 2 ADD DAYSPY CONT TO 2 SUB EMLPND WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2							
TO 2 ADD DAYSPY CONT TO 2 SUB EMLPND WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2	** BE APP	LIED TO	BASE FLOWS TO RE	PRESENT	THE PERI	IOD OF	F THE MONTH OUTSIDE OF PULSE
TO 2 SUB EMLPND WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2							
WRFKEM03 XMONTH20110301 BF-EMB-AP2 TO 6 ADD BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2							CONT
TO 6 ADD BF-EMB-AP1 CONT TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2					EMLPND		DE EMD AD?
TO 2 DIV DAYSPY WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2							
WRFKEM03 XMONTH20110301 BF-EMB-AP3 TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2					DAYSPY		DI HID III CONT
TO 13 ADD EMBASEFIN CONT TO 6 MUL BF-EMB-AP2	-						BF-EMB-AP3
			ADD				
			MUL				BF-EMB-AP2

^{**} Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target

```
WRFKEM20
        6000 XMONTH20110301
                                                                FKEMAPUL
TO
      6
                  ADD
                                                       BF-EMB-AP3
                                                       EMANNONOFF
WRFKEM21
                XMONTH20110301
TO
      2
                  ADD
                                    EDV712
                                                                   CONT
                                                        FKEMAPUL
TO
      6
                  DIV
** ENGAGING PULSE
IFEMAPFA 6000 XMONTH20110301
                                                  EMAPLA1
                                                       BF-EMB-AP3
TO
      6
                  ADD
                                                   1 5 1
FS
      5 FKEM21
                   1
                           Ω
                                  1 9999999
                                             2
                                                                      1
        6000 XMONTH20110301
IFEMAPFA
                               3
                                                   EMAPLA2
TO
      6
                  ADD
                                                      BF-EMB-AP3
      5 FKEM21
                                                   1 0 1 6
                   1
                          Ω
                                   1 9999999
                                             2
        6000
IFEMAPFB
               XMONTH20110301
                                                   EMAPLB1
TO 6
                  ADD
                                                      BF-EMB-AP3
      5 FKEM21
                                                    1 5 7 12
                                  1 9999999
                                             2
FS
                   1
                                                                      1
IFEMAPFB 6000 XMONTH20110301
                                                   EMAPLB2
      6
                  ADD
                                                       BF-EMB-AP3
      5 FKEM21
                                  1 9999999
                                             2
FS
                   1
                           0
                                                    1 0 7 12
                                                                      1
                                                              EMFRSTHALF
                     20110301
WRFKEM22
TO 13
                                                         EMAPLA2
                    20110301
                                                  EMAPLB3
TEEMAPER
TO 13
                                                         EMAPLB2
                                1 9999999
                   0
    10
                          1
                                             2
                                                                      1
                                                                           EMFRSTHALF
                                                    1 11 1 6
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFEMAPUL
                     20110301
                                                  EMAPFIN
TO 13
                  ADD
                                                         EMAPLA2
                                                                   CONT
TO
    13
                                                          EMAPLB3
*******
** END E-Flows for East Mustang Creek near Louise
**********
**********
** COLLINS APPLICATION 5579
                                                        3
WR557901 200 557920020703 1
                                                                  5579_1
                                                        1
** Add perpetual water right, Application No. 5595, gw as an alternate source
IF 5595 2316 720000927
                                                   IF5595
          1550
WR 5595
                    320000927
                                                                  5595_1
                               1
                                                        3
SO
                                                        1
** Add perpetual water right, Application No. 5706, Brandl, gw as alternate source
IF 5706 1664
                    720001001
                                                   IF5706
WR 5706
                    320001001
         104.4
                                                        3
                                                                  5706_1
                                                        1
** Add perpetual water right, Application No. 4353, Permit #4085, term conv. perp., gw as alternate
source
          2316
                    719830418
IFTDV911
                                                   IF911 1
WRTDV911
          500
                    319830418
                                                        3
                                                                  4085 1
                                                       1
**Add perpetual water right, Application No. 5168, term conv. perp., gw as alternate source
          3040 101819880202
IFDV1018
                                                 IF1018_1
                               1 1
          1092
WRDV1018
                 319880202
                                       0.00 DV1018
                                                        3
                                                                  5168_1
           2
WSON1018
                 1.00 0.727
                              0.00
                             1 1
WRDV1018
           651
                   719880202
                                     0.00 DV1018
                                                        3
                                                                  5168 2
WSHP1018
           334
                 1.00 0.727
                              0.00
SO
           531
                  651
                                                        1
**Add perpetual water right, Application No. 5370, term conv. perp. gw as alternate source
IFTDV916 722.7 91619910701
                                                  IF916_1
                               1 1
                                      0.00 TDV916
WR537041
          900
                   319910701
                                                                  5370_1
                1.00 0.727
900 TDV916
WSTSO917
           356
                               0.00
          660
                                                        1
**Term water right, App. 4374 - Term Expired 12/31/03
**IFWDV887 1331 IF88719830613 1
```

**50	**WRWDV88				1 2)	4046_1
IFFEDV732	**SO	67.	2 98					
MREDV742	**App. 52	63, term	converted to per	pet	ual w	ater ric	ght	
SO	IFEDV723	2896	719891121				IF526	
*** MR DV402	WREDV724	140	319891121	1	1	0.00		3 5263_1
NR DV402	SO							1
NS 05402 6.08 1.00 0.727 0.00 2096_1 NS 05332 12.0 1.00 0.727 0.00 319501028 1 1 0.00 2096_1 NS 05332 12.0 1.00 0.727 0.00 3797_1 NS 05332 12.0 1.00 0.727 0.00 3798_1 NS 05301 480.0 1.00 0.727 0.00 3978_1 NS 05301 480.0 1.00 0.727 0.00 61602099 NS DV214 452.5 319391117 1 1 0.00 2098_1 IF DV214 4598.7 121419821122 1 IFP0214 4598.7 1 10.00 61602100 NR DV214 250.5 319391117 1 1 0.00 61602100 NR DV215 95 319391117 1 1 0.00 61602100 NR DV216 95 319391117 1 1 0.00 61602100 NR DV211 0.01 219970424 1 1 0.00 61602100 NR DV211 0.02 219970424 1 1 0.00 61602101 NR DV211 0.02 319391128 1 1 0.00 61602101 NR DV211 0.02 219970424 1 1 0.00 5584_2 NRTDV626 4 319541231 1 1 0.00 61602075 NR DV551 61.0 319490228 1 1 0.00 2077_2 NS 05052 10.0 1.00 0.727 0.00 NR DV551 61.0 319490228 1 1 0.00 2077_2 NS 05052 10.0 1.00 0.727 0.00 NR DV551 138 319303930 1 1 0.00 RF505 3912_1 NR DV501 138 319303930 1 1 0.00 2078_2 NRDV0131 450 319381210 1 1 0.00 61602081 NRDV0131 450 319381210 1 1 0.00 3910_1 NR DV501 138 3193131 1 1 0.00 3910_1 NR DV501 130 3193131 1 1 0.00 3	**							
WRTDV332	WR DV402	0	719870424	1	1	0.00		5130_1
WRTDV332	WS OS402	6.08	1.00 0.727	0	.00			
MS 08332						0.00		2096 1
IF D			1.00 0.727	0	.00			_
MR397841							IF39	78
NS S0301				1		0.00		
SO	WS SO301							
NR DV214 452.5 319391117 1 0.00 2098_1								
NR DV214				1	1	0.00		61602099
TF DV214								
NR DV214				_			TF209	
NR DV215				1		0.00	22 20.	
NR DV216								
NR DV213								
NR DV212								
NR DV211								-
WRIDNOSE 4								
WSTOS627								
WR DV551						0.00		61602075
WRS 0555 10.0						0 00		2077 1
MS SO552								<u>—</u>
SO						0.00		20 / /_2
IF DV504				U	.00			
WRS 91241 340					-1		T 7 2 0 2	1.0
WS SO507				-		0 00		
SO						0.00	RF505	3912_1
WR DV501 1138 319303030 1 1 0.00 2078_1 WR DV501 450 319381210 1 1 0.00 2078_2 WRDV1042 0 719631007 1 0.00 61602079 WSOS1042 455.0 1.00 0.727 0.00 61602080 WRDV1034 248 319381231 1 0.00 61602081 WRDV1031 683.27 319550430 1 0.00 3910_1 WRS91041 1000 319811116 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 3905_1 WR390541 1332 319811116 1 0.00 3905_1 WRDV1021 84 1.00 0.727 0.00 3905_1 WRDV1020 932 31929031 1 0.00 2083_2 WRDV1002 623 319480510 1 0.00 2083_2 YFDV1001 5444.5 51600 31985041				0	.00			
WR DV501 450 319381210 1 1 0.00 2078_2 WRDV1042 0 719631007 1 1 0.00 61602079 WSOS1042 455.0 1.00 0.727 0.00 61602080 WRDV1034 248 319381231 1 1 0.00 61602080 WRDV1023 2801.7 15102319811116 1 0.00 3910_1 WR391041 1000 319811116 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 3910_1 WR395041 1332 15102119811116 1 0.00 3905_1 WR390541 1332 31981116 1 0.00 3905_1 WRDV1021 84 1.00 0.727 0.00 61602082 WRDV1020 932 319290331 1 0.00 2083_1 WRDV1001 5444.5 1F100119850416 1 0.00 3 1604252 WRSW0824						0 00		0.000 1
WRDV1042 0 719631007 1 1 0.00 61602079 WSOS1042 455.0 1.00 0.727 0.00 WRDV1034 248 319381231 1 1 0.00 61602080 WRDV1031 683.27 319550430 1 1 0.00 61602081 IFDV1023 2801.7 IF102319811116 1 IF3910 WR391041 1000 319811116 1 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 SO 410.6 1000 DV1023 IFDV1021 3193.3 IF102119811116 1 1 0.00 3905_1 WR 390541 1332 319811116 1 1 0.00 3905_1 WR 01021 84 1.00 0.727 0.00 SO 624.6 1332 DV1021 WRDV1020 932 319290331 1 0.00 3905_1 WRDV1020 623 319480510 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 0.00 3 11604252 WR425241 5500 319850416 1 0.00 3 11604252 WR425241 5500 319850416 1 0.00 3 11604252 WSWSS824 4.9 1.00 0.727 0.00 SO 2651.5 5500 DV1001 WRTDV101 400.0 319501110 1 0.00 61602084 ** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 0.00 1F3906 WRWDV816 140 319811116 1 0.00 1F3906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 1 0.00 1F3906								
WSOS1042								
WRDV1034 248 319381231 1 1 0.00 61602080 WRDV1031 683.27 319550430 1 1 0.00 61602081 JFDV1023 2801.7 IF102319811116 1 0.00 3910_1 WR391041 1000 319811116 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 3910_1 SO 410.6 1000 DV1023 1F3905 WR390541 1332 319811116 1 0.00 3905_1 WS 01021 84 1.00 0.727 0.00 3905_1 WRDV1020 932 319290331 1 0.00 2083_1 WRDV1002 2400 319691027 1 0.00 32083_2 IFDV1001 5444.5 IF100119850416 1 0.00 3194252 WRW25241 5500 319850416 1 0.00 31604252 WSWOS824 4.9 1.00 0.727						0.00		61602079
WRDV1031 683.27 319550430 1 1 0.00 61602081 IFDV1023 2801.7 IF102319811116 1 0.00 3910_1 WR391041 1000 319811116 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 3910_1 SO 410.6 1000 DV1023 IF102119811116 1 0.00 3905_1 WR390541 1332 319811116 1 1 0.00 3905_1 WS 01021 84 1.00 0.727 0.00 3905_1 WRDV1020 932 319290331 1 1 0.00 2083_1 WRDV1002 623 319480510 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 0.00 3 11604252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSWOS824 4.9 1.00 0.727								
IFDV1023 2801.7 IF102319811116								
WR391041 1000 319811116 1 1 0.00 3910_1 WSS01024 63.0 1.00 0.727 0.00 SO 410.6 1000 DV1023 IFDV1021 3193.3 IF102119811116 1 0.00 3905_1 WR390541 1332 319811116 1 1 0.00 3905_1 WS 01021 84 1.00 0.727 0.00 SO 624.6 1332 DV1021 WRDV1002 932 319290331 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 623 319480510 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 1 0.00 319850416 1 1 0.00 61602082 WSWOS824 4.9 1.00 0.727 0.00 SO 2651.5 5500 DV1001 WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817 13 319621231 1 1 0.00 173906 WRWDV816 140 319811116 1 0.00 173906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 1 0.00 173904				1		0.00		
WSSO1024							IF391	
SO						0.00		3910_1
IFDV1021 3193.3 IF102119811116 1				0	.00			
WR390541 1332 319811116 1 1 0.00 3905_1 WS 01021 84 1.00 0.727 0.00 SO 624.6 1332 DV1021 WRDV1020 932 319290331 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 IF100119850416 1 IF100119850416 1 IF100119850416 1 IF100119850416 IF10011985041								
WS 01021 84 1.00 0.727 0.00 SO 624.6 1332 DV1021 WRDV1020 932 319290331 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 IF4252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSWOS824 4.9 1.00 0.727 0.00 SO 2651.5 5500 DV1001 WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right water right water right are assumed to be at the most downstream diversion point WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 0.00 1F3906 WRWDV816 140 319811116 1 0.00 1F3906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	IFDV1021	3193.3	IF102119811116				IF390	
SO 624.6 1332 DV1021 WRDV1020 932 319290331 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 IF100119850416 1 IF100119850416 1 IF100119850416 I IF10010 I I I I I I I I I I I I I I I I I						0.00		3905_1
WRDV1020 932 319290331 1 1 0.00 61602082 WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 TIF4252 TIF4252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSWOS824 4.9 1.00 0.727 0.00 0.00 0.00 61602084 WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right WRDV817 13 319621231 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 0.00 1F3906 WRWDV816 140 319811116 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 153904				0	.00			
WRDV1002 623 319480510 1 1 0.00 2083_1 WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 TIF4252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSWOS824 4.9 1.00 0.727 0.00	SO							
WRDV1002 2400 319691027 1 1 0.00 2083_2 IFDV1001 5444.5 IF100119850416 1 IF4252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSW0S824 4.9 1.00 0.727 0.00 0				1	1			
IFDV1001 5444.5 IF100119850416 1 IF4252 WR425241 5500 319850416 1 1 0.00 3 11604252 WSWOS824 4.9 1.00 0.727 0.00 0.00 0.00 0.00 1 SO 2651.5 5500 DV1001 T 1 0.00 61602084 ** diversions for this water right WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 0.00 1F3906 WRWDV816 140 319811116 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 1F3904 IFWDV815 1269.3 IF81519811116 1 IF3904	WRDV1002		319480510	1	1			
WR425241 5500 319850416 1 1 0.00 3 11604252 WSW0S824 4.9 1.00 0.727 0.00 SO 2651.5 5500 DV1001 1 WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 0.00 1F3906 WRWDV816 140 319811116 1 0.00 11603906 WSW0S816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	WRDV1002	2400	319691027	1	1	0.00		2083_2
WSWOS824 4.9 1.00 0.727 0.00 SO 2651.5 5500 DV1001 1 WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 IF3906 WRWDV816 140 319811116 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	IFDV1001	5444.5	IF100119850416		1		IF425	52
SO 2651.5 5500 DV1001	WR425241	5500	319850416	1	1	0.00		3 11604252
WRTDV901 400.0 319501110 1 1 0.00 61602084 ** diversions for this water right WRWDV817 13 319621231 1 1 0.00 2085_1 IFWDV816 998.6 IF81619811116 1 1 153906 WRWDV816 140 319811116 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	WSWOS824	4.9		0	.00			
** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817	SO	2651.5	5500 DV1001					1
** diversions for this water right are assumed to be at the most downstream diversion point WRWDV817	WRTDV901	400.0	319501110	1	1	0.00		61602084
IFWDV816 998.6 IF81619811116 1 IF3906 WRWDV816 140 319811116 1 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	** divers	ions for		ar	e ass	sumed to	be at the mos	st downstream diversion point
WRWDV816 140 319811116 1 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	WRWDV817	13	319621231	1	1	0.00		2085_1
WRWDV816 140 319811116 1 1 0.00 11603906 WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	IFWDV816	998.6	IF81619811116		1		IF390	06
WSWOS816 20.0 1.00 0.727 0.00 IFWDV815 1269.3 IF81519811116 1 IF3904	WRWDV816			1		0.00		
IFWDV815 1269.3 IF81519811116 1 IF3904				0	.00			
		1269.3					IF390)4
	WRWDV815	60	319811116	1	1	0.00		11603904

```
IFWDV814
        956.1 IF81419811116
                                                       IF3908
                     319811116 1 1
           279
                                        0.00
WRWDV814
                                                                    11603908
** This water right has two diversion points and was
** modeled to take water from the main stem backed up by diversions from the trib
                   319550430
WRWDV813
          282
                                1 1
                                        0.00
                        WDV812
WRWDV811
            84
                     319460430
                                1
                                   1
                                         0.00
                                                                    61602087
WSWOS811
           20.0
                   1.00 0.727
                                 0.00
WRWDV810
            45
                     319240430
                                 1
                                     1
                                         0.00
                                                                    61602088
                                         0.00
WRWDV809
             48
                     319660531
                                 1
                                     1
                                                                    61602089
WRWDV808
            527
                     319560331
                                 1
                                     1
                                         0.00
                                                                    61602090
IF DV503 11561.5
                IF50319830222
                                     1
                                                       IF4102
WR DV503
         57
                     319830222
                                 1
                                    1 0.00
                                                RF502
                                                           3
                                                                    11604102
SO
                                                            1
                IF80719850430
IFWDV807
        4413.3
                                     1
                                                       IF4241
                                 1 1 0.00 WRF805
WR424141 272.63
                  319850430
                                                            3
                                                                    11604241
WSWS0806
          25.2
                 1.00 0.727
                                  0.00
          420.7 272.63 WDV807
SO
                                                            1
                                        0.00
WRWDV804
            290
                   319530331
                                 1
                                     1
                                                                    61602091
IFWDV803
         1448.0
                      19790129
                                     1
                                                       TF3665
WRWDV803
                     319790129
                                         0.00
          211
                                     1
                                                                    11603665
WRWDV868
            990
                     319450330
                                     1
                                        0.00
                                                                    61602092
         724.0
IFWDV865
                      19800121
                                                       IF3725
                                     1
WRWDV865
            420
                      319800121
                                     1
                                          0.00
                                               WRF866
                                                                    11603725
IFWDV862
          724.0
                      19810518
                                     1
                                                    IF3876 1
IFWDV871
           362
                      19810518
                                                     IF3876 2
                                     1
**this water right has been modified to allow diversions from Porter's Creek with a backup from
Lookout Creek
         626
WRWDV862
                      319810518
                                 1
                                     1
                                         0.00 WRF863
                                                                      3876 1
WRWDV871
                     319810518
                                 1
                                     1
                                         0.00 WRF863
                                                                      3876_2
BII
** this water right has been modified to allow diversions from the reservoir backed up by diversions
** from CPWDV855
IFWDV853 362.0
                      19811207
                                     1
                                                       IF3911
                                 1
WRWDV853
            400
                     319811207
                                     1
                                          0.00 WRF851
                                                                      3911_1
                1.00 0.727
WSWOS854
            2.4
                                 0.00
SO
                        WDV855
IFWDV843 2929.5
                 IF84319810526
                                                       IF3836
                                     1
         550
WRWDV843
                     319810526
                                         0.00 WRF844
                                 1
                                     1
                                                                      3836 1
                                         0.00
WRWDV801
           1750
                     319640731
                                 1
                                     1
                                                                    61602093
         3403.0
                                                       TF3909
IFEDV726
                      19811116
                                     1
                     319811116
WR390941
          350
                                   1
                                          0.00 ERF728
                                                                    11603909
                                  0.00
WSWSO727
          45.0
                1.00 0.727
                 350 EDV726
SO
          148.8
IFEDV723 2896.0
                      19800121
                                     1
                                                       IF3727
WREDV723
                     319800121
                                         0.00 ERF722
                                                                    11603727
          913
                                 1
                                     1
IFEDV721 3620.0
                      19811116
                                     1
                                                    IF3907_1
         640
WREDV721
                     319811116
                                 1
                                     1
                                         0.00
                                                                      3907_1
WSEOS721
                 1.00 0.727
                                 0.00
            1.5
                     319520430
                                          0.00
                                                                      2094 1
WREDV734
          398.7
                                 1 1
         241.3
WREDV733
                     319520430
                                 1
                                     1
                                         0.00
                                                                      2094_2
IFEDV731 3620.0
                      19811116
                                                     IF3907_2
                                     1
WREDV731
            520
                     319811116
                                   1
                                          0.00
                                                                      3907_2
                  1.00 0.727
                                  0.00
WSEOS732
            1.5
IFEDV712
         1448.0
                      19811116
                                     1
                                                       IF3903
                                        0.00 ERF711
WREDV712
           800
                     319811116
                                 1
                                     1
                                                                    11603903
** Start Lake Texana (Navidad River)(no assumed return flows for Texana in BR's run1)
                                1
IFDV221B
         3570
                      19720515
                                            1
                                                          TF2
IFDV221A
         346972 BAYEST19720515
                                     1
                                                          IF1
WRDV221A
         74500
                    TA19720515
                                 1
                                     1
                                                                     C2095_1 TEXANA1
WSTEXANA 151919
```

^{**}refill Texana to 45 after US irrigators divert

^{**}priority date of re-fill is one day junior to the most junior US irrigator

```
WRDV221A
                      20020702
                                                               REFILLTXANA
WSTEXANA 170300
**refill done
          34560
                                                NOUT
                                                                  INTURUP1
WRDV221A
                      20020702
                                1
                                    1
                                         1.0
        170300
                                      151919
WSTEXANA
                                                          2
WR NOUT
          34560
                      20020702
                                1
                                    1
                                                                  INTURUP2INTURUPT
SO
           2800 12000
WR NOUT
         99000
                      20020702
                                1
                                    1
                                         1.0 DV221A
                                                                   PAYBACK
** FINAL FILLUP FOR LAKE TEXANA
WRDV221A
           0
                      20020702
                                                                    REFILL
WSTEXANA 170300
** End Lake Texana
* *
**AECOM modifies Stage II project to be subordinate to Lavaca OCR
**Change priority date from 19720515 to 20170102 (two days junior to OCR)
**Change storage capacity from 62454 to 52046 to agree with Reservoir Site Protection Study (TWDB,
2008)
* *
**begin Stage 2 of Texana Project
**WR WO002
            7150
                      120170102
                                     1
                                          0.00
                                                                  61602095 3 TEXANA2
                                  1
**WSSTAGE2
           52046
**WR WQ002
            22850
                       220170102
                                     1
                                          0.00
                                                                  61602095_4 TEXANA2
                                  1
**WSSTAGE2
            52046
**WR WQ002
           18122 BAYES119931006
                                                                      2095_5
                                  1
                                     1
                                          1.0
                                                 20955
**WR WQ002
           18122 BAYES119931006
                                 1
                                           0.0
                                                                      2095_5
**end Stage 2 of Texana Project
WR DV201
           0.01
                     219970424
                                1
                                    2
                                        0.00
                                                                    5584 5
* *
* *
*******************
**AECOM diversion for Lavaca OCR (using 200 MGD pumping / 50,000 AF capacity, per LNRA direction
10/22/19)
WRWO002A
             0
                    120161231 1
                                                                      Fill NEWOCR
** 50,000 ac-ft capacity
WSNEWOCR 50000 0.0218
                            1 969.85
                         WO002
** 200 MGD (224,182 ac-ft/yr) pump stations diversion rate. ML record in ac-ft/mo.
ML 19027 17339.2 19027.1 18413.3 19027.1 18413.3 19027.1 19027.1 18413.3 19027.1 18413.3 19027.1
* *
      Modeled as new WR with Priority Date set at 12/31/2016
WRW0002A 50000.0
                120161231 3
                                  1
                                                                    NewWR1
                                                                             9991
WSNEWOCR
        50000
**end of diversion additions
*************************
* *
** Lake Texana Area-Capacity Data
* *
** area capacity of Texana based on revised table by TWDB from LNRA on March 14, 2001
** ELEVATION -13
                    0
                           10
                                  13
                                          18
                                                  24
                                                         30
                                                                36
                                                                        39
                                                                               43
                                                                                       44
**SVTEXANA 170300 161085 151919 118078
                                         96096
                                                 60576
                                                        33860
                                                                                        70
                                                               14558
                                                                        4634
                                                                               1645
0
**SA
           10484
                    9727
                                  7849
                           8974
                                          6824
                                                  5132
                                                         3820
                                                                2601
                                                                        1354
                                                                                634
                                                                                        23
Ω
SVTEXANA
              0
                    70
                         1645
                                 4634
                                       14558
                                               33860
                                                      60576
                                                            96096 118078 151919 161085
170300
SATEXANA
             0
                    23
                          634
                                 1354
                                        2601
                                                3820
                                                       5132
                                                               6824
                                                                      7849
                                                                             8974
                                                                                     9727
10484
*******************************
```

30

```
** AECOM - Modify stage 2 reservoir to match Reservoir Site Protection Study (TWDB, 2008)
** area capacity of Stage 2 taken from HDR document to RPG dated 10/19/1999
**SVSTAGE2 62454 57676 40543 23475
                                                4980
                                                       1819
                                        11695
                                                                  596
                                                                         152
                                                                                   0
            4887
                    4679
                           3888
                                   2940
                                          1774
                                                  914
                                                          352
                                                                  138
                                                                          40
                                                                                   0
** AECOM commented out
**SVSTAGE2
                     152
                            596
                                 1819
                                          4980 11695
                                                       23475
                                                                40543
                                                                       57676
                                                                               62454
           0
**SASTAGE2
               Ω
                      40
                            138
                                   352
                                          914
                                                 1774
                                                         2940
                                                                3888
                                                                        4679
                                                                               4887
                                    507
**SVSTAGE2
               0
                      5
                            161
                                          1127
                                                  2927
                                                         8360
                                                                19182
                                                                        35152
                                                                               52046
**SA
               Ω
                      16
                             49
                                     92
                                           159
                                                   609
                                                         1649
                                                                 2725
                                                                        3688
                                                                                4564
*************************
** DROUGHT INDEX RECORDS for B&E when below 78.18% conservation
      1 0 1 TEXANA
                 10000 100000 133140 133141 170300
              Ω
IS
      6
            100
                   100
ΙP
                        100
                               100
                                       Ο
* *
** DROUGHT INDEX RECORDS for B&E when above 78.18% conservation
      2 0 1 TEXANA
DI
                 10000 100000 133140 133141 170300
IS
      6
              Ω
              0
                     0
                            0
                                    0
                                         100
ΤP
                                                100
* *
** DROUGHT INDEX RECORDS water rights that have the 43 ft msl restriction.
DI
      3 0 1 TEXANA
                 10000 100000 151918 151919 170300
              0
IS
      6
                            0
ΙP
                     0
                                    0
                                         100
                                                100
* *
\ensuremath{^{**}} the following reservoirs are not associated with a water right
** and are included for possible future modeling needs
**WRTOS323
              0
                       830000101
**WSTX5494
              146
                    1.00 0.727
                                   0.00
**WRTOS321
              0
                       730000101
**WSTX3992
              144
                    1.00
                                   0.00
                           0.727
                      130000101
**WRTOS313
               0
**WSTX3986
              280
                    1.00 0.727
                                   0.00
**WRTOS312
              0
                     130000101
**WSTX3985
              173
                    1.00 0.727
                                   0.00
**WRTOS311
                     130000101
              Ω
**WSTX3984
              144
                    1.00 0.727
                                   0.00
**WR OS623
              0
                       730000101
              296
                    1.00 0.727
**WSTX6176
                                   0.00
                      830000101
**WRTOS554
              0
**WSTX3929
              278
                    1.00
                           0.727
                                   0.00
**WROS1003
              0
                     830000101
**WSTX1571
              108
                    1.00 0.727
                                   0.00
**WROS1052
              Ω
                     130000101
**WSTX3928
              336
                    1.00 0.727
                                   0.00
**WROS1051
              0
                     130000101
              250
                    1.00 0.727
**WSTX3977
                                   0.00
**WROS1033
              0
                       130000101
**WSTX3971
              112
                    1.00 0.727
                                   0.00
** End of .dat data input file
* *
```

ED

T1 WRAP MODEL

T2 Lavaca River Basin Water Availability Model - original from BR/LNRA modifications completed by staff September 2001

 $\overline{\text{T3}}$ KA $\overline{\text{O9/O2/2014}}$ DRAFT SUBJECT TO REVISION - INCLUDES DRAFT REPRESENTATION OF ADOPTED ENVIRONMENTAL FLOW STANDARDS

** AECOM Strategy Model to evaluate yield for LNRA DESALINATION 072219 **

** Run 3: full diversion amounts, authorized area capacity, no term permits, and one-hundred percent reuse

JD 57 RO -1 **	1940	1	-1	-1		5
** UC FOR	COLLINS	APPLICA	ATION 55	79		
UC 5579	0	0	0	60	200	403
UC	403	200	0	0	0	0
UC 1	0.0700	0.0600	0.0700	0.0700	0.0800	0.1000
UC	0.1300	0.1200	0.0900	0.0800	0.0600	0.0700
UC 2	0.076	0.074	0.092	0.088	0.092	0.085
UC	0.079	0.087	0.083	0.086	0.082	0.077
UC 3	0.000	0.001	0.003	0.083	0.149	0.261
UC	0.333	0.154	0.008	0.005	0.002	0.000
UC 7	0.0833	0.0833	0.0833	0.0833	0.0833	0.0834
UC	0.0834	0.0834	0.0834	0.0833	0.0833	0.0833
UC 8	0.0833	0.0833	0.0833	0.0833	0.0833	0.0834
UC	0.0834	0.0834	0.0834	0.0833	0.0833	0.0833
UC IF214	0.0000	0.0000	0.0000	0.1595	0.1738	0.1595
UC	0.1738	0.1738	0.1595	0.0000	0.0000	0.0000
UC IF503	0.1117	0.1009	0.1117	0.1081	0.1117	0.1081
UC	0.0479	0.0479	0.0463	0.0479	0.0463	0.1117
UCIF1023	0.0768	0.0694	0.0768	0.0743	0.0768	0.1699
UC	0.0768	0.0768	0.0743	0.0768	0.0743	0.0768
UCIF1021	0.0770	0.0695	0.0770	0.0745	0.0770	0.1677
UC	0.0770	0.0770	0.0745	0.0770	0.0745	0.0770
UCIF1001	0.0565 0.1129	0.0510 0.1129	0.0565 0.1093	0.0546 0.1129	0.1129 0.0546	0.1093
UC UC IF816	0.1129	0.1129	0.1093	0.1129	0.0346	0.0363
UC 1F810	0.1232	0.0278	0.0307	0.1132	0.1232	0.0307
UC IF815	0.1232	0.1232	0.0242	0.1406	0.1454	0.1406
UC 11.013	0.0242	0.1454	0.1406	0.0242	0.0234	0.0242
UC IF814	0.0321	0.0291	0.0321	0.1183	0.1222	0.1183
UC	0.1222	0.1222	0.1183	0.1222	0.0311	0.0321
UC IF807	0.0557	0.0503	0.0557	0.0539	0.1254	0.1213
UC	0.1254	0.1254	0.1213	0.0557	0.0539	0.0557
UC IF887	0.0462	0.0417	0.0462	0.1341	0.1386	0.1341
UC	0.1386	0.1386	0.0447	0.0462	0.0447	0.0462
UC IF843	0.0630	0.0568	0.0630	0.1116	0.1154	0.1116
UC	0.1154	0.1154	0.0609	0.0630	0.0609	0.0630
UC TA	3050	3040	3050	3050	4100	4100
UC	4100	4100	4100	3050	3050	3050
** UC for	instream	n flow :	restrict:	ion for <i>i</i>	App 5168	
UC 1018	254	253	254	253	253	253
UC	254	253	253	253	254	253
** UC for	instream		restrict:			
UC 916	60.2	60.2	60.2	60.2	60.2	60.3
UC	60.3	60.2	60.2	60.2	60.2	60.3
UCBAYEST	5196	7908	5337	48007	71897	70892
UC	7778	16337	61128	43551	4064	4876
UC INT	0	0	0	0	0	0
UC	0	0	0 0154	0 1304	0	12000
UCBAYES1 UC	0.0150 0.0224	0.0228	0.0154 0.1762	0.1384 0.1255	0.2072 0.0117	0.2043 0.0140
*** Start		JC	0.1/02	0.1233	0.011/	0.0140
** LE UCs	ELTOWS (
מטט מע						

UC UC	LESUB	523 80	476 80	615 71	595 74	615 71	595 523	=	4318
UC UC	LEDRY	1844 1229	1681 1229	1844 1190	1785 1229	1844 1190	1785 1844	=	18694
UC UC	LEAVG	3381 2029	3081 2029	3381 1963	3272 2029	3381 1963	3272 3381	=	33162
UC	LEWET	5778 2951	5266 2951	5778 3450	5592 3565	5778 3450	5592 5778	=	55929
* *	SG UCs								
UC UC	SGSUB	61 61	56 61	61 59	59 61	61 59	59 61	=	719
UC	SGDRY	307	280	307	297	307	297	=	4831
UC		553	553	535	553	535	307		
UC	SGAVG	861 1291	784 1291	861 1249	833 1291	861 1249	833 861	=	12265
	SGWET	1844	1681	1844	1785	1844	1785	=	24458
UC	SGMEI	2397	2397	2320	2397	2320	1844	_	24430
	WM UCs	4391	2391	2320	2391	2320	1044		
	WMSUB	61	56	61	59	61	59	=	719
UC	MMSOB	61	61	59	61	59	61	_	119
	WMDRY	246	224	307	297	307	297	=	4237
UC	WMDKI	615	615	357	369	357	246	_	4237
	WMAVG	553	504	676	654	676	654	_	9011
UC	WMAVG	1107	1107	833	861	833	553	=	9011
	WMWET	1229	1120	1229	1190	1229	1190	=	17042
UC	MIMIMET	1967	1967	1547	1598	1547	1229	_	1/042
	EM UCs	1907	1907	1347	1396	1347	1229		
		61	56	61	59	61	59	=	719
UC	EMSOD	61	61	59	61	59	61	_	719
	EMDRY	61	56	61	59	61	59	=	843
UC	EMDKI	123	123	59	61	59	61	_	043
	EMAVG	123	112	184	178	184	178	_	2236
UC	EMAVG	307	307	178	184	178	123	=	2230
	EMWET	369	336	369	357	369	357	_	4954
UC	E14IM E T	369 492	336 492	369 476	357 492	369 476	369	=	4934
	END E-FLO		434	4/0	434	4/0	309		
E	סקום הייה טאה	WD UCS							

^{**} WQ=Water Quality point, and EP=End Point

** 2	3		4	1 5	6	7	8	9	10
** COMPUT	ATIONAL	CP	FOR	INTERRUPTIBL	E WATER				
CPINTER1	OUT				2	NONE	NONE		
CP DV402	WW401				7		GS400	-1	
CP WW401	GS400				7		GS400	-1	
CP GS400	CB330				1				
CPTDV333	TDV332				7		GS300	-1	
CPTDV332	CB330				7		GS300	-1	
CPTWW331	CB330				7		GS300	-1	
CP CB330	CB320				7		GS300	-1	
CPTOS323	TWW322				7		GS300	-1	
CPTWW322	TOS321				7		GS300	-1	
CPTOS321	CB320				7		GS300	-1	
CP CB320	CB310				7		GS300	-1	
CPTOS313	CB310				7		GS300	-1	
CPTOS312	CB310				7		GS300	-1	
CPTOS311	CB310				7		GS300	-1	
CP CB310	DV301				7		GS300	-1	

^{**} All 100, 200, 300 and 400 control point numbers are on the Lavaca River or one of its tributaries

^{**} All 500 and 600 control point numbers are on the Navidad River or one of its tributaries

^{**} All 700 control point numbers are on Mustang Creek or East Mustang Creek

^{**} All 800 control point numbers are on West Mustang Creek

^{**} All 900 and $1000\ \mathrm{control}\ \mathrm{point}\ \mathrm{numbers}\ \mathrm{are}\ \mathrm{on}\ \mathrm{the}\ \mathrm{Sandy}$, West Sandy, or

^{**} Middle Sandy Creek or one of their tributaries

^{**} For the control point numbers T=Tributary, W=West, M=Middle, and E=East

^{**} For the control point numbers DV=DiVersion, WW=Waste Water discharge,

^{**} GS=Gage Station, CB=ComBine point, RF=Return Flow, OS=On Stream reservoir,

an nii201	aa200	_			aa200	1
CP DV301	GS300	7			GS300	-1
**CP GS300			1			
CP GS300	LESUBS	1				
CPLESUBS	LEBASE	2		GS300	NONE	
CPLEBASE	LESPUL	2		GS300	NONE	
CPLESPUL	LELPUL	2		GS300	NONE	
CPLELPUL	LEAPUL	2		GS300	NONE	
CPLEAPUL	DV214	2		GS300	NONE	
**						
**						
CP DV214	DV215	7			GS300	-2
CP DV215	DV216	7			GS300	-2
CP DV216	DV213	7			GS300	-2
CP DV213	WO002	7			GS300	-2
**CP WQ002	~		5		GS300	-2
CP WQ002	20955	7			GS300	-2
CP 20955	DV212	7			GS300	-2
CP DV212	DV211	7			GS300	-2
CP DV211	CB220	7			GS300	-2
CPTWW217	CB220	7			GS300	-1
CP CB220	CB210	7			GS300	-2
CP OS623	CB620	7			GS600	-1
CP WW622	CB620	7			GS600	-1
CP WW621	CB620	7			GS600	-1
CPTDV626	CB620	7			GS600	-1
CP CB620	CB620	7			GS600	-1
CP CB620	GS600	7			GS600	-1
CP GS600	CB560	1			G5000	-1
		7			aarro	1
CPTOS554	CB560				GS550	-1
CP CB560	DV553	7			GS550	-1
CP DV553	DV551	7			GS550	-1
CP DV551	GS550	7			GS550	-1
CP GS550	DV504	1			99500	-
CP DV504	DV503	7			GS500	-1
CP RF505	DV503	7			GS500	-1
CP DV503	RF502	7			GS500	-1
CP RF502	DV501	7			GS500	-1
CP WQ005	DV501	7			GS500	-1
CP DV501	CB510	7			GS500	-1
CPOS1052	CB1040	7			GS1000	-1
CPOS1051	CB1040	7			GS1000	-1
CPDV1042	CB1040	7			GS1000	-1
CPCB1040	CB1010	7			GS1000	-1
CPDV1034	OS1033	7			GS1000	-1
CPOS1033	DV1031	7			GS1000	-1
CPDV1031	CB1030	7			GS1000	-1
CPCB1030		7			GS1000	-1
CPDV1023	DV1021	7			GS1000	-1
CPDV1021	DV1020	7			GS1000	-1
CPDV1020	DV1018	7			GS1000	-1
CPDV1018	RF1017	7			GS1000	-1
CPRF1017	RF1016	7			GS1000	-1
CPRF1016	RF1015	7			GS1000	-1
CPRF1015	RF1014	7			GS1000	-1
CPRF1014	RF1012	7			GS1000	-1
CPRF1012	RF1011	7			GS1000	-1
CPRF1011	CB1010	7			GS1000	-1
CPCB1010	DV1002	7			GS1000	-1
CPDV1002	DV1001	7			GS1000	-1
CPDV1001	CB1005	7			GS1000	-1
CPOS1003	CB1005	7			GS1000	-1
CPCB1005	GS1000	7			GS1000	-1
**CPGS1000			1			
CPGS1000	SGSUBS	1				

CPSGSUBS	SGBASE		2		S1000 1	IONE	
CPSGBASE	SGSPUL		2		31000 n	IONE	
CPSGSPUL	SGLPUL		2			IONE	
CPSGLPUL	SGAPUL		2		31000 n	IONE	
CPSGAPUL **	CB910		2	2 GS	31000 1	IONE	
CP RF902 CPTRF918	CB910 TDV916		5				-1 -1
CPTRF916 CPTDV916	TRF915		-			L000 L000	-1 -1
CPTRF915	TRF914		-			L000	-1 -1
CPTRF913	TRF913		-				-1 -1
	ntrol point	for Appl				1000	_
CPTRF913	5595	IOI APPI	icacion No.			L000	-1
CP 5595	TDV911		-				-1
**CPTRF91			•	4		SS1000	-1
CPTDV911	CB910		7			L000	-1
CP CB910	CB905		-				-1
CPTDV901	CB905		-				-1
CP CB905	GS900		5	7			-1
CP GS900	CB510		7	7			-1
CP CB510	GS500		7	7			-1
CP GS500	CB230		1	_			
CP WM824	WRF824		7	7	WGS	0088	-1
CPWRF824	WCB825		7	7	WGS	0088	-1
CPWRF823	WRF822		7	7	WGS	800	-1
CPWRF822	WCB825		7	7	WGS	8800	-1
CPWCB825	WCB821		7	7	WGS	800	-1
CPWRF821	WCB821		7	7	WGS	800	-1
CP WM827	WCB821		7	7	WGS	0088	-1
CPWRF828	WCB821		7	7	WGS	0088	-1
CPWCB821	WCB820		7	7	WGS	0088	-1
CPWDV818	WDV817		7	7	WGS	0088	-1
CPWDV817	WDV816		7		WGS	0088	-1
CPWDV816	WDV815		7		WGS		-1
CPWDV815	WDV814		7				-1
CPWDV814	WDV813		7				-1
CPWDV813	WDV811		3				-1
CPWDV812	WDV811		7				-1
CPWDV811	WDV810		7				-1
CPWDV810	WDV809		5				-1
CPWDV809	WDV808		-				-1 -1
CPWDV808 CPWDV807	WDV807 WRF805		-				-1 -1
	cp routing	+0 2dd E				5600	_T
** CPWRF8		to add E	standi app.	5 / 0 ()	WGS800	-1
CPWRF805	5706		7		WG		-1
CP 5706	WDV804		5				-1
CPWDV804	WDV803		5				-1
CPWDV803	WRF802		5			3800	-1
CPWRF802	WCB840		-				-1
CPWDV887	WRF881		7				-1
CPWRF882	WRF881		7				-1
CPWRF881	WCB890		7				-1
CPWRF888	WCB890		7		WGS	8800	-1
CPWCB890	WDV868		7	7	WGS	800	-1
CPWDV868	WCB880		7	7	WGS	0088	-1
CPWCB880	WDV867		7		WGS	0088	-1
CPWDV867	WRF866		7				-1
CPWRF866	WDV865		7			0083	-1
CPWDV865	WRF864		3				-1
CPWRF864	WRF863		7				-1
CPWRF863	WDV862		3			3800	-1
CPWDV862	WRF861		7			0088	-1
CPWRF861	WCB860		7	1	WGS	3800	-1

CPWRF872	WDV871	7		WGS800	-1
CPWDV871	WCB860	7		WGS800	-1
CPWCB860	WCB850	7		WGS800	-1
		7			
CPWRF857	WRF858			WGS800	-1
CPWRF858	WRF856	7		WGS800	-1
CPWRF856	WDV853	7		WGS800	-1
CPWDV855	WDV853	7		WGS800	-1
CPWDV853	WRF851	7		WGS800	-1
CPWRF851	WCB845	7		WGS800	-1
CPWRF852	WCB845	7		WGS800	-1
** Collin	s Application 5579				
** CPWCB8	45 WCB850		4	WGS800	-1
CPWCB845	557901	7		WGS800	-1
CP557901	WCB850	7		WGS800	-1
**	Медозо	,		WODOOO	_
	TTD TO 4.4	_		*******	1
CPWCB850	WRF844	7		WGS800	-1
CPWRF844	WDV843	7		WGS800	-1
CPWDV843	WRF842	7		WGS800	-1
CPWRF842	WRF841	7		WGS800	-1
CPWRF841	WCB840	7		WGS800	-1
CPWCB840	WDV801	7		WGS800	-1
CPWDV801	WCB830	7		WGS800	-1
CPWRF832	WRF831	7		WGS800	-1
CPWRF831	WCB830	7		WGS800	-1
CPWCB830	WCB820	7		WGS800	-1
	WGS800	7			
CPWCB820			-	WGS800	-1
**CPWGS80			1		
CPWGS800	WMSUBS	1			
CPWMSUBS	WMBASE	2	WGS800	NONE	
CPWMBASE	WMSPUL	2	WGS800	NONE	
CPWMSPUL	WMLPUL	2	WGS800	NONE	
CPWMLPUL	WMAPUL	2	WGS800	NONE	
CPWMAPUL	MCB710	2	WGS800	NONE	
* *					
CPERF728	EDV726	7		WGS800	-1
CPEDV726	ERF725	7		WGS800	-1
CPERF725	EDV724	7		WGS800	-1
		7			
CPEDV724	EDV723			WGS800	-1
CPEDV723	ERF722	7		WGS800	-1
CPERF722	EDV721	7		WGS800	-1
CPEDV721	ECB720	7		WGS800	-1
CPEDV734	EDV733	7		WGS800	-1
CPEDV733	EDV731	7		WGS800	-1
		7			
CPEDV731	ECB720			WGS800	-1
CPECB720	EDV712	7		WGS800	-1
**** Eas	t Mustang Creek near Louise				
**CPEDV71	2 ERF711		7	WGS800	-1
CPEDV712	EMSUBS	7		WGS800	-1
CPEMSUBS	EMBASE	7		WGS800	-1
		7			-1
CPEMBASE	EMSPUL			WGS800	
CPEMSPUL	EMLPUL	7		WGS800	-1
CPEMLPUL	EMAPUL	7		WGS800	-1
CPEMAPUL	ERF711	7		WGS800	-1
* *					
**					
CPERF711	MCB710	7		WGS800	-1
		7			-2
CPMCB710	GS700			WGS800	
CP GS700	CB230	7		WGS800	-2
CP CB230	DV221A	7		GS300	-2
CPDV221A	DV221B	7		GS300	-2
CPDV221B	RSRTRN	7		GS300	-2
CPRSRTRN	WQ004	7		GS300	-2
CP WQ004	CB210	7		GS300	-2
CP CB210	WQ003	7		GS300	-1

```
CP WQ003
        GS200
                                7
                                         GS300
                                                   -1
        DV201
                                7
CP GS200
                                          GS300
                                                   - 1
CP DV201
         GS100
                                          GS300
                                                   -1
                                7
CP GS100
         WQ001
                                          GS300
                                                   -1
CP WQ001
                                7
                                          GS300
                                                   -1
        EP000
CP EP000
                                                   -1
         OUT
                                          GS300
* *
** AECOM entered control points for off-channel reservoir
CPWQ002A
        20956
                                          GS300
                                                   -2
                                5
CP 20956 WQ002B
                                          GS300
                                                   -2
CPNEWOCR
         OUT
                                2
                                   NONE
                                         GS300
                                                   -3
CPWQ002B WQ002C
                                5
                                          NONE
                                                   -2
CPWQ002C WQ002D
                                5
                                                   -2
                                          NONE
CPWQ002D WQ002E
                                          NONE
                                                   -2
CPWQ002E DV212
                                5
                                          NONE
                                                   -2
* *
* *
**** AECOM entered control points for BSW diversion
* *
        20957
                                7
                                                   -2
                                          GS300
CPDVBSW1
CP 20957
       WQ001A
                                5
                                          GS300
                                                   -2
                                  NONE
CPNEWBSW
         OUT
                                2
                                          GS300
                                                   -3
CPWQ001A WQ001B
                                5
                                          NONE
                                                   -2
CPWQ001B WQ001C
                                5
                                          NONE
                                                   -2
CPWQ001C WQ001D
                                5
                                          NONE
                                                   - 2
                                5
CPWO001D DV213
                                          NONE
                                                   -2
Reservoirs
                                  ZERO GS1000
                                2
CP537041
          OUT
                                  ZERO
                                2
CP397841
          OUT
                                         GS300
CP207741
          OUT
                                2
                                    ZERO
                                          GS550
                                  ZERO
         OUT
                                         GS500
CP391241
                                2
CP391041
         OUT
                                2
                                  ZERO GS1000
         OUT
CP390541
                                2.
                                  ZERO GS1000
         OUT
CP425241
                                2
                                    ZERO GS1000
CP424141
          OUT
                                2
                                    ZERO WGS800
CP390941 OUT
                                   ZERO WGS800
                                2.
** fake CP for Texana's offchannel reservoir used to simulate interruptible water availability.
CP NOUT OUT
                                2
                                    ZERO
                                          ZERO
                                                  -1
** end fake CP record
***************
**-----Start Environmental Flows Dummy CPs------
CPDAYSPY
         OUT
                               2
                                   ZERO ZERO
**** LE Base Flows CPS
CPLESEVT
                               2.
                                  NONE
                                          NONE
         CUT
                               2
CPLESVD1
         OUT
                                   NONE
                                          NONE
CPLESVT2
         OUT
                               2
                                   NONE
                                          NONE
         OUT
                               2
                                  NONE
                                          NONE
CPLESVT3
CPLEBDRY
         OUT
                               2
                                  NONE
                                          NONE
                               2
                                  NONE
CPLEBAVG
         OUT
                                          NONE
CPLEBWET
         OUT
                                   NONE
                                          NONE
** LE Pulse CPS
CPLESPND
                                2
                                  ZERO
                                         ZERO
CPLELPND
          OUT
                                2
                                    ZERO
                                          ZERO
CPLEAPND
          OUT
                                2
                                   ZERO
                                          ZERO
          OUT
                                2
                                  NONE
                                          NONE
CPFKLE01
                                2
                                    NONE
CPFKLE02
                                          NONE
CPFKLE03
         OUT
                                2
                                    NONE
                                          NONE
```

CPFKLE04					
	OUT		2	NONE	NONE
CPFKLE05	OUT		2	NONE	NONE
CPFKLE06	OUT		2	NONE	NONE
CPFKLE07	OUT		2	NONE	NONE
CPFKLE08	OUT		2	NONE	NONE
CPFKLE09	OUT		2	NONE	NONE
CPFKLE10	OUT		2	NONE	NONE
CPFKLE11	OUT		2	NONE	NONE
CPFKLE12	OUT		2	NONE	NONE
			2		
CPFKLE13	OUT			NONE	NONE
CPFKLE14	OUT		2	NONE	NONE
CPFKLE15	OUT		2	NONE	NONE
CPFKLE16	OUT		2	NONE	NONE
			2		
CPFKLE17	OUT			NONE	NONE
CPFKLE18	OUT		2	NONE	NONE
CPFKLE19	OUT		2	NONE	NONE
CPFKLE20	OUT		2	NONE	NONE
			2		
CPFKLE21	OUT			NONE	NONE
CPFKLE22	OUT		2	NONE	NONE
CPLEAPFA	OUT		2	NONE	NONE
CPLEAPFB	OUT		2	NONE	NONE
**	001		2	MOINE	INOINE
**** SG Ba	se Flows	CDG			
		CFD	0	NONTE	NONTE
CPSGSEVT	OUT		2	NONE	NONE
CPSGSVD1	OUT		2	NONE	NONE
CPSGSVT2	OUT		2	NONE	NONE
CPSGSVT3	OUT		2	NONE	NONE
CPSGBDRY	OUT		2	NONE	NONE
CPSGBAVG	OUT		2	NONE	NONE
CPSGBWET	OUT		2	NONE	NONE
**	001		_	IVOIVE	110111
	- and				
DO TAID			_		
CPSGSPND	OUT		2	ZERO	ZERO
CPSGLPND	OUT		2	ZERO	ZERO
CPSGAPND					
CPSGAPND	OUT		2	ZERO	ZERO
**	OUT		2	ZERO	ZERO
** CPFKSG01	OUT		2	ZERO NONE	ZERO NONE
**	OUT		2	ZERO	ZERO
** CPFKSG01 CPFKSG02	OUT OUT OUT		2 2 2	ZERO NONE NONE	ZERO NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03	OUT OUT OUT		2 2 2 2	ZERO NONE NONE NONE	ZERO NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04	OUT OUT OUT OUT		2 2 2 2 2	NONE NONE NONE NONE	ZERO NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05	OUT OUT OUT OUT OUT OUT		2 2 2 2 2 2	ZERO NONE NONE NONE NONE	ZERO NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04	OUT OUT OUT OUT		2 2 2 2 2	NONE NONE NONE NONE	ZERO NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05	OUT OUT OUT OUT OUT OUT OUT		2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE	ZERO NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07	OUT OUT OUT OUT OUT OUT OUT OUT		2 2 2 2 2 2 2 2 2 2	NONE NONE NONE NONE NONE NONE NONE	ZERO NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09	OUT OUT OUT OUT OUT OUT OUT OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE N	ZERO NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE N	ZERO NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16 CPFKSG16	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG18	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG19 CPFKSG19	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG19 CPFKSG19	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16 CPFKSG16 CPFKSG17 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG19 CPFKSG20 CPFKSG21	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16 CPFKSG16 CPFKSG16 CPFKSG17 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG19 CPFKSG20 CPFKSG21 CPFKSG21 CPFKSG22 CPSGAPFA	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG15 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG20 CPFKSG20 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG31 CPFKSG31 CPFKSG31	OUT		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG16 CPFKSG16 CPFKSG16 CPFKSG17 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG19 CPFKSG20 CPFKSG21 CPFKSG21 CPFKSG22 CPSGAPFA	OUT	CPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG11 CPFKSG12 CPFKSG15 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG20 CPFKSG20 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG21 CPFKSG31 CPFKSG31 CPFKSG31	OUT	CPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG17 CPFKSG18 CPFKSG18 CPFKSG19 CPFKSG20 CPFKSG20 CPFKSG20 CPFKSG21 CPFKSG31	OUT	CPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	ZERO NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG18 CPFKSG19 CPFKSG20 CPFKSG20 CPFKSG20 CPFKSG21 CPFKSG31	OUT	CPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	ZERO NONE NONE NONE NONE NONE NONE NONE
** CPFKSG01 CPFKSG02 CPFKSG03 CPFKSG04 CPFKSG05 CPFKSG06 CPFKSG07 CPFKSG08 CPFKSG09 CPFKSG10 CPFKSG11 CPFKSG12 CPFKSG13 CPFKSG14 CPFKSG15 CPFKSG15 CPFKSG16 CPFKSG17 CPFKSG17 CPFKSG18 CPFKSG18 CPFKSG19 CPFKSG20 CPFKSG20 CPFKSG20 CPFKSG21 CPFKSG31	OUT	CPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ZERO NONE NONE NONE NONE NONE NONE NONE	ZERO NONE NONE NONE NONE NONE NONE NONE

CPWMSVT3	OUT			2	NONE	NONE
CPWMBDRY	OUT			2	NONE	NONE
CPWMBAVG	OUT			2	NONE	NONE
CPWMBWET				2		
	OUT			2	NONE	NONE
**						
** WM Pulse	CPS					
CPWMSPND	OUT			2	ZERO	ZERO
CPWMLPND	OUT			2	ZERO	ZERO
CPWMAPND	OUT			2	ZERO	ZERO
**					_	_
CPFKWM01	OUT			2	NONE	NONE
				2	_	_
CPFKWM02	OUT				NONE	NONE
CPFKWM03	OUT			2	NONE	NONE
CPFKWM04	OUT			2	NONE	NONE
CPFKWM05	OUT			2	NONE	NONE
CPFKWM06	OUT			2	NONE	NONE
CPFKWM07	OUT			2	NONE	NONE
CPFKWM08	OUT			2	NONE	NONE
CPFKWM09	OUT			2	NONE	NONE
				2		
CPFKWM10	OUT				NONE	NONE
CPFKWM11	OUT			2	NONE	NONE
CPFKWM12	OUT			2	NONE	NONE
CPFKWM13	OUT			2	NONE	NONE
CPFKWM14	OUT			2	NONE	NONE
CPFKWM15	OUT			2	NONE	NONE
CPFKWM16	OUT			2	NONE	NONE
CPFKWM17	OUT			2		NONE
					NONE	
CPFKWM18	OUT			2	NONE	NONE
CPFKWM19	OUT			2	NONE	NONE
CPFKWM20	OUT			2	NONE	NONE
CPFKWM21	OUT			2	NONE	NONE
CPFKWM22	OUT			2	NONE	NONE
CPWMAPFA	OUT			2	NONE	NONE
CPWMAPFA	OUT			2	NONE	NONE
CPWMAPFB	OUT			2 2	NONE NONE	NONE NONE
CPWMAPFB **	OUT	Environmental	Flows	2	NONE	NONE
CPWMAPFB ** **	OUT Start	Environmental	Flows	2 Dummy	NONE CPs For	NONE
CPWMAPFB ** **	OUT Start		Flows	2 Dummy	NONE	NONE
CPWMAPFB ** ** EM **** EM Bas	OUT Start se Flow		Flows	Dummy	NONE CPs For	NONE
CPWMAPFB ** **	OUT Start		Flows	2 Dummy	NONE CPs For	NONE
CPWMAPFB ** ** EM **** EM Bas	OUT Start se Flow		Flows	2 Dummy 2 2 2	NONE CPs For	NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT	OUT Start Se Flow OUT		Flows	2 Dummy	NONE CPs For NONE	NONE** NONE
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1	OUT Start Se Flow OUT OUT		Flows	2 Dummy 2 2 2	NONE CPS For NONE NONE	NONE** NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3	OUT Start Se Flow OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2	NONE CPS For NONE NONE NONE NONE NONE	NONE** NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY	OUT Start See Flow OUT OUT OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE	NONE** NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG	OUT Start Se Flow OUT OUT OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET	OUT Start See Flow OUT OUT OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE	NONE** NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET **	OUT Start Se Flow OUT OUT OUT OUT OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse	OUT Start Se Flow OUT OUT OUT OUT OUT OUT OUT OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE XERO	NONE** NONE NONE NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE XERO	NONE** NONE NONE NONE NONE NONE NONE NONE
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE ZERO ZERO	NONE ** NONE NONE NONE NONE NONE NONE ZERO
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE NONE NONE NONE NONE NONE ZERO ZERO	NONE ** NONE NONE NONE NONE NONE NONE ZERO
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE VONE ZERO ZERO ZERO NONE	NONE ** NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE VONE VONE VONE VONE VONE NONE VONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE SERO ZERO ZERO ZERO NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE VONE VONE VONE VONE VONE NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE SERO ZERO ZERO ZERO NONE NONE NONE NONE
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE ZERO ZERO ZERO ZERO NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06	Start See Flow OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06 CPFKEM07	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE	NONE ** NONE NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT2 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBAVG CPEMBAVG CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06	Start See Flow OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE NONE NONE NONE NONE NONE NONE NON
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVT1 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06 CPFKEM07	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE	NONE ** NONE NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06 CPFKEM07 CPFKEM08	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOR NONE	NONE ** NONE NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM *** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06 CPFKEM07 CPFKEM06 CPFKEM07 CPFKEM08 CPFKEM09 CPFKEM10	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE	NONE NONE NONE NONE NONE NONE NONE ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM05 CPFKEM06 CPFKEM06 CPFKEM06 CPFKEM07 CPFKEM06 CPFKEM07 CPFKEM08 CPFKEM09 CPFKEM10 CPFKEM11	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE	NONE ** NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBAVG CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMAPND ** CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM04 CPFKEM05 CPFKEM06 CPFKEM06 CPFKEM06 CPFKEM06 CPFKEM07 CPFKEM08 CPFKEM09 CPFKEM10 CPFKEM11 CPFKEM12	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE NONE NONE NONE NONE ZERO ZERO ZERO ZERO NONE NONE NONE NONE NONE NONE NONE N	NONE ** NONE NONE NONE NONE NONE NONE NONE N
CPWMAPFB ** ** EM **** EM Bas CPEMSEVT CPEMSVD1 CPEMSVT3 CPEMBDRY CPEMBDRY CPEMBWET ** ** EM Pulse CPEMSPND CPEMLPND CPEMLPND CPEMLPND CPEMLPND CPFKEM01 CPFKEM02 CPFKEM03 CPFKEM05 CPFKEM06 CPFKEM06 CPFKEM06 CPFKEM07 CPFKEM06 CPFKEM07 CPFKEM08 CPFKEM09 CPFKEM10 CPFKEM11	OUT Start OUT		Flows	2 Dummy 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NONE CPS FOT NONE NONE	NONE ** NONE NONE NONE NONE NONE NONE NONE N

CPFKEM14	OUT			2	NONE	NONE
CPFKEM15	OUT			2	NONE	NONE
-						
CPFKEM16	OUT			2	NONE	NONE
CPFKEM17	OUT			2	NONE	NONE
CPFKEM18	OUT			2	NONE	NONE
CPFKEM19	OUT			2	NONE	NONE
CPFKEM20	OUT			2	NONE	NONE
CPFKEM21	OUT			2	NONE	NONE
CPFKEM22	OUT			2	NONE	NONE
CPEMAPFA	OUT			2		NONE
					NONE	
CPEMAPFB	OUT			2	NONE	NONE
* *						
**						
*******			70 OT 44.	******		
	511	ART EFLO				
CIDAYSPY	31	28.25	31	30	31	30
CI	31	31	30	31	30	31
**** Lava	aca Piwar	r near Ed	na RACE	CIs		
±a v c					000000	000000
		9999999			9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILESVD1	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999			9999999	
	9999999		9999999		9999999	
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILESVT3	9999999	9999999	9999999		9999999	
CI	9999999	9999999	9999999		9999999	
CILEBDRY	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
CILEBAVG	9999999	9999999	9999999	9999999	9999999	9999999
					9999999	
CI	9999999		9999999			
CILEBWET	9999999	9999999	9999999	9999999	9999999	9999999
CI	9999999	9999999	9999999	9999999	9999999	9999999
** I.E. PIII	LSE CIs					
	. 7					
	ılse Dura		_	_	_	_
*** LE PU	ılse Dura 6	ation 6	7	7	7	7
			7 5	7 5	7 5	7 6
CILESPND CI	6 4	6 4	5	5	5	6
CILESPND CI CILELPND	6 4 7	6 4 7	5 7	5 7	5 7	6 7
CILESPND CI CILELPND CI	6 4 7 6	6 4 7 6	5 7 6	5 7 6	5 7 6	6 7 7
CILESPND CI CILELPND	6 4 7 6 7	6 4 7	5 7 6 7	5 7	5 7	6 7
CILESPND CI CILELPND CI	6 4 7 6	6 4 7 6	5 7 6	5 7 6	5 7 6	6 7 7
CILESPND CI CILELPND CI CILEAPND CI	6 4 7 6 7 7	6 4 7 6 7 7	5 7 6 7	5 7 6 7	5 7 6 7	6 7 7 7
CILESPND CI CILELPND CI CILEAPND CI **** LE PU	6 4 7 6 7 7 alse Calc	6 4 7 6 7 7 Culation	5 7 6 7 7	5 7 6 7 7	5 7 6 7 7	6 7 7 7 7
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01	6 4 7 6 7 7 1lse Calc 9999999	6 4 7 6 7 7 culation 9999999	5 7 6 7 7 9999999	5 7 6 7 7 9999999	5 7 6 7 7 9999999	6 7 7 7 7 7
CILESPND CI CILELPND CI CILEAPND CI **** LE PU	6 4 7 6 7 7 1lse Calc 9999999	6 4 7 6 7 7 Culation	5 7 6 7 7	5 7 6 7 7 9999999	5 7 6 7 7	6 7 7 7 7 7
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01	6 4 7 6 7 7 1lse Calc 9999999	6 4 7 6 7 7 Culation 9999999 9999999	5 7 6 7 7 9999999	5 7 6 7 7 9999999 9999999	5 7 6 7 7 9999999	6 7 7 7 7 9999999 9999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02	6 4 7 6 7 1lse Calc 9999999 9999999	6 4 7 6 7 7 Culation 999999 999999	5 7 6 7 7 9999999 9999999	5 7 6 7 7 9999999 9999999	5 7 6 7 7 9999999 9999999	6 7 7 7 7 9999999 9999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02	6 4 7 6 7 1lse Calc 9999999 9999999	6 4 7 6 7 7 Culation 999999 999999 999999	5 7 6 7 7 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999	6 7 7 7 7 9999999 9999999 9999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02 CI CIFKLE03	6 4 7 6 7 1lse Calc 9999999 9999999 9999999	6 4 7 6 7 7 Culation 999999 999999 999999 999999	5 7 6 7 7 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999 9999999	6 7 7 7 7 9999999 9999999 9999999 9999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02	6 4 7 6 7 1lse Calc 9999999 9999999 9999999 9999999	6 4 7 6 7 7 Culation 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 9999999 9999999 9999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02 CI CIFKLE03	6 4 7 6 7 1lse Calc 9999999 9999999 9999999 9999999	6 4 7 6 7 7 Culation 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 9999999 9999999 9999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI *** LE PI CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04	6 4 7 6 7 1lse Calc 9999999 9999999 9999999 9999999	6 4 7 6 7 7 Culation 9999999 9999999 9999999 9999999	5 7 6 7 7 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI	6 4 7 6 7 11se Calc 999999 999999 999999 999999 999999 9999	6 4 7 6 7 7 2ulation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	67777779999999999999999999999999999999
CILESPND CI CILELPND CI CILEAPND CI *** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE04 CI CIFKLE05	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI *** LE Pt CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI	6 4 7 6 7 11se Calc 999999 999999 999999 999999 999999 9999	6 4 7 6 7 7 2ulation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	67777779999999999999999999999999999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 culation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 culation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE06 CI CIFKLE07	6 4 7 6 7 11se Calc 9999999 999999 9999999 9999999 9999999	6 4 7 6 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 7 Fulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE06 CI CIFKLE07	6 4 7 6 7 11se Calc 9999999 999999 9999999 9999999 9999999	6 4 7 6 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07	6 4 7 6 7 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 7 Fulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI	6 4 7 6 7 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CI CILEAPND CI *** LE PR CIFKLE01 CI CIFKLE02 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08	6 4 7 6 7 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CICIEAPND CI *** LE PR CIFKLE01 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE09	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CI CILEAPND CI *** LE PR CIFKLE01 CI CIFKLE02 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08	6 4 7 6 7 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CICILEAPND CI *** LE PR CIFKLE01 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE09 CI CIFKLE09 CI CIFKLE09	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CICILELPND CI CILEAPND CI *** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08 CI CIFKLE09 CI CIFKLE09 CI CIFKLE10	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 77 6 77 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CILEAPND CI *** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08 CI CIFKLE08 CI CIFKLE08 CI CIFKLE09 CI CIFKLE10 CI CIFKLE11	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08 CI CIFKLE09 CI CIFKLE09 CI CIFKLE11 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 1 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08 CI CIFKLE09 CI CIFKLE09 CI CIFKLE11 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 2ulation 9999999 9999999 9999999 9999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999
CILESPND CI CI CILELPND CI CILEAPND CI **** LE PO CIFKLE01 CI CIFKLE02 CI CIFKLE03 CI CIFKLE04 CI CIFKLE05 CI CIFKLE05 CI CIFKLE05 CI CIFKLE06 CI CIFKLE07 CI CIFKLE07 CI CIFKLE07 CI CIFKLE08 CI CIFKLE08 CI CIFKLE09 CI CIFKLE09 CI CIFKLE11 CI	6 4 7 6 7 11se Calc 9999999 9999999 9999999 9999999 999999	6 4 7 6 7 7 1 999999 999999 999999 999999 999999 9999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	5 7 6 7 7 9999999 999999 999999 999999 999999	5 7 6 7 7 999999 999999 999999 999999 999999 9999	6 7 7 7 7 9999999 999999 999999 999999 999999

```
CT
CI
CI
CT
CI
**** Sandy Creek near Ganado BASE CIs
CT
CI
CT
** SG PULSE CIS
*** SG Pulse Duration
  6
CISGSPND 6 6
  6
   6
    6
 4
8
6
 4
8
CI
  6
   6
   6
    6
CISGLPND
  10
   10
   10
    10
 6
  6
CT
   6
   6
    8
 10
10
CISGAPND
  10
   10
   10
    10
 10
 10
  10
   10
*** SG Pulse Calculation
CI
CI
CT
CT
CI
```

```
CI
999999 9999999 9999999 9999999 9999999
CT
CT
CI
CT
CI
CT
CI
CI
**** West Mustange Creek near Ganado BASE CIs
** WM PULSE CIS
 6 6 4 6 8 8 8 8 8 8 8 8
*** WM Pulse Duration
6 6
CIWMSPND
   6
    6
    6
CI
   6
    6
    6
   8
CIWMLPND
 8
    8
   8
 6
    8
    8
CT
 8
8
CIWMAPND
    8
    8
CI
   8
    8
*** WM Pulse Calculation
CT
CI
```

```
CI
CT
CI
CT
CI
CI
CI
CI
CI
CT
* *
**** West Mustange Creek near Ganado BASE CIs
CT
CI
** EM PULSE CIS
*** EM Pulse Duration
 5 7 7 7
5 6 6 6
8 9 9 9
6 7 7 7
   7
CIEMSPND
5 5
   5
CI
 5
CIEMLPND
8
   9
6
   8
CI
  10
 10
CIEMAPND 10
  10
   10
   10
```

```
10
  10 10 10 10
       10
*** EM Pulse Calculation
CI
CT
 CT
CI
 999999 9999999 9999999 9999999 9999999
CI
* *
** Constant Inflow Cards (based on monthly min of last 5 years of USBR's FAD cards).
**CITWW217 30 26 41 47 29

**CITWW322 53 52 54 55 57

**CITWW331 24 24 18 3 26

**CITWW331 24 24 18 3 26

**CI 20 26 17 21 21

**CIWDV818 0 0 0 646 1552 2

**CI 3849 2424 3683 50 0
       0
       41
       50
       52
       28
       25
       2201
       0
```

```
**CI WW401
                      31
                                                     38
**CT
                       39
               37
                              38
                                      36
                                             34
                                                     34
**CI WW621
                       7
                7
                               6
                                       7
                                              8
                                                      6
**CI
                                       7
                5
                       6
                               7
                                              8
                                                      7
**CI WW622
                7
                                      7
                       7
                               6
                                              8
                                                      6
**CI
* *
**WR GS300 9999999 XMONTH20131231
                                                                     TESTFLOWS
**WRGS1000 9999999
                  XMONTH20131231
                                                                     TESTFLOWS
**WRWGS800 9999999 XMONTH20131231
                                                                     TESTFLOWS
**WREDV712 9999999 XMONTH20131231
                                                                     TESTFLOWS
*****
***** START E-FLOWS *********
**Dry, Average or Wet Hydrologic Condition in HIS File.
*************START E-Flows Lavaca River near Edna
**Start Base LE
** During Severe Conditions set Sub or Base trigger
                 LEDRY20110301
WRLESVD1
          18694
                                                                   FKLESEVD1
WRLESEVT
                 XMONTH20110301
                                                                  SEVTRIGGER
TO
   2
                   ADD
                                         GS300
                                                                        CONT
      6
                   DIV
                                                           FKLESEVD1
**** Severe Condition Subsistence or Base
WRLESVT2 18694 LEDRY20110301
                                                                   FKLESEVD2
                                     1 DV221A
                          1
TO
   16
                   LIM
      5 LESEVT
                             0
                                     1 9999999
FS
                    1
                                                1
WRLESVT3
         4318
                  LESUB20110301
                                                                  FKLESEVSUB
   16
                   LIM 1
                                     1 DV221A
T \cap
                             0
                                     0
      5 LESVT2
                     1
                                           1
                                                1
*** Dry, Average, Wet Conditions, see .HIS file for Hydrologic conditions
WRLEBDRY 18694
                 LEDRY20110301
                                                                    FKLEBASD
     16
                   T.TM
                                     2 DV221A
WRLEBAVG
        33162
                 LEAVG20110301
                                                                    FKLEBASM
TO
   16
                   LIM
                             3
                                     3 DV221A
WRLEBWET
          55929
                  LEWET20110301
                                                                    FKLEBASW
                                    4 DV221A
TO
   16
                   LIM 4
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
                                                   LEBASEFIN
                      20110301
IFLEBASE
                    ADD
TO
     13
                                                          FKLESEVSUB
                                                                        CONT
TO
     13
                    ADD
                                                            FKLESEVD2
                                                                        CONT
TO
     13
                   ADD
                                                            FKLEBASD
                                                                        CONT
TO
     13
                    ADD
                                                            FKLEBASM
                                                                        CONT
TO
                    ADD
                                                            FKLEBASW
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
                XMONTH20110301
WRFKLE01
                                                                  BF-LEB-SP1
TO
                   ADD
                                        DAYSPY
                                                                        CONT
TO
      2
                    SUB
                                       LESPND
WRFKLE01
                 XMONTH20110301
                                                                  BF-LEB-SP2
TO
      6
                   ADD
                                                           BF-LEB-SP1
                                                                      CONT
      2
                                        DAYSPY
TO
                   DIV
WRFKLE01
                 XMONTH20110301
                                                                  BF-LEB-SP3
TO
     13
                   ADD
                                                           LEBASEFIN
                                                                       CONT
TΟ
                   MTTT.
                                                           BF-LEB-SP2
      6
* *
** Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target
         8000 XMONTH20110301
WRFKLE04
                                                                   FKLESPULW
TO
      6
                   ADD
                                                           BF-LEB-SP3
                 XMONTH20110301
                                                                  LEWINONOFF
WRFKLE05
      2
                   ADD
                                         GS300
TO
                                                                        CONT
TO
      6
                   DIV
                                                            FKLESPULW
```

```
* *
WRFKLE06 18400 XMONTH20110301
                                                            FKLESPUSP
TO 6
                ADD
                                                     BF-LEB-SP3
WRFKLE07
               XMONTH20110301
                                                           LESPRONOFF
                                    GS300
TO 2
                ADD
                                                            CONT
                                                      FKLESPUSP
TO
                 DTV
* *
        370 XMONTH20110301
WRFKLE08
                                                            FKLESPULS
TO 6
                 ADD
                                                     BF-LEB-SP3
WRFKLE09
               XMONTH20110301
                                                          LESUMONOFF
TO 2
                ADD
                                    GS300
                                                               CONT
                                                      FKLESPULS
TO
                  DIV
WRFKLE10
        6100 XMONTH20110301
                                                            FKLESPULF
TO 6
                                                     BF-LEB-SP3
                ADD
               XMONTH20110301
                                                     LEFALONOFF
WRFKLE11
TO 2
                ADD
                                    GS300
                                                                CONT
                 DIV
                                                     FKLESPULF
TO
     6
** ENGAGING PULSE
IFLESPUL 8000 XMONTH20110301
                                               LESPULW1
                ADD
                                                    BF-LEB-SP3
TO 6
                                               1 2 2 12 2
FS 5 FKLE05
                 1
                       0
                                 1 9999999
IFLESPUL 8000 XMONTH20110301
                                               LESPULW2
                            3
               ADD 1 0
                                               BF-LEB-SP3
1 2 0 12 2
TO 6
      5 FKLE05
                                 1 9999999
FS
IFLESPUL 18400 XMONTH20110301
                                               LESPUSP1
               ADD
                                                    BF-LEB-SP3
TO 6
     5 FKLE07
                                               1 2 3 3 6
FS
                 1
                         Ω
                                 1 9999999
IFLESPUL 18400 XMONTH20110301
                                               LESPUSP2
TO 6
FS 5 FKLE07
                 ADD 1 0
                                               BF-LEB-SP3
1 2 0 3 6
                                 1 9999999
                                                BF-LEB-SP3
IFLESPUL 370 XMONTH20110301
                                               LESPULS1
              ADD 1 0
TO 6
      5 FKLE09
                                 1 9999999
FS
IFLESPUL
        370 XMONTH20110301
                                               LESPULS2
                                                BF-LEB-SP3
               ADD
TO 6
      5 FKLE09
                                 1 9999999
                                               1 2 0 7 8
                 1
IFLESPUL 6100 XMONTH20110301
                                               LESPULF1
TO 6
FS 5 FKLE11
               ADD
                                               BF-LEB-SP3
1 2 2 9 11
                 1
                                 1 9999999
IFLESPUL 6100 XMONTH20110301
                              3
                                               LESPULF2
                 ADD
                                                   BF-LEB-SP3
                             1 9999999
      5 FKLE11
                                           2
                 1
                         Ω
                                               1 2 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFLESPUL
                 20110301
                                                LESPFIN
TO 13
                  ADD
                                                      LESPULW2
                                                                CONT
TO
    13
                 ADD
                                                      LESPUSP2
                                                                CONT
TO 13
                 ADD
                                                      LESPULS2
                                                                 CONT
   13
TO
                 ADD
                                                      LESPULF2
*******LE LARGE PULSE *********************************
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
        XMONTH20110301
WRFKLE02
                                                           BF-LEB-LP1
TO
      2
                 ADD
                                   DAYSPY
                                                                CONT
TO
      2
                 SUB
                                   T.ET.PND
WRFKLE02
              XMONTH20110301
                                                           BF-LEB-LP2
               ADD
TO 6
                                                    BF-LEB-LP1 CONT
TO
      2
                 DIV
                                   DAYSPY
               XMONTH20110301
WRFKLE02
                                                            BF-LEB-LP3
TO 13
               ADD
                                                     LEBASEFIN CONT
    6
                 MUL
                                                     BF-LEB-LP2
TO
* *
```

```
** Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target
WRFKLE12
          18400 XMONTH20110301
                                                                   FKI.EI.PIII.W
TO
      6
                   ADD
                                                           BF-LEB-LP3
WRFKLE13
                 XMONTH20110301
                                                                 LELWINONOFF
                                         GS300
TΟ
      2
                   ADD
                                                                        CONT
                                                            FKLELPULW
TO
                    DTV
* *
WRFKLE14
          18400 XMONTH20110301
                                                                   FKLELPUSP
TO
      6
                    ADD
                                                           BF-LEB-LP3
                 XMONTH20110301
WRFKLE15
                                                                 LELSPRONOFF
TO
      2
                    ADD
                                         GS300
                                                                        CONT
TO
      6
                    DIV
                                                            FKLELPUSP
WRFKLE16
           1800 XMONTH20110301
                                                                   FKLELPULS
                                                           BF-LEB-LP3
TO
      6
                   ADD
                 XMONTH20110301
WRFKLE17
                                                                LELSUMONOFF
TΟ
      2
                    ADD
                                         GS300
                                                                        CONT
                    DIV
                                                            FKLELPULS
TO
      6
* *
          18000 XMONTH20110301
WRFKLE18
                                                                   FKLELPULF
                                                           BF-LEB-LP3
TO
      6
                   ADD
WRFKLE19
                 XMONTH20110301
                                                                 LELFALONOFF
                   ADD
                                         GS300
TO
      2
                                                                        CONT
TΟ
      6
                    DTV
                                                            FKLELPULF
** ENGAGING PULSE
IFLELPUL 18400 XMONTH20110301
                                                     LELPULW1
                                                          BF-LEB-LP3
      6
                    ADD
      5 FKLE13
FS
                    1
                             Λ
                                     1 9999999
                                                2
                                                        1
                                                           2 12
         18400
                 XMONTH20110301
IFLELPUL
                                                     LELPULW2
TO
      6
                    ADD
                                                           BF-LEB-LP3
      5 FKLE13
                                     1 9999999
FS
                    1
                                                2
                                                    1 1 0 12 2
IFLELPUL
         18400
                 XMONTH20110301
                                                     LELPUSP1
      6
                    ADD
TO
                                                          BF-LEB-LP3
                                     1 9999999
                                                        1
FS
      5
        FKLE15
                    1
                                                           3 3 6
IFLELPUL
         18400
                 XMONTH20110301
                                                     LELPUSP2
                                                           BF-LEB-LP3
TO
                   ADD
      6
         FKLE15
                                     1 9999999
FS
      5
                    1
                                                2
                                                          0 3 6
         1800
                 XMONTH20110301
IFLELPUL
                                                     LELPULS1
                    ADD
TO
      6
                                                           BF-LEB-LP3
FS
      5
         FKLE17
                     1
                                     1 9999999
                                                        1
                                                          1
                XMONTH20110301
         1800
                                 3
                                                     LELPULS2
IFLELPUL
TΩ
      6
                    ADD
                                                           BF-LEB-LP3
      5 FKLE17
FS
                    1
                             Ω
                                     1 9999999
                                                2
                                                        1 0
                                                              7 8
IFLELPUL
         18000
                 XMONTH20110301
                                                     LELPULF1
                    ADD
                                                           BF-LEB-LP3
TO
      6
      5 FKLE19
                             Λ
                                     1 9999999
                                                        1
                                                          2 9 11
FS
                    1
IFLELPUL
         18000
                 XMONTH20110301
                                 3
                                                     LELPULF2
                    ADD
                                                           BF-LEB-LP3
                                     1 9999999
                                                2
      5 FKLE19
                             Ω
                                                            0 9 11
                    1
                                                        1
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFLELPUL
                      20110301
                                                      LELPFIN
    13
                    ADD
                                                             LELPULW2
                                                                        CONT
TO
TO
     13
                    ADD
                                                             LELPUSP2
                                                                        CONT
     13
                                                             LELPULS2
                                                                        CONT
TO
                    ADD
TO
     13
                    ADD
                                                             LELPULF2
******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKLE03
                 XMONTH20110301
                                                                  BF-LEB-AP1
TO
      2
                                        DAYSPY
                                                                        CONT
                   ADD
      2
                    SUB
                                        LELPND
                                                                  BF-LEB-AP2
WRFKLE03
                XMONTH20110301
```

```
TO
                   ADD
                                                         BF-LEB-AP1
                                                                      CONT
                                      DAYSPY
TO
      2
                   DTV
WRFKLE03
                XMONTH20110301
                                                                BF-LEB-AP3
TO
    13
                   ADD
                                                          LEBASEFIN
                                                                    CONT
TO
      6
                   MUL
                                                         BF-LEB-AP2
* *
** Developing pulse+base flow targets, Determining if Reg Flow at GS300 exceeded target
WRFKLE20 18400 XMONTH20110301
                                                                  FKLEAPUL
TO
      6
                   ADD
                                                         BF-LEB-AP3
                XMONTH20110301
                                                                LEANNONOFF
WRFKLE21
TO
      2
                   ADD
                                       GS300
                                                           FKLEAPUL
      6
                   DIV
** ENGAGING PULSE
IFLEAPFA
        18400 XMONTH20110301
                                                    LEAPLA1
TO
                                                        BF-LEB-AP3
      6
                   ADD
      5 FKLE21
                                    1 9999999
                                                        5 1 6
FS
                                               2
IFLEAPFA
        18400
                XMONTH20110301
                                3
                                                    LEAPLA2
                                                         BF-LEB-AP3
TO
      6
                   ADD
      5
        FKLE21
                                    1 9999999
FS
                    1
                                               2
                                                      1
                                                        0 1
                                                               6
                XMONTH20110301
IFLEAPFB
        18400
                                                    LEAPLB1
                   ADD
                                                         BF-LEB-AP3
TO
      6
      5 FKLE21
                    1
                            0
                                    1 9999999
                                                      1 5 7 12
        18400
                XMONTH20110301
IFLEAPFB
                                3
                                                    LEAPLB2
TO
      6
                   ADD
                                                         BF-LEB-AP3
                            Ω
                                    1 9999999
                                               2
FS
      5 FKLE21
                    1
                                                      1
                                                         0 7 12
                     20110301
WRFKLE22
                                                                LEFRSTHALF
TO
    13
                                                           LEAPLA2
IFLEAPFB
                      20110301
                                3
                                                    T.EAPT.B3
TO
   13
                                                           LEAPLB2
                                                      1 11 1 6
     10
                     0
                                    1 9999999
                                               2
                                                                        1
                                                                               LEFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
                      20110301
                                                    LEAPFIN
   13
                                                           LEAPLA2
                                                                      CONT
TO
                   ADD
TO
     13
                   ADD
                                                            LEAPLB3
******
******** End E-FLOWS FOR GS300 Lavaca River near Edna
* *
** Start BASE SG
** During Severe Conditions set Sub or Base trigger
                                                                 FKSGSEVD1
WRSGSVD1
          4831
                SGDRY20110301
WRSGSEVT
                XMONTH20110301
                                                                SEVTRIGGER
   2
TO
                   ADD
                                      GS1000
                                                                      CONT
     6
                   DIV
                                                         FKSGSEVD1
**** Severe Condition Subsistence or Base
WRSGSVT2 4831 SGDRY20110301
                                                                 FKSGSEVD2
                  LIM 1
TO 16
                                    1 DV221A
      5 SGSEVT
                    1
                           0
                                    1 9999999
WRSGSVT3
                 SGSUB20110301
           719
                                                                FKSGSEVSUB
   16
                  LIM 1
                                    1 DV221A
TO
     5 SGSVT2
                    1
                            0
                                   Ω
                                      1
                                               1
*** Dry, Average, Wet Conditions, see .HIS fiSG for Hydrologic conditions
WRSGBDRY
        4831
                 SGDRY20110301
                                                                  FKSGBASD
TO 16
                  LIM
                           2
                                    2 DV221A
WRSGBAVG
         12265
                 SGAVG20110301
                                                                  FKSGBASM
                                    3 DV221A
TO
   16
                  LIM
WRSGBWET
          24458
                 SGWET20110301
                                                                  FKSGBASW
                                   4 DV221A
    16
                  LIM
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFSGBASE
                     20110301 2
                                                 SGBASEFIN
TO
     13
                   ADD
                                                         FKSGSEVSUB
                                                                      CONT
TO
     13
                   ADD
                                                                      CONT
                                                          FKSGSEVD2
                   ADD
                                                          FKSGBASD
TO
     13
                                                                      CONT
TO
     13
                   ADD
                                                          FKSGBASM
                                                                      CONT
```

TO 13		ADD				FKSGBASW
******	** SG SMA	ALL PULSE *****	*****	*****	****	*********
						RIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
						AND DETERMINE FACTORS TO
						THE MONTH OUTSIDE OF PULSE
WRFKSG01		XMONTH20110301		1112 121110	2 01	BF-SGB-SP1
TO 2		ADD		DAYSPY		CONT
TO 2		SUB		SGSPND		00111
WRFKSG01		XMONTH20110301		BOBIND		BF-SGB-SP2
TO 6		ADD				BF-SGB-SP1 CONT
TO 2		DIV		DAYSPY		DI DOD DI I CONI
WRFKSG01		XMONTH20110301		DAISEI		BF-SGB-SP3
TO 13		ADD				SGBASEFIN CONT
TO 6		MUL				BF-SGB-SP2
**		MOL				BF-3GB-3P2
	oning nul	sethage flow tar	aeta D	eterminina	, if t	Reg Flow at SG300 exceeded target
WRFKSG04		XMONTH20110301	gets, D	ecermining	, 11 1	FKSGSPULW
TO 6	4000	ADD				BF-SGB-SP3
WRFKSG05		XMONTH20110301				SGWINONOFF
				GS1000		
		ADD		GSIUUU		CONT
TO 6		DIV				FKSGSPULW
	7200	XMONITH 120110201				FKSGSPUSP
WRFKSG06 TO 6	7300	XMONTH20110301				
-		ADD				BF-SGB-SP3
WRFKSG07		XMONTH20110301		gg1000		SGSPRONOFF
TO 2		ADD		GS1000		CONT
TO 6		DIV				FKSGSPUSP
	F00	XMONTHI 120110201				ENGGODIH
WRFKSG08	500	XMONTH20110301				FKSGSPULS
TO 6		ADD				BF-SGB-SP3
WRFKSG09		XMONTH20110301		gg1000		SGSUMONOFF
TO 2		ADD		GS1000		CONT
TO 6		DIV				FKSGSPULS
	2100	VMONTELI 2 0 1 1 0 2 0 1				ENCOCDIII E
WRFKSG10	3100	XMONTH20110301				FKSGSPULF
TO 6		ADD				BF-SGB-SP3
WRFKSG11		XMONTH20110301		gg1000		SGFALONOFF
TO 2		ADD		GS1000		CONT
TO 6	ING DIII G	DIV				FKSGSPULF
** ENGAGI						CCCDIII W1
IFSGSPUL TO 6	4000	XMONTH20110301 ADD				SGSPULW1
-	EKOGO E		1	9999999	2	BF-SGB-SP3
FS 5	FKSG05	1 0 XMONTH20110301		9999999	2	1 2 2 12 2
IFSGSPUL	4000		3			SGSPULW2
TO 6	ENCOVE	ADD	1	000000	2	BF-SGB-SP3
		1 0		9999999	2	1 2 0 12 2
		XMONTH20110301				SGSPUSP1
10 6	DIZ C C C C	ADD 1 0	1	000000	0	BF-SGB-SP3 1 2 3 3 6
F5 5	FKSGU/	T U	, I	9999999	2	
		XMONTH20110301	3			SGSPUSP2
TO 6	T	ADD 1 0	-	000000	0	BF-SGB-SP3
			Т	9999999	2	1 2 0 3 6
IFSGSPUL	500	XMONTH20110301				SGSPULS1
TO 6		ADD	1	000000	0	BF-SGB-SP3
		1 0		9999999	2	1 2 1 7 8
		XMONTH20110301	3			SGSPULS2
TO 6		ADD 1 0	4	000000	2	BF-SGB-SP3
			Τ	9999999	2	1 2 0 7 8
		XMONTH20110301				SGSPULF1
	EVCC11		4	000000	2	BF-SGB-SP3 1 2 2 9 11
FS 5	2100 4 K 2 G T T	1 0 XMONTH20110301		9999999	2	
	3100		3			SGSPULF2
TO 6		ADD				BF-SGB-SP3

```
FS 5 FKSG11 1 0 1 9999999 2 1 2 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
          20110301
IFSGSPUL
                                                  SGSPFIN
TO 13
                  ADD
                                                        SGSPULW2
                                                                  CONT
TO
     13
                  ADD
                                                        SGSPUSP2
                                                                  CONT
                  ADD
TO
   13
                                                        SGSPIII.S2
                                                                   CONT
TO
     13
                  ADD
                                                        SGSPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
          XMONTH20110301
WRFKSG02
                                                             BF-SGB-LP1
TO
      2
                  ADD
                                     DAYSPY
                                                                  CONT
TO
      2
                  SUB
                                     SGLPND
WRFKSG02
               XMONTH20110301
                                                             BF-SGB-LP2
TO
      6
                ADD
                                                      BF-SGB-LP1 CONT
      2
                                    DAYSPY
TO
                  DIV
WRFKSG02
               XMONTH20110301
                                                             BF-SGB-LP3
TO 13
                  ADD
                                                       SGBASEFIN
                                                                 CONT
                  MUL
                                                      BF-SGB-LP2
TO
     6
** Developing pulse+base flow targets, Determining if Reg Flow at GS1000 exceeded target
WRFKSG12 10000 XMONTH20110301
                                                              FKSGLPULW
TO 6
                 ADD
                                                      BF-SGB-LP3
               XMONTH20110301
                                                         SGLWINONOFF
WRFKSG13
TO 2
                 ADD
                                     GS1000
                                                                 CONT
T \cap
                  DIV
                                                       FKSGLPULW
* *
WRFKSG14
         12200 XMONTH20110301
                                                              FKSGLPUSP
TO 6
                 ADD
                                                      BF-SGB-LP3
WRFKSG15
               XMONTH20110301
                                                            SGLSPRONOFF
TO
      2
                                     GS1000
                  ADD
                                                                  CONT
                                                       FKSGLPUSP
TO
      6
                  DIV
* *
          1600 XMONTH20110301
WRFKSG16
                                                              FKSGLPULS
TO 6
                 ADD
                                                      BF-SGB-LP3
WRFKSG17
               XMONTH20110301
                                                            SGLSUMONOFF
TO 2
                 ADD
                                     GS1000
                                                                 CONT
TO
      6
                  DIV
                                                       FKSGLPULS
        9200 XMONTH20110301
WRFKSG18
                                                              FKSGLPULF
                                                      BF-SGB-LP3
TO 6
                 ADD
               XMONTH20110301
WRFKSG19
                                                           SGLFALONOFF
TO
      2
                  ADD
                                     GS1000
                                                                 CONT
      6
                                                       FKSGLPULF
TO
                  DIV
** ENGAGING PULSE
IFSGLPUL 10000 XMONTH20110301
                                                 SGLPULW1
                  ADD
                                                     BF-SGB-LP3
2 12 2
TO
      6
      5 FKSG13
                                  1 9999999
                  1
IFSGLPUL
        10000
               XMONTH20110301
                                                 SGLPULW2
                  ADD
                                                     BF-SGB-LP3
TO 6
                                                1 1 0 12 2
      5 FKSG13
                  1
                          Ω
                                  1 9999999
IFSGLPUL 12200
               XMONTH20110301
                                                 SGLPUSP1
                                                   BF-SGB-LP3
1 3 3 6
TO
      6
                  ADD
      5 FKSG15
                                  1 9999999
FS
                  1
                          Ω
IFSGLPUL 12200
               XMONTH20110301
                              3
                                                 SGLPUSP2
                ADD
                                                     BF-SGB-LP3
      6
                                                1 1 0 3 6
      5 FKSG15
                                  1 9999999
                                             2
                  1
                          Ω
FS
        1600 XMONTH20110301
IFSGLPUL
                                                 SGLPULS1
TO
      6
                  ADD
                                                      BF-SGB-LP3
                                                1 1 1 7 8 SGLPULS2
                                  1 9999999
      5 FKSG17
                  1
IFSGLPUL 1600 XMONTH20110301
```

BF-SGB-LP3

TO

6

ADD

```
1 9999999
    5 FKSG17
                1 0
                                                1 1 0 7 8
        9200 XMONTH20110301
                                                SGLPULF1
TESGLPIII
                                                   BF-SGB-LP3
TO
      6
                  ADD
FS
      5 FKSG19
                  1
                           0
                                  1 9999999
                                                   1
                                                     2 9 11
               XMONTH20110301
        9200
IFSGLPUL
                              3
                                                SGLPULF2
                                                      BF-SGB-LP3
      6
                  ADD
      5 FKSG19
                  1
                          Ω
                                  1 9999999
                                            2.
                                                   1
                                                     0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFSGLPUL
                     20110301
                                                 SGLPFIN
                                                       SGLPULW2
TO
   13
                  ADD
                                                                  CONT
TO
     13
                  ADD
                                                        SGLPUSP2
                                                                  CONT
TO
     13
                  ADD
                                                        SGLPULS2
                                                                  CONT
TO
    13
                  ADD
                                                        SGLPULF2
*******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
               XMONTH20110301
WRFKSG03
                                                             BF-SGB-AP1
TO
      2
                  ADD
                                    DAYSPY
                                                                  CONT
      2
                  SUB
                                    SGLPND
TO
WRFKSG03
               XMONTH20110301
                                                             BF-SGB-AP2
TO
      6
                 ADD
                                                      BF-SGB-AP1 CONT
TΩ
      2
                  DIV
                                    DAYSPY
WRFKSG03
               XMONTH20110301
                                                             BF-SGB-AP3
                                                       SGBASEFIN CONT
TO 13
                 ADD
TO
      6
                  MUL
                                                      BF-SGB-AP2
** Developing pulse+base flow targets, Determining if Reg Flow at SG300 exceeded target
WRFKSG20 12200 XMONTH20110301
                                                               FKSGAPUL
                                                      BF-SGB-AP3
TO 6
                 ADD
WRFKSG21
               XMONTH20110301
                                                            SGANNONOFF
      2
                                    GS1000
TO
                  ADD
                                                                  CONT
                                                        FKSGAPUL
TΩ
      6
                  DTV
** ENGAGING PULSE
IFSGAPFA 12200 XMONTH20110301
                                                 SGAPLA1
                                                     BF-SGB-AP3
TO 6
                 ADD
                                                   1 5 1 6
      5 FKSG21
                          Λ
                                  1 9999999
                                            2
FS
                  1
                                                                     1
IFSGAPFA
        12200
               XMONTH20110301
                              3
                                                 SGAPLA2
TO
      6
                  ADD
                                                      BF-SGB-AP3
      5 FKSG21
                                  1 9999999
                                                   1 0 1 6
                  1
                                            2
FS
               XMONTH20110301
IFSGAPFB 12200
                                                 SGAPLB1
TO
      6
                  ADD
                                                     BF-SGB-AP3
                                                   1 5 7 12
FS
      5 FKSG21
                   1
                          0
                                  1 9999999
                                                                     1
IFSGAPFB
        12200
               XMONTH20110301
                                                 SGAPLB2
                                                      BF-SGB-AP3
TO 6
                  ADD
FS
      5 FKSG21
                   1
                                  1 9999999
                                            2
                                                     0 7 12
WRFKSG22
                    20110301
                                                             SGFRSTHALF
                                                        SGAPLA2
    13
TO
IFSGAPFB
                     20110301
                                                 SGAPLB3
TO
   13
                                                         SGAPLB2
                                                  1 11 1 6
     10
                                  1 9999999
                                                                           SGFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFSGAPUL
                    20110301
                                                 SGAPFIN
TO 13
                  ADD
                                                        SGAPLA2
                                                                  CONT
TO
     13
                  ADD
                                                        SGAPLB3
******
***END E-Flows for Sandy Creek near Ganado ********
** During Severe Conditions set Sub or Base trigger
WRWMSVD1 4237 WMDRY20110301
                                                             FKWMSEVD1
WRWMSEVT
               XMONTH20110301
                                                             SEVTRIGGER
TO 2
                  ADD
                                    WGS800
                                                                  CONT
```

```
DIV
                                                            FKWMSEVD1
**** Severe Condition Subsistence or Base
                 WMDRY20110301
WRWMSVT2
         4237
                                                                     FKWMSEVD2
                                      1 DV221A
TO
   16
                    LIM
                              1
         WMSEVT
      5
                              Ω
                                      1 9999999
FS
                    1
                                                 1
WRWMSVT3
                  WMSUB20110301
                                                                    FKWMSEVSUB
            719
TO
     16
                    LIM
                              1
                                      1 DV221A
      5 WMSVT2
                     1
                              0
                                      0
                                                 1
                                             1
*** Dry, Average, Wet Conditions, see .HIS fiGS for Hydrologic conditions
                  WMDRY20110301
WRWMBDRY
           4237
                                                                      FKWMBASD
TO
    16
                    LIM
                                      2 DV221A
WRWMBAVG
           9011
                  WMAVG20110301
                                                                      FKWMBASM
TO
    16
                    LIM
                              3
                                      3 DV221A
WRWMBWET
          17042
                  WMWET20110301
                                                                      FKWMBASW
                                      4 DV221A
     16
                    LIM
                             4
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
IFWMBASE
                       20110301
                                                    WMBASEFIN
                    ADD
                                                            FKWMSEVSUB
TO
     13
                                                                          CONT
     13
                    ADD
TO
                                                             FKWMSEVD2
                                                                          CONT
TO
     13
                    ADD
                                                              FKWMBASD
                                                                          CONT
TO
     13
                    ADD
                                                              FKWMBASM
                                                                          CONT
TO
                    ADD
                                                              FKWMBASW
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
                 XMONTH20110301
WRFKWM01
                                                                    BF-WMB-SP1
TO
       2
                    ADD
                                         DAYSPY
                                                                          CONT
TO
       2
                    SUB
                                         WMSPND
WRFKWM01
                 XMONTH20110301
                                                                    BF-WMB-SP2
TΟ
      6
                    ADD
                                                            BF-WMB-SP1
                                                                          CONT
       2
                                         DAYSPY
TO
                    DIV
WRFKWM01
                 XMONTH20110301
                                                                    BF-WMB-SP3
TO
     13
                    ADD
                                                             WMBASEFIN
                                                                         CONT
TO
      6
                    MUL
                                                            BF-WMB-SP2
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
WRFKWM04
           2400 XMONTH20110301
                                                                     FKWMSPULW
TO
      6
                    ADD
                                                            BF-WMB-SP3
WRFKWM05
                 XMONTH20110301
                                                                    WMWINONOFF
TO
      2
                    ADD
                                         WGS800
                                                                          CONT
                                                             FKWMSPULW
TO
       6
                    DIV
WRFKWM06
           4400 XMONTH20110301
                                                                     FKWMSPUSP
                                                            BF-WMB-SP3
TO
      6
                    ADD
WRFKWM07
                 XMONTH20110301
                                                                    WMSPRONOFF
TO
      2
                    ADD
                                         WGS800
                                                                          CONT
                                                             FKWMSPUSP
TO
      6
                    DTV
* *
WRFKWM08
            420 XMONTH20110301
                                                                     FKWMSPULS
                    ADD
                                                            BF-WMB-SP3
TO
      6
WRFKWM09
                 XMONTH20110301
                                                                    WMSUMONOFF
      2
                                         WGS800
TO
                    ADD
                                                                          CONT
TO
      6
                    DIV
                                                             FKWMSPULS
* *
WRFKWM10
           2200 XMONTH20110301
                                                                     FKWMSPULF
                                                            BF-WMB-SP3
      6
                    ADD
WRFKWM11
                 XMONTH20110301
                                                                    WMFALONOFF
TO
      2
                    ADD
                                         WGS800
                                                                          CONT
       6
                    DIV
                                                             FKWMSPULF
** ENGAGING PULSE
IFWMSPUL
           2400 XMONTH20110301
                                                      WMSPULW1
TO
      6
                    ADD
                                                            BF-WMB-SP3
```

```
FS 5 FKWM05
                 1 0
                                  1 9999999
                                                 1 2 2 12
          2400 XMONTH20110301
                                                  WMSPULW2
TFWMSPIIL
                  ADD
                                                      BF-WMB-SP3
TO
      6
                                                     2
FS
      5 FKWM05
                   1
                           0
                                   1 9999999
                                                       0 12
IFWMSPUL
        4400
               XMONTH20110301
                                                  WMSPUSP1
                  ADD
                                                      BF-WMB-SP3
TO
      6
      5 FKWM07
                                                 1 2 3 3 6
FS
                   1
                          Ω
                                   1 9999999
                                             2
        4400
IFWMSPUL
                XMONTH20110301
                               3
                                                  WMSPUSP2
TO
      6
                  ADD
                                                       BF-WMB-SP3
                                                 1 2 0 3 6
      5 FKWM07
                   1
                                   1 9999999
FS
                                             2
IFWMSPUL
        420
                XMONTH20110301
                                                  WMSPULS1
TO
      6
                  ADD
                                                      BF-WMB-SP3
FS
      5 FKWM09
                   1
                           0
                                   1 9999999
                                                 1 2 1 7 8
IFWMSPUL
         420
               XMONTH20110301
                                                  WMSPULS2
                                                       BF-WMB-SP3
TO
      6
                  ADD
      5 FKWM09
                                   1 9999999
                                                     2 0 7 8
FS
                  1
        2200
                XMONTH20110301
IFWMSPUL
                                                  WMSPULF1
                  ADD
                                                      BF-WMB-SP3
TO
      6
      5 FKWM11
                                   1 9999999
FS
                   1
                                                       2 9 11
        2200
                XMONTH20110301
IFWMSPUL
                               3
                                                  WMSPULF2
                  ADD
                                                      BF-WMB-SP3
TO
      6
      5 FKWM11
                   1
                           0
                                  1 9999999
                                             2
                                                       0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMSPUL
                    20110301
                                                   WMSPFIN
                                                                    CONT
TO 13
                  ADD
                                                         WMSPULW2
                  ADD
                                                         WMSPUSP2
                                                                    CONT
TO
     13
TO
   13
                  ADD
                                                         WMSPULS2
                                                                    CONT
T \cap
     13
                  ADD
                                                         WMSPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
           XMONTH20110301
WRFKWM02
                                                              BF-WMB-LP1
TO
      2
                  ADD
                                     DAYSPY
                                                                    CONT
TO
      2
                  SUB
                                     WMLPND
WRFKWM02
               XMONTH20110301
                                                              BF-WMB-LP2
TO
      6
                 ADD
                                                       BF-WMB-LP1 CONT
TO
      2
                  DIV
                                     DAYSPY
WRFKWM02
                XMONTH20110301
                                                              BF-WMB-LP3
                                                        WMBASEFIN
TO
   13
                  ADD
                                                                  CONT
TO
                  MUL
                                                       BF-WMB-LP2
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
WRFKWM12
        5600 XMONTH20110301
                                                               FKWMLPULW
                                                       BF-WMB-LP3
TO 6
                 ADD
WRFKWM13
                XMONTH20110301
                                                           WMLWINONOFF
TO
      2
                  ADD
                                     WGS800
                                                                   CONT
                                                        FKWMLPULW
TΟ
      6
                  DTV
* *
WRFKWM14
          5600 XMONTH20110301
                                                               FKWMLPUSP
                                                       BF-WMB-LP3
TO 6
                  ADD
WRFKWM15
                XMONTH20110301
                                                              WMLSPRONOFF
      2
                                     WGS800
TO
                  ADD
                                                                   CONT
TO
      6
                  DIV
                                                        FKWMLPUSP
* *
WRFKWM16
          1200 XMONTH20110301
                                                               FKWMLPULS
                                                       BF-WMB-LP3
      6
                  ADD
WRFKWM17
                XMONTH20110301
                                                             WMLSUMONOFF
TO
      2
                  ADD
                                     WGS800
                                                                   CONT
                                                        FKWMLPULS
TO
      6
                  DIV
WRFKWM18
          5600 XMONTH20110301
                                                               FKWMLPULF
TO 6
                  ADD
                                                       BF-WMB-LP3
```

```
WRFKWM19
             XMONTH20110301
                                                             WMLFALONOFF
                                    WGS800
                                                                   CONT
TO
      2.
                  ADD
TO
      6
                  DIV
                                                       FKWMLPULF
** ENGAGING PULSE
IFWMLPUL 5600 XMONTH20110301
                                                 WMLPULW1
                                                     BF-WMB-LP3
                  ADD
      5 FKWM13
FS
                  1
                          Ω
                                  1 9999999
                                             2
                                                   1 2 12 2
        5600
IFWMLPUL
               XMONTH20110301
                                                 WMLPULW2
                                                      BF-WMB-LP3
TO
      6
                  ADD
                                                1 1 0 12 2
      5 FKWM13
                  1
                                  1 9999999
FS
IFWMLPUL
        5600
               XMONTH20110301
                                                 WMLPUSP1
                                                     BF-WMB-LP3
TO
      6
                  ADD
FS
      5 FKWM15
                  1
                           0
                                  1 9999999
                                                1 1 3 3 6
IFWMLPUL
        5600
               XMONTH20110301
                                                 WMLPUSP2
                                                     BF-WMB-LP3
TO 6
                  ADD
      5 FKWM15
                                  1 9999999
                                                   1 0 3 6
FS
                  1
        1200
               XMONTH20110301
IFWMLPUL
                                                 WMLPULS1
                  ADD
                                                     BF-WMB-LP3
TO
      6
      5 FKWM17
                                  1 9999999
FS
                  1
                                                      1 7 8
               XMONTH20110301
IFWMLPUL
        1200
                                                 WMLPULS2
                  ADD
                                                     BF-WMB-LP3
TO
      6
      5 FKWM17
                  1
                          0
                                  1 9999999
                                                1 1 0 7 8
IFWMLPUL 5600
               XMONTH20110301
                                                 WMLPULF1
                                                   BF-WMB-LP3
1 2 9 11
TO
      6
                  ADD
      5 FKWM19
                          Ω
                                  1 9999999
FS
                  1
        5600 XMONTH20110301
IFWMLPUL
                                                 WMLPULF2
                  ADD
                                                      BF-WMB-LP3
      6
      5 FKWM19
                  1
                          Ω
                                  1 9999999
                                             2
                                                   1 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMLPUL
                     20110301
                                                  WMLPFIN
                  ADD
                                                                  CONT
TO 13
                                                        WMT.PIII.W2
TO
                  ADD
                                                        WMT.PIJSP2
                                                                   CONT
     13
                  ADD
                                                        WMLPULS2
                                                                   CONT
TO
TO
     13
                  ADD
                                                        WMLPULF2
******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKWM03
               XMONTH20110301
                                                             BF-WMB-AP1
      2.
                                     DAYSPY
                                                                  CONT
TO
                  ADD
TΩ
                  SUB
                                     WMLPND
WRFKWM03
               XMONTH20110301
                                                             BF-WMB-AP2
TO
      6
                ADD
                                                      BF-WMB-AP1 CONT
      2
                  DIV
                                     DAYSPY
TO
WRFKWM03
               XMONTH20110301
                                                             BF-WMB-AP3
TO 13
                ADD
                                                       WMBASEFIN
                                                                CONT
                  MUL
                                                      BF-WMB-AP2
** Developing pulse+base flow targets, Determining if Reg Flow at WGS800 exceeded target
        5600 XMONTH20110301
WRFKWM20
                                                               FKWMAPUL
                  ADD
                                                      BF-WMB-AP3
TO 6
WRFKWM21
                XMONTH20110301
                                                             WMANNONOFF
      2
                                     WGS800
TΟ
                  ADD
                                                                  CONT
      6
                  DIV
                                                        FKWMAPUL
** ENGAGING PULSE
IFWMAPFA 5600 XMONTH20110301
                                                  WMAPT.A1
                                                      BF-WMB-AP3
                ADD
      5 FKWM21
                          Ω
                                  1 9999999
                                             2
                                                      5 1 6
                  1
                                                   1
                                                                     1
FS
        5600 XMONTH20110301
IFWMAPFA
                              3
                                                  WMAPLA2
TO
      6
                  ADD
                                                      BF-WMB-AP3
                                                1 1 0 1 6
      5 FKWM21
                  1
                                  1 9999999
                                            2
                                                                     1
IFWMAPFB 5600
               XMONTH20110301
                                                  WMAPLB1
                                                      BF-WMB-AP3
TO 6
                  ADD
```

```
FS 5 FKWM21
                  1 0
                                   1 9999999
                                                    1 5 7 12
          5600 XMONTH20110301
                                3
TFWMAPFR
                                                    WMAPLB2
TO
      6
                   ADD
                                                        BF-WMB-AP3
                                              2
FS
      5
        FKWM21
                     1
                            0
                                   1 9999999
                                                        0 7
                                                               12
                                                                        1
                      20110301
                                                                WMFRSTHALF
WRFKWM22
                                                           WMAPLA2
TO
   13
IFWMAPFB
                      20110301
                                3
                                                    WMAPLB3
TO 13
                                                           WMAPLB2
                                                      1 11 1 6
     10
                     Ω
                                   1 9999999
                                              2.
                                                                        1
                                                                               WMFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFWMAPUL
                      20110301
                                                    WMAPFIN
   13
                   ADD
                                                           WMAPLA2
                                                                     CONT
TO
    13
                  ADD
                                                           WMAPLB3
*******
** END E-Flows for West Mustang Creek near Ganado
**START E-Flows for East Mustang Creek near Louise
** During Severe Conditions set Sub or Base trigger
                 EMDRY20110301
WREMSVD1
           843
                                                                 FKEMSEVD1
WREMSEVT
                XMONTH20110301
                                                                SEVTRIGGER
TO 2
                   ADD
                                      EDV712
                                                                     CONT
      6
                   DIV
                                                        FKEMSEVD1
**** Severe Condition Subsistence or Base
WREMSVT2 843 EMDRY20110301
                                                                 FKEMSEVD2
                                   1 DV221A
                        1
TO 16
                  LIM
     5 EMSEVT
                   1
                            0
                                   1 9999999
FS
                                              1
WREMSVT3
         719
                 EMSUB20110301
                                                                FKEMSEVSUB
TO 16
                  LIM 1
                                   1 DV221A
     5 EMSVT2
                            0
                                   0
                   1
                                         1
                                              1
*** Dry, Average, Wet Conditions, see .HIS fiGS for Hydrologic conditions
WREMBDRY
                EMDRY20110301
          843
                                                                  FKEMBASD
   16
                  T.TM
                                   2 DV221A
WREMBAVG
          2236
                 EMAVG20110301
                                                                  FKEMBASM
TO 16
                  LIM
                           3
                                   3 DV221A
WREMBWET
          4954
                 EMWET20110301
                                                                  FKEMBASW
                                   4 DV221A
TO 16
                  LIM 4
** COMBINE TO CREATE BASE FOR ENTIRE YEAR.
                                                 EMBASEFIN
IFEMBASE
                      20110301 2
TO
    13
                   ADD
                                                        FKEMSEVSUB
                                                                     CONT
TO
     13
                   ADD
                                                         FKEMSEVD2
                                                                     CONT
TO
     13
                   ADD
                                                          FKEMBASD
                                                                     CONT
TO
     13
                   ADD
                                                          FKEMBASM
                                                                     CONT
                                                          FKEMBASW
TO
                   ADD
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKEM01
                XMONTH20110301
                                                                BF-EMB-SP1
                                      DAYSPY
TO
                   ADD
                                                                     CONT
TO
      2
                   SUB
                                      EMSPND
WRFKEM01
                XMONTH20110301
                                                                BF-EMB-SP2
TO
      6
                  ADD
                                                        BF-EMB-SP1
                                                                   CONT
      2
                  DTV
                                      DAYSPY
TO
WRFKEM01
                XMONTH20110301
                                                                BF-EMB-SP3
TO
    13
                  ADD
                                                         EMBASEFIN
                                                                   CONT
TΟ
                   MITT.
                                                        BF-EMB-SP2
     6
* *
** Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target
WRFKEM04 680 XMONTH20110301
                                                                 FKEMSPULW
TO
     6
                  ADD
                                                         BF-EMB-SP3
                XMONTH20110301
                                                                EMWINONOFF
WRFKEM05
      2
                  ADD
                                      EDV712
TO
TO
      6
                   DIV
                                                         FKEMSPULW
```

```
* *
        1400 XMONTH20110301
WRFKEM06
                                                          FKEMSPIISP
TO 6
                ADD
                                                   BF-EMB-SP3
WRFKEM07
               XMONTH20110301
                                                         EMSPRONOFF
                                  EDV712
TO 2
               ADD
                                                          CONT
                                                    FKEMSPUSP
TO
                 DTV
* *
         100 XMONTH20110301
WRFKEM08
                                                          FKEMSPULS
TO 6
                 ADD
                                                   BF-EMB-SP3
WRFKEM09
              XMONTH20110301
                                                         EMSUMONOFF
TO 2
                ADD
                                  EDV712
                                                    FKEMSPULS
TO
                 DIV
WRFKEM10
         650 XMONTH20110301
                                                          FKEMSPULF
                                                   BF-EMB-SP3
TO 6
                ADD
               XMONTH20110301
                                                    EMFALONOFF
WRFKEM11
TO 2
               ADD
                                  EDV712
                                                              CONT
                 DIV
                                                    FKEMSPULF
TO
     6
** ENGAGING PULSE
IFEMSPUL 680 XMONTH20110301
                                              EMSPULW1
                ADD
                                                  BF-EMB-SP3
TO 6
                                             1 2 2 12 2
FS 5 FKEM05
                 1
                       0
                                1 9999999
IFEMSPUL 680 XMONTH20110301
                                              EMSPULW2
                           3
              ADD 1 0
                                                BF-EMB-SP3
2 0 12 2
TO 6
     5 FKEM05
                                1 9999999
FS
IFEMSPUL 1400 XMONTH20110301
                                              EMSPUSP1
               ADD
                                                  BF-EMB-SP3
TO 6
     5 FKEM07
FS
                 1
                        Λ
                                1 9999999
                                          2
                                             1 2 3 3 6
IFEMSPUL 1400 XMONTH20110301
                                              EMSPUSP2
                ADD 1 0
                                             BF-EMB-SP3
1 2 0 3 6
TO 6
     5 FKEM07
                                1 9999999
FS
                                               BF-EMB-SP3
IFEMSPUL 100 XMONTH20110301
                                              EMSPULS1
TO 6
              ADD
     5 FKEM09
                                1 9999999
FS
                 1
IFEMSPUL
        100 XMONTH20110301
                                              EMSPULS2
                                              BF-EMB-SP3
               ADD
TO 6
     5 FKEM09
                                1 9999999
                                             1 2 0 7 8
                 1
IFEMSPUL 650 XMONTH20110301
                                              EMSPULF1
TO 6
              ADD
                                             BF-EMB-SP3
1 2 2 9 11
FS
     5 FKEM11
                 1
                                1 9999999
IFEMSPUL 650 XMONTH20110301
                             3
                                              EMSPULF2
                                                  BF-EMB-SP3
     6
                 ADD
                            1 9999999
     5 FKEM11
                                          2
                 1
                        Ω
                                               2 0 9 11
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFEMSPUL
                 20110301
                                               EMSPFIN
TO 13
                 ADD
                                                    EMSPULW2
                                                              CONT
TO
    13
                 ADD
                                                     EMSPUSP2
                                                              CONT
TO 13
                 ADD
                                                     EMSPULS2
                                                               CONT
   13
TO
                 ADD
                                                     EMSPULF2
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
        XMONTH20110301
WRFKEM02
                                                         BF-EMB-LP1
TO
     2
                ADD
                                  DAYSPY
                                                              CONT
TΟ
     2
                 SUB
                                  EMI-PND
WRFKEM02
              XMONTH20110301
                                                          BF-EMB-LP2
               ADD
TO
     6
                                                   BF-EMB-LP1 CONT
TO
     2
                 DIV
                                  DAYSPY
              XMONTH20110301
WRFKEM02
                                                          BF-EMB-LP3
TO 13
               ADD
                                                   EMBASEFIN CONT
    6
                 MUL
                                                   BF-EMB-LP2
TO
* *
```

```
** Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target
WRFKEM12
           1700 XMONTH20110301
                                                                    FKEMI.PIII.W
TO
      6
                   ADD
                                                           BF-EMB-LP3
WRFKEM13
                 XMONTH20110301
                                                                  EMLWINONOFF
TO
      2
                   ADD
                                        EDV712
                                                                         CONT
                                                            FKEMLPULW
TO
                    DTV
* *
WRFKEM14
           3000 XMONTH20110301
                                                                    FKEMLPUSP
TO
      6
                    ADD
                                                            BF-EMB-LP3
WRFKEM15
                 XMONTH20110301
                                                                  EMLSPRONOFF
TO
      2
                    ADD
                                        EDV712
                                                                         CONT
TO
      6
                    DIV
                                                            FKEMLPUSP
WRFKEM16
            310 XMONTH20110301
                                                                    FKEMLPULS
                                                            BF-EMB-LP3
TO
      6
                   ADD
                 XMONTH20110301
WRFKEM17
                                                                  EMLSUMONOFF
TΩ
      2
                    ADD
                                        EDV712
                                                                         CONT
                    DIV
                                                            FKEMLPULS
TO
      6
* *
           2100 XMONTH20110301
WRFKEM18
                                                                    FKEMLPULF
                    ADD
                                                           BF-EMB-LP3
TO
      6
WRFKEM19
                 XMONTH20110301
                                                                  EMLFALONOFF
      2
                    ADD
                                        EDV712
TΟ
                                                                         CONT
TO
      6
                    DTV
                                                            FKEMLPULF
** ENGAGING PULSE
IFEMLPUL
         1700 XMONTH20110301
                                                      EMLPULW1
                    ADD
                                                           BF-EMB-LP3
      6
      5
                                                           2 12
         FKEM13
                     1
                             Λ
                                     1 9999999
                                                 2
                                                        1
FS
         1700
                 XMONTH20110301
IFEMLPUL
                                                      EMLPULW2
TO
      6
                    ADD
                                                           BF-EMB-LP3
         FKEM13
                                     1 9999999
FS
      5
                    1
                                                 2
                                                     1 1 0 12
IFEMLPUL
          3000
                 XMONTH20110301
                                                      EMLPUSP1
      6
                    ADD
TO
                                                           BF-EMB-LP3
         FKEM15
                                     1 9999999
                                                        1
FS
      5
                     1
                                                           3 3 6
IFEMLPUL
          3000
                 XMONTH20110301
                                                      EMLPUSP2
TO
                    ADD
                                                           BF-EMB-LP3
      6
         FKEM15
                                     1 9999999
FS
      5
                     1
                                                 2
                                                           0 3 6
                 XMONTH20110301
IFEMLPUL
            310
                                                      EMLPULS1
                    ADD
                                                           BF-EMB-LP3
TO
      6
FS
      5
         FKEM17
                     1
                                     1 9999999
                                                        1
                                                           1
IFEMLPUL
                 XMONTH20110301
                                 3
                                                      EMLPULS2
            310
TΩ
      6
                    ADD
                                                           BF-EMB-LP3
      5 FKEM17
                                                 2
FS
                     1
                             Ω
                                     1 9999999
                                                        1 0 7 8
IFEMLPUL
         2100
                 XMONTH20110301
                                                      EMLPULF1
                    ADD
                                                           BF-EMB-LP3
TO
      6
      5
        FKEM19
                             Λ
                                     1 9999999
                                                        1
                                                           2 9 11
FS
                    1
IFEMLPUL
         2100
                 XMONTH20110301
                                 3
                                                      EMLPULF2
                    ADD
                                                           BF-EMB-LP3
                                     1 9999999
                                                 2
      5 FKEM19
                             0
                                                            0 9 11
                     1
                                                        1
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
IFEMLPUL
                       20110301
                                                       EMLPFIN
     13
                    ADD
                                                             EMLPULW2
                                                                         CONT
TO
TO
     13
                    ADD
                                                             EMLPUSP2
                                                                         CONT
     13
                                                             EMLPULS2
                                                                         CONT
TO
                    ADD
TO
     13
                    ADD
                                                             EMLPULF2
******
** DETERMINE NUMBER OF DAYS THAT ARE OUTSIDE OF THE VARIOUS VOLUMES, TO TAKE INTO ACCOUNT THAT
** PULSE VOLUME WAS FOR A PERIOD OF LESS THAN 1 MONTH. AND DETERMINE FACTORS TO
** BE APPLIED TO BASE FLOWS TO REPRESENT THE PERIOD OF THE MONTH OUTSIDE OF PULSE
WRFKEM03
                 XMONTH20110301
                                                                   BF-EMB-AP1
TO
      2
                                        DAYSPY
                                                                         CONT
                    ADD
      2
                    SUB
                                        EMLPND
TO
                                                                   BF-EMB-AP2
WRFKEM03
                 XMONTH20110301
```

```
TO
                  ADD
                                                        BF-EMB-AP1
                                     DAYSPY
TO
      2.
                  DTV
WRFKEM03
                XMONTH20110301
                                                              BF-EMB-AP3
TO 13
                  ADD
                                                         EMBASEFIN CONT
TO
      6
                  MUL
                                                        BF-EMB-AP2
**
** Developing pulse+base flow targets, Determining if Reg Flow at EDV712 exceeded target
WRFKEM20 6000 XMONTH20110301
                                                                FKEMAPUL
TO
                  ADD
                                                        BF-EMB-AP3
                XMONTH20110301
                                                               EMANNONOFF
WRFKEM21
TO
   2
                  ADD
                                     EDV712
                                                                    CONT
                                                          FKEMAPUL
      6
                   DIV
** ENGAGING PULSE
IFEMAPFA 6000 XMONTH20110301
                                                   EMAPLA1
                                                      BF-EMB-AP3
TO
   6
                  ADD
      5 FKEM21
                                   1 9999999
                                                     1 5 1 6
FS
                   1
                                              2
        6000
IFEMAPFA
                XMONTH20110301
                               3
                                                   EMAPLA2
TO
   6
                  ADD
                                                       BF-EMB-AP3
      5 FKEM21
                                   1 9999999
FS
                   1
                                              2
                                                     1
                                                       0 1 6
                XMONTH20110301
IFEMAPFB
        6000
                                                   EMAPLB1
                  ADD
                                                      BF-EMB-AP3
TO 6
      5 FKEM21
                   1
                           0
                                   1 9999999
                                                    1 5 7 12
IFEMAPFB 6000 XMONTH20110301
                               3
                                                   EMAPLB2
TO 6
                  ADD
                                                      BF-EMB-AP3
      5 FKEM21
                                   1 9999999
                                              2
                                                       0 7 12
FS
                   1
                                                     1
                     20110301
WRFKEM22
                                                               EMFRSTHALF
    13
                                                          EMAPLA2
IFEMAPFB
                     20110301
                               3
                                                   EMAPLB3
   13
TO
                                                          EMAPLB2
                                                 1 1 11 1 6
     10
                    0
                                   1 9999999
                                              2
                                                                       1
                                                                             EMFRSTHALF
** COMBINE TO CREATE IF FOR ENTIRE YEAR.
                   20110301
                                                   EMAPFIN
TO 13
                                                          EMAPLA2
                                                                   CONT
                  ADD
TO
     13
                  ADD
                                                          EMAPLB3
*****
** END E-Flows for East Mustang Creek near Louise
***********
**********
** COLLINS APPLICATION 5579
WR557901 200 557920020703 1
                                                         3
                                                                   5579_1
** Add perpetual water right, Application No. 5595, gw as an alternate source
IF 5595 2316
                    720000927
                                                    IF5595
WR 5595
          1550
                    320000927
SO
                                                         1
** Add perpetual water right, Application No. 5706, Brandl, gw as alternate source
IF 5706
        1664
                    720001001
                                                    IF5706
WR 5706
         104.4
                    320001001
                                                                   5706_1
                                                         3
** Add perpetual water right, Application No. 4353, Permit #4085, term conv. perp., gw as alternate
source
IFTDV911
          2316
                    719830418
                                                   IF911_1
WRTDV911
          500
                    319830418
                               1
                                                         3
                                                                   4085 1
                                                        1
**Add perpetual water right, Application No. 5168, term conv. perp., gw as alternate source
IFDV1018 3040 101819880202
                                                  IF1018_1
WRDV1018
          1092
                   319880202
                               1 1
                                       0.00 DV1018
                                                                   5168_1
           2
                 1.00 0.727
                                0.00
WSON1018
SO
                               1 1
                                       0.00 DV1018
WRDV1018
           651
                    719880202
                                                         3
                                                                   5168_2
WSHP1018
           334
                1.00 0.727
                               0.00
           531
                 651
* *
```

**Ndd ner	netual wa	ter right Appl	liast	ion	No 5370	term o	ionii nern	gw as alternate	gourge
IFTDV916	722.7	91619910701	LICAL	.1011	NO. 3370	, cerm c	IF916_1	gw as alternate	Source
WR537041	900	319910701	1	1	0.00	TDV916	3	5370_1	
WSTSO917	356	1.00 0.727		0.00					
SO	660	900 TDV916					1		
**Term wa	ter right	, App. 4374 - I	Cerm	Expi	red 12/3	1/03			
**IFWDV88	7 1331	IF8871983061	L3		1				
**WRWDV88	7 400	31983061	L3	1	2 0.0	0		4046_1	
**WSWS088	6 98	1.00 0.72	27	0.0	0				
**S0	672								
		converted to pe	erpet		water ri	.ght			
IFEDV723	2896	719891121	_	1			IF5263		
WREDV724	140	319891121	1	1	0.00		3	5263_1	
SO							1		
**	0	710070404	-1	-1	0 00			F120 1	
WR DV402	0	719870424	1	1	0.00			5130_1	
WS OS402	6.08 33	1.00 0.727 319610228	1	0.00	0.00			2006 1	
WRTDV332 WS OS332	12.0	1.00 0.727		1 0.00	0.00			2096_1	
IF DV301	8688	19830103	C	1			IF3978		
WR397841	1800	319830103	1	1	0.00		11 32 70	3978_1	
WS S0301	480.0	1.00 0.727		0.00	0.00			3770_1	
SO	529.6	1800 DV301							
WR DV214	226.25	319391117	1	1	0.00			61602099	
WR DV214	452.5	319391117	1	1	0.00			2098_1	
IF DV214	4598.7	IF21419821122		1			IF2098		
WR DV214	747.5	319821122	1	1	0.00			2098_2	
WR DV215	226.25	319391117	1	1	0.00			61602100	
WR DV216	95	319391117	1	1	0.00			61602097	
WR DV213	0.14	219970424	1	1	0.00			5584_1	
WR DV212	1000	319391128	1	1	0.00			61602101	
WR DV211	0.02	219970424	1	1	0.00			5584_2	
WRTDV626	4	319541231	1	1	0.00			61602075	
WSTOS627	1.75	1.00 0.727		0.00					
WR DV551	61.0	319490228	1	1	0.00			2077_1	
WR207741	4.0	319561231	1	1	0.00			2077_2	
WS SO552	10.0	1.00 0.727	C	0.00					
SO	99	4 DV551		1			IF3912		
IF DV504 WR391241	7240.0 340	19820208 319820208	1	1 1	0.00	RF505	11.3917	3912_1	
WS S0507	100.0	1.00 0.727		0.00	0.00	RF 505		3712_1	
SO SOSO7	265.4	340 DV504							
WR DV501	1138	319030930	1	1	0.00			2078_1	
WR DV501	450	319381210	1	1	0.00			2078_2	
WRDV1042	0	719631007	1	1	0.00			61602079	
WSOS1042	455.0	1.00 0.727	C	00.0					
WRDV1034	248	319381231	1	1	0.00			61602080	
WRDV1031	683.27	319550430	1	1	0.00			61602081	
IFDV1023		IF102319811116		1			IF3910		
WR391041	1000	319811116	1	1	0.00			3910_1	
WSS01024	63.0	1.00 0.727	C	0.00					
SO	410.6	1000 DV1023							
IFDV1021		IF102119811116	-	1	0 00		IF3905	2005 1	
WR390541	1332	319811116	1	1	0.00			3905_1	
WS 01021	84	1.00 0.727	C	0.00					
SO WRDV1020	624.6 932	1332 DV1021 319290331	1	1	0.00			61602082	
WRDV1020 WRDV1002	623	319480510	1 1	1	0.00			2083_1	
WRDV1002	2400	319691027	1	1	0.00			2083_1	
IFDV1002		IF100119850416	_	1	0.00		IF4252	2005_2	
WR425241	5500	319850416	1	1	0.00		3	11604252	
WSWOS824	4.9	1.00 0.727		0.00					
SO	2651.5	5500 DV1001					1		
WRTDV901	400.0	319501110	1	1	0.00			61602084	

```
** diversions for this water right are assumed to be at the most downstream diversion point
                                               0.00
WRWDV817
              13
                        319621231
                                     1
                                         1
                                                                               2085_1
           998.6
IFWDV816
                    IF81619811116
                                         1
                                                              IF3906
WRWDV816
             140
                        319811116
                                     1
                                          1
                                               0.00
                                                                             11603906
                     1.00 0.727
                                      0.00
WSWOS816
             20.0
                    IF81519811116
                                                              IF3904
TFWDV815
          1269.3
                                         1
                                               0.00
WRWDV815
              60
                        319811116
                                     1
                                         1
                                                                             11603904
IFWDV814
           956.1
                    IF81419811116
                                                              IF3908
                                         1
WRWDV814
              279
                        319811116
                                     1
                                         1
                                               0.00
                                                                             11603908
\ensuremath{^{**}} This water right has two diversion points and was
** modeled to take water from the main stem backed up by diversions from the trib
              282
                        319550430
                                     1
                                         1
                                               0.00
SO
                           WDV812
WRWDV811
               84
                        319460430
                                               0.00
                                                                             61602087
                                     1
             20.0
                     1.00 0.727
                                      0.00
WSWOS811
                                               0.00
WRWDV810
              45
                        319240430
                                     1
                                         1
                                                                             61602088
WRWDV809
               48
                        319660531
                                     1
                                         1
                                               0.00
                                                                             61602089
                        319560331
                                     1
                                               0.00
                                                                             61602090
WRWDV808
              527
                                         1
                    IF50319830222
                                                              IF4102
IF DV503 11561.5
                                          1
WR DV503
               57
                        319830222
                                     1
                                          1
                                               0.00
                                                      RF502
                                                                   3
                                                                             11604102
SO
                                                                   1
IFWDV807
          4413.3
                    IF80719850430
                                         1
                                                              IF4241
                                               0.00
                                                     WRF805
WR424141
          272.63
                        319850430
                                         1
                                                                   3
                                                                             11604241
                                     1
WSWS0806
            25.2
                     1.00
                            0.727
                                      0.00
SO
            420.7
                   272.63 WDV807
                                                                   1
WRWDV804
              290
                        319530331
                                               0.00
                                         1
                                                                             61602091
                                     1
IFWDV803
          1448.0
                         19790129
                                                              IF3665
                                          1
                        319790129
                                               0.00
WRWDV803
              211
                                                                             11603665
                                     1
                                         1
WRWDV868
              990
                        319450330
                                     1
                                         1
                                               0.00
                                                                             61602092
IFWDV865
            724.0
                         19800121
                                          1
                                                              IF3725
                        319800121
WRWDV865
              420
                                     1
                                          1
                                               0.00
                                                     WRF866
                                                                             11603725
TFWDV862
           724.0
                         19810518
                                          1
                                                            IF3876_1
IFWDV871
              362
                         19810518
                                         1
                                                            IF3876_2
**this water right has been modified to allow diversions from Porter's Creek with a backup from
Lookout Creek
WRWDV862
              626
                        319810518
                                     1
                                         1
                                               0.00 WRF863
                                                                               3876 1
                        319810518
                                               0.00 WRF863
WRWDV871
                                     1
                                         1
                                                                               3876 2
BU
** this water right has been modified to allow diversions from the reservoir backed up by diversions
** from CPWDV855
IFWDV853
                         19811207
                                                              TF3911
           362.0
                                         1
                         319811207
WRWDV853
              400
                                     1
                                         1
                                               0.00 WRF851
                                                                               3911_1
                                      0.00
WSWOS854
              2.4
                     1.00
                             0.727
                            WDV855
SO
IFWDV843
          2929.5
                    IF84319810526
                                                              IF3836
              550
                        319810526
                                               0.00
                                                     WRF844
                                                                               3836_1
WRWDV843
                                     1
                                          1
WRWDV801
            1750
                        319640731
                                     1
                                         1
                                               0.00
                                                                             61602093
IFEDV726
          3403.0
                         19811116
                                          1
                                                              IF3909
                                               0.00 ERF728
WR390941
                        319811116
                                         1
                                                                             11603909
             350
                                     1
                     1.00
                                      0.00
WSWSO727
             45.0
                            0.727
SO
           148.8
                      350 EDV726
                         19800121
IFEDV723
          2896.0
                                                              IF3727
                                         1
WREDV723
              913
                        319800121
                                          1
                                               0.00
                                                     ERF722
                                                                             11603727
                                                            IF3907_1
          3620.0
IFEDV721
                         19811116
                                         1
WREDV721
              640
                        319811116
                                     1
                                          1
                                               0.00
                                                                               3907 1
                                      0.00
WSEOS721
              1.5
                     1.00
                            0.727
                        319520430
WREDV734
           398.7
                                               0.00
                                                                               2094_1
                                         1
                                     1
WREDV733
            241.3
                        319520430
                                               0.00
                                         1
                                                                               2094_2
                                                            IF3907_2
IFEDV731
          3620.0
                         19811116
                                         1
WREDV731
              520
                        319811116
                                     1
                                         1
                                               0.00
                                                                               3907_2
WSEOS732
              1.5
                     1.00
                             0.727
                                      0.00
IFEDV712
                         19811116
          1448.0
                                         1
                                                              IF3903
WREDV712
                        319811116
                                         1
                                               0.00 ERF711
                                                                             11603903
              800
* *
```

```
** Start Lake Texana (Navidad River)(no assumed return flows for Texana in BR's run1)
IFDV221B 3570 19720515
                             1
                                        1
                                                     TF2
                                         2
IFDV221A 346972 BAYEST19720515
                                  1
                                                     TF1
                                                                C2095_1 TEXANA1
WRDV221A
         74500
               TA19720515
                                  1
WSTEXANA 151919
**refill Texana to 45 after US irrigators divert
**priority date of re-fill is one day junior to the most junior US irrigator
WRDV221A
          Ο
                    20020702
                             1
                                                            REFILLTXANA
WSTEXANA 170300
**refill done
* *
WRDV221A
        34560
                    20020702
                              1 1
                                      1.0
                                             NOUT
                                                               INTURUP1
WSTEXANA 170300
                                    151919
        34560
                     20020702
                                                       2.
                                                              INTURUP2INTURUPT
WR NOUT
          2800 12000
SO
WR NOUT 99000
                    20020702
                              1 1
                                     1.0 DV221A
                                                               PAYBACK
** FINAL FILLUP FOR LAKE TEXANA
WRDV221A 0 20020702 1
WSTEXANA 170300
                                                                REFILL
** End Lake Texana
* *
**AECOM comments out Stage II project
**Change priority date from 19720515 to 20170102 (two days junior to OCR)
**Change storage capacity from 62454 to 52046 to agree with Reservoir Site Protection Study (TWDB,
2008)
**begin Stage 2 of Texana Project
**WR WQ002 7150 120170102
                                  1
                                        0.00
                                                               61602095_3 TEXANA2
                               1
**WSSTAGE2
           52046
**WR WQ002
          22850
                     220170102
                               1
                                   1
                                        0.00
                                                               61602095_4 TEXANA2
**WSSTAGE2
          52046
**WR WQ002 18122 BAYES119931006 1 1
                                        1.0
                                             20955
                                                                  2095_5
                                                                  2095_5
**WR WQ002
          18122 BAYES119931006 1 1
                                        0.0
**end Stage 2 of Texana Project
WR DV201 0.01 219970424
                             1 2 0.00
                                                                5584 5
* *
* *
*************************
**AECOM diversion for Lavaca OCR (using storage/pumping recommended in 2011 Lavaca River Water
Supply
**Project Feasibility Study for LNRA)
WRWO002A
            0
                   120161231 1 1
                                                                  Fill NEWOCR
** 50,000 ac-ft capacity
WSNEWOCR 50000 0.0218
                           1 969.85
SO
                       WO002
** 200 MGD (224,182 ac-ft/yr) pump stations diversion rate. ML record in ac-ft/mo.
ML 19027 17339.2 19027.1 18413.3 19027.1 18413.3 19027.1 19027.1 18413.3 19027.1 18413.3 19027.1
* *
     Modeled as new WR with Priority Date set at 12/31/2016
WRWQ002A 50000.0
                   120161231 3
                                                                NewWR1
WSNEWOCR
        50000
**end of diversion additions
*************************
*******************
**AECOM diversion for LNRA Brackish Surface Water (BSW) Diversion
**
           0
                     120170101 1
**WRDVBSW1
                                                                    Fill NEWBSW
                  120170101 1
WRDVBSW1 25000
                                                                NewWR2
** 25,000 ac-ft capacity
**WSNEWBSW 25000 0.0024
                         1 969.85
**S0
                       DVBSW1
```

```
** 50 MGD (56,045 ac-ft/yr) pump stations diversion rate. ML record in ac-ft/mo.
**ML 19027 17339.2 19027.1 18413.3 19027.1 18413.3 19027.1 19027.1 18413.3 19027.1 18413.3 19027.1
ML4756.8 4334.8 4756.76 4603.32 4756.77 4603.32 4756.77 4756.77 4603.32 4756.77 4603.32 4756.77
* *
     Modeled as new WR with Priority Date set at 01/01/2017
**WRDVBSW1 25000.0
                      120170101 3 1
                                                                   NewWR2
                                                                            9992
**WSNEWABSW 25000
**end of diversion additions
******************************
** Lake Texana Area-Capacity Data
**
** area capacity of Texana based on revised table by TWDB from LNRA on March 14, 2001
** ELEVATION -13 0 10
                               13
                                        18
                                                24
                                                     30
                                                            36
                                                                     39
                                                                            43
                                                                                    44
45
**SVTEXANA 170300 161085 151919 118078
                                        96096
                                               60576
                                                    33860
                                                             14558
                                                                     4634
                                                                            1645
                                                                                     70
Ω
                        8974
                               7849 6824
**SA
           10484
                   9727
                                                5132
                                                       3820
                                                              2601
                                                                     1354
                                                                             634
                                                                                     23
0
                   70
SVTEXANA
             Ω
                        1645
                                4634 14558
                                             33860
                                                    60576 96096 118078 151919 161085
170300
SATEXANA
             0
                   23
                          634
                               1354
                                       2601
                                              3820
                                                     5132
                                                            6824
                                                                   7849
                                                                           8974
                                                                                  9727
10484
* *
       *************************
***
** AECOM - Modify stage 2 reservoir to match Reservoir Site Protection Study (TWDB, 2008)
** area capacity of Stage 2 taken from HDR document to RPG dated 10/19/1999
                         40543
**SVSTAGE2
          62454 57676
                                23475
                                       11695
                                                4980
                                                      1819
                                                               596
                                                                      152
            4887
                   4679
                          3888
                                 2940
                                        1774
                                                914
                                                       352
                                                               138
                                                                      40
                                                                               0
** AECOM commented out
**SVSTAGE2
            0
                    152
                           596
                                1819
                                       4980
                                              11695
                                                     23475
                                                             40543 57676
                                        914
**SASTAGE2
               0
                     40
                           138
                                  352
                                               1774
                                                       2940
                                                             3888
                                                                    4679
                                                                            4887
                                  507
                                         1127
**SVSTAGE2
               Ω
                     5
                           161
                                                2927
                                                       8360
                                                             19182
                                                                    35152
                                                                           52046
**SA
               0
                     16
                            49
                                   92
                                         159
                                                609
                                                       1649
                                                              2725
                                                                     3688
                                                                            4564
* *
**************************
** DROUGHT INDEX RECORDS for B&E when below 78.18% conservation
DI
      1 0 1 TEXANA
                10000 100000 133140 133141 170300
            Ω
      6
IS
ΙP
           100
                  100
                         100
                                100
                                        0
* *
** DROUGHT INDEX RECORDS for B&E when above 78.18% conservation
      2 0 1 TEXANA
DI
             0
                10000 100000
                              133140 133141 170300
IS
ΙP
             0
                    0
                          0
                                0
                                     100
                                            100
* *
** DROUGHT INDEX RECORDS water rights that have the 43 ft msl restriction.
DI
      3 0 1 TEXANA
IS
      6
             Ω
                10000 100000 151918 151919
                           0
                                  0
                                       100
ΙP
\ensuremath{^{**}} the following reservoirs are not associated with a water right
** and are included for possible future modeling needs
**WRTOS323
              0
                      830000101
**WSTX5494
             146
                   1.00 0.727
                                 0.00
**WRTOS321
              0
                      730000101
                   1.00 0.727
                                 0.00
**WSTX3992
             144
**WRTOS313
              0
                     130000101
                   1.00 0.727
**WSTX3986
             280
                                 0.00
**WRTOS312
             Ω
                   130000101
**WSTX3985
             173
                   1.00 0.727
                                 0.00
             0
**WRTOS311
                    130000101
```

**WSTX3984	144	1.00 0.727	0.00
**WR OS623	0	730000101	
**WSTX6176	296	1.00 0.727	0.00
**WRTOS554	0	830000101	
**WSTX3929	278	1.00 0.727	0.00
**WROS1003	0	830000101	
**WSTX1571	108	1.00 0.727	0.00
**WROS1052	0	130000101	
**WSTX3928	336	1.00 0.727	0.00
**WROS1051	0	130000101	
**WSTX3977	250	1.00 0.727	0.00
**WROS1033	0	130000101	
**WSTX3971	112	1.00 0.727	0.00
** End of .dat	data	input file	
* *			
ED			

Contents

C	napter	6 – Imp	acts of th	e Regional Water Plan	6-1
	6.1	Scope	of Work		6-1
	6.2	Cumula	ative Impa	acts of the Regional Water Plan	6-1
	6.3			r Management Strategies on Agricultural Resources, Water Resourc ources	
		6.3.1	Agricultu	ıral	6-3
		6.3.2		ater Resources of the State including Groundwater and Surface Wattionships	
			6.3.2.1	Colorado River Basin	6-4
			6.3.2.2	Colorado-Lavaca Coastal River Basin	6-4
			6.3.2.3	Lavaca River Basin	6-4
			6.3.2.4	Lavaca-Guadalupe Coastal Basin	6-4
			6.3.2.5	Guadalupe River Basin	6-4
		6.3.3	Natural I	Resources	6-5
		6.3.4	•	rty Social and Economic Impacts resulting from Voluntary Redistribu	
			6.3.4.1	Moving Water from Rural and Agricultural Areas	6-5
	6.4	Impact	s of Wate	r Management Strategies on Key Parameters of Water Quality	6-6
		6.4.1	Water Q	uality Overview	6-6
		6.4.2	Conserv	ation Impacts	6-7
		6.4.3	Impacts	of the Recommended Management Strategies	6-8
	6.5	Impact	s of Wate	r Management Strategies on Navigation	6-9

List of Tables

Table 6-1 Lavaca Bay Freshwater Inflow Targets (acre-feet)

Table 6-2 SB3 Environmental Flow Standard Frequency Attainment

This page intentionally left blank.

Chapter 6 – Impacts of the Regional Water Plan

6.1 Scope of Work

The overall project scope consists of preparing a regional water supply plan for the Lavaca Regional Water Planning Group (LRWPG), representing all of Lavaca and Jackson Counties as well as the Precinct 3 and El Campo portions of Wharton County. LRWPG is one of 16 state water supply planning groups defined by TWDB. Regional Water Plans (RWP) prepared by each Regional Water Planning Group (RWPG) will be combined into a comprehensive state water plan.

This activity is part of a consensus-based planning effort to include local concerns in the statewide water supply planning process. This chapter presents the results of Task 6 of the Project Scope, which addresses:

- Evaluation of the estimated cumulative impacts of the RWP, for example on groundwater levels, spring discharges, bay and estuary inflows, and instream flows.
- Description of the impacts of the RWP regarding:
 - Agricultural resources;
 - Other water resources of the State including other water management strategies and groundwater and surface water interrelationships;
 - Threats to agricultural and natural resources;
 - Third-party social and economic impacts resulting from voluntary redistributions of water including analysis of third-party impacts of moving water from rural and agricultural areas;
 - Major impacts of recommended water management strategies on key parameters of water quality, and;
 - Effects on navigation.
- Summarization of the identified water needs that remain unmet by the RWP and the socioeconomic impacts of not meeting the identified water needs.

6.2 Cumulative Impacts of the Regional Water Plan

The cumulative impacts of the recommended water management strategies are discussed in this section. Overall, the recommended strategies keep the groundwater levels at a sustainable level and have no impact on spring flows. Instream flows and bay and estuary inflows are slightly reduced during times of drought as a result of drought management, conservation, and reuse strategies being implemented.

The cumulative impacts to the Lavaca Bay from the recommended strategies are shown in the following tables. Specifically, the Lavaca Off-Channel Reservoir and LNRA Desalination strategies were modeled. Because the locations of the two strategies are downstream of all of the instream flow measurement points, only the impacts to Lavaca Bay were evaluated.

Impacts to Lavaca Bay are evaluated by looking at four different inflow level conditions for three separate periods of the year. The first period is Spring, which includes three consecutive months starting in any month from January to May. The second period is Fall, which includes three consecutive months starting in any month from August to October. The third period is the Intervening Six Months that counts the months not used for the Spring and Fall periods. *Table 6-1* shows the target inflow goals in acre-feet for Subsistence, Base Dry, Base Average, and Base Wet conditions, and the associated target frequency goals.

Table 6-1 Lavaca Bay Freshwater Inflow Targets (acre-feet)

INFLOW LEVEL	STUDY TARGET FREQUENCY	SPRING (3 MONTH TOTAL)	FALL (3 MONTH TOTAL)	INTERVENING (6 MONTH TOTAL)
SUBSISTENCE	96%	13,500	9,600	6,900
BASE DRY	82%	55,080	39,168	28,152
BASE AVG	46%	127,980	91,080	65,412
BASE WET	28%	223,650	158,976	114,264

Table 6-2 shows how often the SB3 environmental flow standards are met for both the unmodified base TCEQ model (no strategies) and a model with the water management strategies included. The last column shows the impact the strategies have on the frequency with which the environmental flow standards are met.

Table 6-2 SB3 Environmental Flow Standard Frequency Attainment

SPRING ONSET FLOW CRITERIA MET (3 CONSECUTIVE MONTHS BEGINNING JAN-MAY)								
CRITERIA	TARGET TCEQ BASE MODEL STRATEGY MODEL DIFFERENCE							
	(AC-FT)	#YEARS	%	#YEARS	%	%		
SUBSISTENCE	13,500	52	91%	52	91%	0.0%		
BASE DRY	55,080	49	86%	49	86%	0.0%		
BASE AVG	127,980	43	75%	42	74%	-1.8%		
BASE WET	223,650	33	58%	32	56%	-1.8%		

FALL ONSET FLOW CRITERIA MET (3 CONSECUTIVE MONTHS BEGINING AUG-OCT)								
CRITERIA	TARGET TCEQ BASE MODEL STRATEGY MODEL DIFFERE							
	(AC-FT)	#YEARS	%	#YEARS	%	%		
SUBSISTENCE	9,600	49	86%	49	86%	0.0%		
BASE DRY	39,168	41	72%	42	74%	1.8%		
BASE AVG	91,080	28	49%	28	49%	0.0%		
BASE WET	158,976	24	42%	24	42%	0.0%		

INTERVENING SIX MONTHS FLOW CRITERIA MET									
CRITERIA	CRITERIA TARGET TCEQ BASE MODEL STRATEGY MODEL DIFFERENCE								
	(AC-FT)	#YEARS	%	#YEARS	%	%			
SUBSISTENCE	6,900	53	93%	53	93%	0.0%			
BASE DRY	28,152	48	84%	48	84%	0.0%			
BASE AVG	65,412	36	63%	36	63%	0.0%			
BASE WET	114,264	29	51%	27	47%	-3.5%			

Note: Intervening Six Months includes the remaining Spring Onset and Fall Onset months that are not used for the 3 consecutive month calculation.

The two tables above show that the recommended strategies cause a small reduction in the number of times the flow targets are met under Base Average and Base Wet conditions (Springtime Onset and Intervening Six Months), although the frequency goals as shown in *Table 6-1* continue to be met for those conditions. The recommended strategies show a small positive impact to the number of times the flow targets are met under Base Dry conditions (Fall Onset). There are no impacts to Subsistence conditions.

6.3 Impacts of Water Management Strategies on Agricultural Resources, Water Resources, and Natural Resources

The LRWPG balanced meeting water needs with good stewardship of the water, agricultural, and natural resources within the Region. However, the LRWPG recognized the importance of recommending water management strategies that were of a realistic cost to Irrigation, the major water user in the region, and the category expected to experience all potential water shortages.

The general categories of the strategies examined include: Drought Management, Conservation, Off-Channel Reservoir, Expanded Aquifer Use, Effluent Reuse, Groundwater and Surface Water Desalination, Aquifer Storage and Recovery, and Dredging. Not all of these strategies were recommended in the plan. The effects of the recommended water management strategies on specific resources are discussed in further detail within this Section.

6.3.1 Agricultural

The Lavaca Regional Water Planning Area (LRWPA) currently has nearly 97,000 acres of irrigated agricultural land that requires a projected 175,636 ac-ft/yr of water for irrigation under Drought-of-Record (DOR) conditions. This demand is expected to remain relatively constant through 2070. The majority of this water is used for growing rice and represents the greatest water demand in the area. Due to the strong dependency of rice production on water supplies, Irrigation demand will be the most significant driver of water demands for the Region over the next 50 years.

The water management strategies introduced in *Chapter 5* of this RWP were created to meet the needs of all WUGs including agricultural needs. Due to the strong dependency of rice production on water supplies and the sensitivity of agriculture to increased costs in water, the LRWPG focused on economical and practical strategies for meeting water demands under DOR conditions.

The water management strategy Expanded Use of the Gulf Coast Aquifer would increase the availability of water for irrigation purposes, which would reduce the threat to agriculture. This strategy would be the most favorable for agriculture. However, the Expanded Use of the Gulf Coast Aquifer strategy is currently not recommended due to Modeled Available Groundwater (MAG) restrictions, but is included as an Alternative strategy in the RWP.

The water management strategies recommended by the LRWPG to meet irrigation needs are water Irrigation Conservation (On-farm) and Irrigation Conservation (Tail Water Recovery). On-farm conservation methods such as land leveling, well meters, conversion of irrigation ditches to pipelines, and others would reduce demand for irrigation water while supporting agriculture. Tail Water Recovery from irrigation field return flows may be cost prohibitive to agriculture.

The Lavaca Off-Channel Reservoir and LNRA Desalination strategies would have minimal impacts on agriculture given that the projects would remove only a small portion of land from agricultural production relative to the large quantity of agricultural land in the area.

Drought Management and Conservation for municipal water user groups would have very little positive impact to the amount of water available to meet irrigation needs in Wharton County. Conservation for Manufacturing would have no impact on agriculture. Reuse by El Campo could potentially reduce the return flows that downstream irrigators could use.

6.3.2 Other Water Resources of the State including Groundwater and Surface Water Interrelationships

Water resources available by basin within the LRWPA are discussed in further detail below. Note that the surface water basins listed below do not necessarily coincide with groundwater divides but are used for accounting purposes in the RWP.

6.3.2.1 Colorado River Basin

The Colorado River Basin contains a portion of the Gulf Coast Aquifer that is shared with Region K. The amount of water available from this source is sufficient to meet the municipal demands of a portion of El Campo located in this basin. This basin in Region K is also the source of water for a portion of the Garwood Irrigation Division in the Lavaca Region, located in Wharton County.

6.3.2.2 Colorado-Lavaca Coastal River Basin

The sustainable yield of the portion of the Gulf Coast Aquifer located in the Colorado-Lavaca River Basin of Wharton County was found to be sufficient to meet the demands of irrigators under DOR conditions. During drought conditions, the irrigation return flows from groundwater irrigation will provide an important resource for stream habitat.

The recommended conservation strategies for Irrigation in this basin would help to extend water supplies from the Gulf Coast aquifer during times of drought.

The only contracted surface water supply used within the LRWPA is up to 10,627 ac-ft/yr contract from LNRA for manufacturing use within the Colorado-Lavaca River Basin. This water is supplied from Lake Texana and represents the only water supply allocated within this basin and the entire region that does not originate from the Gulf Coast Aquifer.

6.3.2.3 Lavaca River Basin

Groundwater resources were found to be inadequate to meet the demands of irrigation WUGs in Wharton County. Expanding the use of the aquifer during times of drought was not recommended as a strategy in this planning cycle but is included as an alternative strategy in the plan. During drought conditions, the irrigation return flows from groundwater irrigation will provide an important resource for stream habitat. During average conditions, the reduced usage of groundwater would allow aquifer conditions to recover to normal levels.

The recommended conservation strategies for Irrigation in this basin would help to extend water supplies from the Gulf Coast aquifer during times of drought.

Lake Texana has a firm yield of 79,000 ac-ft/yr in 2020, or 74,500 ac-ft/yr after 4,500 ac-ft/yr of environmental flows are accounted for. This firm yield decreases to 73,290 ac-ft/yr (after 4,500 ac-ft/yr of environmental flows) by 2070. Approximately 31,000 ac-ft of this volume continues to be an important supply for the City of Corpus Christi in the Coastal Bend Region. Contracts to manufacturing users make up close to an additional 43,000 ac-ft/yr. The manufacturing contracts mentioned above in the Colorado-Lavaca River Basin are included in these contracts.

The recommended Lavaca Off-Channel Reservoir and LNRA Desalination strategies would increase the available surface water in the region for use by LNRA customers.

6.3.2.4 Lavaca-Guadalupe Coastal Basin

The Lavaca-Guadalupe Coastal Basin has sufficient water supplies in the Gulf Coast Aquifer to meet the municipal, agricultural, and industrial demands of the basin.

6.3.2.5 Guadalupe River Basin

A small portion of the Guadalupe River Basin is present within Lavaca County. The minor domestic and agricultural demands in this basin are met with groundwater supplies from the Gulf Coast Aquifer.

6.3.3 Natural Resources

The water management strategies recommended in this RWP are intended to protect natural resources while still meeting the projected water needs of the region. The quantitative environmental impacts of the individual water management strategies discussed in *Chapter 5* varied from positive impact to minimal or no impact to negative impact. A discussion of the individual environmental impacts can be found in *Chapter 5*.

The most common impact for the conservation strategies is reduced stream flow from irrigation return flows and a possible reduction of habitat of migratory birds. In addition, implementation of some of these strategies will reduce reliance on groundwater pumping which will alleviate stress on the groundwater in the area.

The Lavaca Off-Channel Reservoir would capture a portion of pulse flows. While the SB3 environmental flow requirements are implemented, the LRWPG acknowledges that the reservoir would have some impact in the pulse flow volume of water reaching the bay. A permitted freshwater release schedule would provide an opportunity to return water to creeks during times of drought, benefitting wildlife habitat. Although siting of the project will remove a portion of total agricultural land from production, it is minimal given the large quantity of agricultural land in the area. In addition, the reservoirs would provide wildlife habitat.

Effluent Reuse by El Campo would reduce the amount of water being returned to the stream. During dry times when there is little flow, this strategy would have a greater impact.

LNRA Desalination would require increased permitting and would remove a portion of total agricultural land in the area, but the groundwater and treated brackish surface water may ultimately make it into the river and bay as return flows.

6.3.4 Third-party Social and Economic Impacts resulting from Voluntary Redistributions of Water

The 2021 Lavaca Regional Water Plan has no water management strategies involving voluntary redistributions of water.

6.3.4.1 Moving Water from Rural and Agricultural Areas

Water demand is generally constant over the planning period with estimated water usage for rural (livestock) and agricultural representing 89% of the total water used in the LRWPA in 2070.

The potential impacts of moving water from rural and agricultural areas are mainly associated with socio-economic impacts to these third parties. As noted previously, much of the water demand for Irrigation in the LRWPA is associated with rice production. While other crops, such as corn, cotton, milo, and similar row crops can be grown either with or without irrigation, no such option exists for rice. In addition, the type of land that is suitable for rice is such that it is often difficult for rice producers to find an alternative crop for those years when the land is being rested from rice production. This results in more intensive economic pressure, since the production from this land for any other crop is marginal at best.

In much of the LRWPA, the marginal quality land has already been forced out of rice production because of economic conditions. It is further noted that for most agricultural commodities, the price is highly variable. For this reason, the farmers need the flexibility to plant additional acreages during periods of higher than normal prices to try to recover from years with marginal economics. If the water needed to produce additional acreage is no longer there because it has been sold to a municipality, the economics of farming is further impacted.

One additional area of concern from an economic standpoint is the current decline in the infrastructure to support the rice industry. Further decreases in rice production of even a temporary nature further threaten the economic picture for the support industries of milling, hauling, etc. Once infrastructure for milling is taken out of service, it increases the cost of doing business for the remaining producers in the area.

6.4 Impacts of Water Management Strategies on Key Parameters of Water Quality

The potential impacts that water management strategies (WMS) may have on water quality are discussed in this section, including the identified water quality parameters which are deemed important to the use of the water resources within the LRWPA.

Under the Clean Water Act, the State of Texas must define designated uses for all major water bodies and, consequently, the water quality standards that are appropriate for that designated water use.

Key water parameters identified within the LRWPA are:

- Bacteria
- pH
- Dissolved Oxygen (DO)
- Total Dissolved Solids (TDS)
- Total Suspended Solids (TSS)
- Chlorides
- Nutrients (nitrogen, phosphorus)
- Salinity

The water quality parameters and water management strategies selected by the LRWPG were evaluated to determine the impacts on water quality as a result of these recommended strategies. This evaluation used the data available to compare current conditions to future conditions with the recommended water management strategies in place.

For the LRWPA, the predominant water use is for agricultural purposes, with 89 percent of the water used for irrigation and livestock watering. As a result of the predominance of agricultural water use, the Lavaca Region is very price sensitive, and the review of water management strategies tends to focus heavily on cost. If the price is too high, the strategy will not be implemented because the users will be unable to afford it.

6.4.1 Water Quality Overview

Water quality records were obtained from the TWDB for wells completed in the Chicot, Evangeline, and Jasper Aquifers in the LRWPA, as part of previous regional water planning efforts. Records available from the TWDB include water quality data dating back to the 1930s through 2005, with limited data available for 2009. Updates for this cycle showed some additional data for 2013 and 2017. Of the key water parameters identified in the LRWPA, the TWDB includes records for pH, TDS, and chloride for groundwater. Irrigation, domestic, municipal, manufacturing, and steam-electric supplies are the main uses for water in the LRWPA.

The most recent TWDB water chemistry results available are from 2017. Data from the TWDB show that the groundwater in the Lavaca Region continues to be of generally good quality and that the quality has not changed significantly throughout the years. Recent data indicate TDS levels generally range from about 300 to 900 mg/L in wells within the Lavaca Region. The principal constituents are generally bicarbonate with smaller amounts of calcium, sodium, chloride, and sulfate. The chloride values generally range from about 30 to 350 mg/L in wells sampled in 2017. This range has

expanded somewhat since the last planning cycle. The pH of the water ranges from 6.6 to 7.7 in the samples taken in 2017.

Analysis of the TWDB water quality data does not indicate substantial areas where the groundwater quality is changing. There are a few industrial wells located in the very southern part of Jackson County along SH 35 that have chloride levels that have increased some over the years. The wells are located near Carancahua Bay where there is a limited thickness of fresh groundwater.

Comparison of available water quality records for periods of high use in the LRWPA during the 1980s to the recent 2017 TWDB water quality records do not indicate a significant change in the water quality. Available data for wells sampled in the 1980s and more recent years have water quality constituents with mostly similar values with only some minor differences noted. Samples taken from wells in 2017 that are located near wells sampled in the late 1970s through late 1990s also tend to have similar reported values for the water quality constituents.

Chemical analyses available for wells within the LRWPA portion of Wharton County show TDS that averaged about 495 mg/L in the period of the early 1980s and averaged about 596 mg/L for samples collected in 2017. The data shows a small increase in the overall mineralization of the water over this time period. The Chicot and Evangeline Aquifers provide a prolific water source within most of the LRWPA, and the Jasper Aquifer provides groundwater in the northern and central parts of Lavaca County.

6.4.2 Conservation Impacts

While conservation strategies are recommended in this plan for meeting Irrigation needs, it should be noted that there may be implementation issues. Conservation works well as a strategy for those farms which are family owned and operated and for as long as matching grants are available through EQIP. EQIP provides funding for conservation in the rice industry through grants for precision leveling and multiple inlets as well as canal lining. Additional support to further reduce the out-of-pocket costs to the farmer is also needed to ensure more widespread implementation of water conserving practices. While the EQIP grants are helpful, it is still difficult for farmers to justify the expense of the remaining 50 percent matching share. SWIFT funding from the TWDB may be an option for farmers, by providing low-interest loans for funding conservation measures, although a political subdivision would need to apply for the funds on their behalf.

It is also noted that much of the region relies upon tenant farmers who have only a year-to-year contract with a landowner. Typically, tenant farmers are unwilling to put up any money for conservation purposes since they may not be able to gain the benefit of the improvements beyond the year in which they are built. In addition, since there is an agricultural shortage and not a municipal shortage in the region, there is not an incentive for any of the municipalities to pay for on-farm conservation in exchange for the water saved. Whoever pays for the conservation will have to take less water than the amount of water saved in order for there to be any additional water for resolving the shortages.

Water conservation, including municipal, industrial, and agricultural, can have a positive impact on water quality under some conditions but a negative impact during other conditions. Conventional municipal and industrial wastewater treatment plants are strictly regulated with regard to suspended solids and oxygen demanding materials. A wastewater treatment plant that provides lower flows with the same limits on suspended solids and oxygen demanding materials will put fewer pounds of these materials in the waters of the state. However, these plants face much less regulation on dissolved solids in the effluent if, in fact, dissolved solids are regulated at all. Municipal and industrial conservation will likely cause increases in dissolved solids concentrations because the dilution with freshwater is less. As a result, discharge of more concentrated effluent from a dissolved solids standpoint during dry weather conditions may have a negative effect on water quality.

Water that is applied to irrigated acreage carries nutrients, sediments, salts, and other pollutants from the farmland. While it is intuitive that reduced flow could have a positive impact on water quality, it is

possible that the same dissolved solids loadings noted above could also provide a potential negative impact. In the case of irrigation return flows, however, the discharge of these flows tends to occur during low streamflow conditions, and the water from this discharge provides additional needed streamflow for environmental purposes during these times.

A review of the TCEQ Water Availability Model (WAM) for the Lavaca River Basin identified a number of stream segments that have no streamflow during the driest months of prolonged drought. Since all of the municipal water, some of the manufacturing water, and 80 percent or more of the irrigation water is derived from groundwater, the reduction of the return flows through conservation will have a negative impact on stream flows during the DOR.

Municipal and manufacturing return flows are returned to the stream throughout the year, except for the surface water that is sent to water users outside of the region, but they are more or less constant in both the wetter and drier months depending upon the condition of the individual wastewater collection systems. The agricultural return flows occur primarily in early spring and then again in July. The July return flows are particularly important since July is a historically dry month, and the return flows can often be the only flow moving in a stream reach at that time.

Dry land agriculture would also have a similar effect on stream habitat by denying return flows to stream segments in the lower basin. The land in the LRWPA is also of such a type that makes it of limited value for economically producing large volumes of crops other than rice, and the infrastructure in place for rice production could not be easily converted for other crops.

6.4.3 Impacts of the Recommended Management Strategies

The water quality parameters and water management strategies were evaluated to determine the impacts on water quality as a result of these recommended strategies. This evaluation used the data available to compare current conditions to future conditions with management strategies in place. The recommended management strategies, as described in Chapter 5 and used in this evaluation, are:

- Drought Management (Municipal Utilities Only)
- Irrigation Conservation (On-farm and Tail Water Recovery)
- Municipal Conservation
- Manufacturing Conservation
- Reuse of Municipal Effluent (El Campo)
- Lavaca Off-Channel Reservoir
- LNRA Desalination

The following paragraphs discuss the impacts of each management strategy on the chosen water quality parameters.

<u>Drought Management (Municipal Utilities Only)</u>, would have little to no impact on other water sources of the State.

Irrigation, Municipal, and Manufacturing Conservation can have both positive and negative impacts on water quality. Water that is being processed through a wastewater treatment plant typically has acquired additional dissolved solids prior to discharge to the waters of the State. Conventional wastewater treatment reduces suspended solids but does not reduce dissolved solids in the effluent. Water conservation measures will reduce the volume of water passing through the wastewater treatment plants without reducing the mass loading rates (a 1.6-gallon flush carries the same waste mass to the treatment plant that a 6-gallon flush once carried). This may result in increased constituent loads to the wastewater treatment plants. In the event that, over time, water conservation causes changes to wastewater concentrations, treatment processes may need to be adjusted to maintain permitted discharge parameters. It should be noted that during low flow conditions, the wastewater effluent in a stream may represent water that helps to augment and maintain the minimum stream flows.

For irrigation conservation, there will be reduced stream flow from irrigation return flows which may reduce habitat for migratory birds. Tail water may carry nutrients, sediments, salts, and other pollutants from the farmland. This return flow can have a negative impact on water quality, and by implementing conservation measures which reduce tail water losses, the nutrient and sediment loading can be reduced. However, this return flow tends to be introduced into the receiving stream during normally dry periods so it may have a net beneficial effect in terms of maintaining minimum stream flow conditions.

Reuse of Municipal Effluent (El Campo) is a strategy to help meet future growth and subsequent water supply shortages. The yield amounts are relatively low, so impacts would be low. The municipality anticipates using direct reuse with piping to move water to the location of shortage. However, reusing the treated effluent rather than discharging it to the creek would reduce return flows to the local creeks.

<u>Lavaca Off-Channel Reservoir</u> potentially will have a positive impact on water quality since it will operate as a "scalping reservoir." The water that is diverted and stored in reservoirs would allow some sediment to settle out, so that water released from the reservoir would be of higher quality. However, instream flows along with bay and estuary freshwater inflows would slightly decrease. A schedule for freshwater releases would be established during permitting of the project to meet TCEQ environmental flow standards. In general, increased return flows will occur in this Region as demands increase, and this increase in return flows will continue to occur during low flow events, thus, potentially increasing instream flows during DOR conditions.

<u>LNRA Desalination</u> will provide a usable water supply with a level of dissolved solids low enough for multi-use purposes. A significant side effect of this strategy is the disposal of wastes generated from the desalination process. A permit would be required for disposing the brine. LNRA customers are currently surface water users, so the increased use from groundwater would increase return flows to the streams.

6.5 Impacts of Water Management Strategies on Navigation

Due to the nature of the strategies recommended in the 2021 Lavaca Regional Water Plan, there are no anticipated impacts to navigation.

The conservation, drought management, and reuse strategies recommended in the RWP may reduce some return flows to the streams but should not impact navigation. The Lavaca Off-Channel Reservoir that is recommended in the RWP will not impact navigation as it is off-channel.

Contents

Chapte	r 7 – Dro	ught Response Information, Activities and Recommendations	7- 1
7.1	Droug	ht of Record in Regional Water Planning Area	7-2
	7.1.1	Current Drought of Record	7-2
	7.1.2	Potential New Drought of Record	7-3
7.2	Currer	nt Drought Preparations and Response	7-3
7.3	Existin	g and Potential Emergency Interconnects	7-10
7.4	Emerg	ency Responses to Local Drought Conditions or Loss of Municipal Supply	7-10
7.5		n-Specific Drought Response Recommendations and Model Drought Contingent	
	7.5.1	Region-Specific Drought Response Recommendations	7-12
	7.5.2	Region-Specific Model Drought Contingency Plans	7-12
7.6	Droug	ht Management Strategies	7-12
	7.6.1	Recommended Drought Management Strategies	7-12
	7.6.2	Alternative Drought Management Strategies	7-13
	7.6.3	Potential Drought Management Strategies Considered	7-13
7.7	Other	Drought Recommendations	7-13

List of Tables

- Table 7-1 Summary of Current Drought Triggers in the Lavaca Region
- Table 7-2 Potential Emergency Supplies for Sole-Source Municipal WUGs under 7,500 in Population and all County-Other

List of Figures

Figure 7-1 Categories of Drought and Natural Climate Variability

List of Appendices

Appendix 7A Region-Specific Model Drought Contingency Plans

This page intentionally left blank.

Chapter 7— Drought Response Information, Activities and Recommendations

This chapter presents all necessary requirements for drought management and contingency plans, as well as a summary of information provided by water systems in the Lavaca Regional Water Planning Area regarding drought, including preparations and response throughout the Region.

Drought Definitions

Drought is often referred to as a slow-moving emergency. The impact of droughts can be far-reaching but can be challenging to define due to the gradual and sometimes subtle progression of severity, as well as the tendency for temporal and geographic variations as isolated rain events shift perception of the drought severity. The types of droughts are sometimes characterized as meteorological, agricultural, and hydrological, which are leading events to the recognized socioeconomic impacts of drought. These drought terms are integrated and ordered such that as one type of drought intensifies it may lead to the development of another category of drought. The following definitions of categories of drought are taken from the State of Texas Drought Preparedness Plan and are further reflected in *Figure 7-1* on the next page:

- A meteorological drought is often defined as a period of substantially diminished precipitation duration and/or intensity that persists long enough to produce a significant hydrologic imbalance. The commonly used definition of meteorological drought is an interval of time, generally of the order of months or years, during which the actual moisture supply of a given place consistently falls below the climatologically-appropriate moisture supply.
- Agricultural drought occurs when there is inadequate precipitation and/or soil moisture to sustain crop or forage production systems. The water deficit results in serious damage and economic loss to plant or animal agriculture. Agricultural drought usually begins after meteorological drought but before hydrological drought and can also affect livestock and other agricultural operations.
- Hydrological drought refers to deficiencies in surface and subsurface water supplies. It is
 measured as streamflow, and as lake, reservoir, and groundwater levels. There is usually a
 time lag between a lack of rain or snow and less measureable water in streams, lakes, and
 reservoirs, making hydrological measurements not the earliest indicator of drought.
- Socioeconomic drought occurs when physical water shortages start to affect the health, wellbeing, and quality of life of the people, or when the drought starts to affect the supply and demand of an economic product.

Determining if a dry weather pattern substantiates a meteorological drought requires an area-specific analysis that is first typically signified by dry meteorological patterns. Short intervals of dry patterns are considered within the norm of meteorological variation (seasonally and annually), so it is important to note that a true meteorological drought is dependent on the area in which it occurs.

In areas where surface and/or groundwater supplies are full at the start of a dry pattern there is often minimal impact in residential lifestyle or economic and agricultural activity. However, as dry pattern intensities deepen and duration of the meteorological drought continues and water supplies are stressed, the impacts of meteorological drought transition and begin to indicate other drought categories.

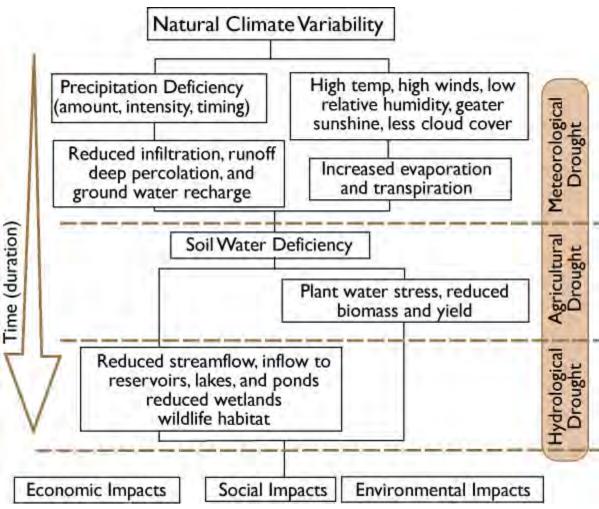


Figure 7-1 Categories of Drought and Natural Climate Variability

Source: National Drought Mitigation Center website "What is Drought?"

7.1 Drought of Record in Regional Water Planning Area

The definition of Drought of Record is "the period of time when historical records indicate that natural hydrological conditions would have provided the least amount of water supply," per TAC Title 31, Part 10, Chapter 357, Subchapter A, Rule 357.10.

Hydrological droughts are established using Water Availability Models (WAM) developed by the TCEQ. The Lavaca River Basin WAM is the model used for determining the Drought of Record in the Lavaca Region.

7.1.1 Current Drought of Record

Within the Lavaca Regional Water Planning Area, the Drought of Record (DOR) is most specifically associated with the hydrologic conditions of the Lake Texana. While Lake Texana was not yet constructed in the 1950s, the lake's performance under a repeat of Drought of Record conditions can

be analyzed using the TCEQ Lavaca River Basin WAM. The current DOR for Lake Texana is defined as beginning in December 1952 and lasting through April 1957.

7.1.2 Potential New Drought of Record

While the recent year 2011 was an extremely dry year throughout the State and the lake levels in Lake Texana fell dramatically, the region recovered in such a way as to remove the potential for a new drought of record.

7.2 Current Drought Preparations and Response

In addition to regional or statewide droughts, entities may be subject to localized drought conditions or loss of existing water supplies due to infrastructure failure, temporary water quality impairment, or other unforeseen conditions. Loss of existing supplies, while relatively uncommon, is particularly challenging to address as the causes are often difficult to anticipate. Numerous entities within the Lavaca Region have DCPs which include an emergency response stage and corresponding measures for droughts exceeding the DOR or for other emergency water supply conditions.

Drought contingency plans were obtained from the municipal water providers in LRWPA during the last planning cycle to serve as a summary of existing drought planning within LRWPA. The majority of drought contingency plans for municipal water providers are included in their city ordinances. Those ordinances were reviewed again this cycle for any changes. El Campo approved a 2019 version of their Drought Contingency Plans. The drought contingency plan for the only MWP in the region, LNRA, was also compiled into this regional summary. During the last planning cycle, attempts were made to survey all of the municipal water providers by phone in order to assess what types of drought measures had been enacted during the earlier part of the planning cycle, including 2011, which was the year the municipal demand projections are based from. Survey results showed that drought conditions in the region had not been severe enough to cause the municipal water providers to enact any drought response measures. Drought measures have not been implemented during this cycle either, as conditions have been milder.

The Drought Contingency Plans show that a variety of triggers have been specified by the different water supplies as initiators of water shortage conditions. These triggers include a threshold level of total water use, well levels, and conditions caused by mechanical failure of water service systems. Strategies planned for dealing with drought conditions included restrictions on water use for irrigation, vehicle washing, and construction. The amount of water saved for each drought response conditions varied by community. The RWPG did not identify any unnecessary or counterproductive variations in specific drought response strategies that may confuse the public or otherwise impede drought response efforts.

Table 7-1 provides the drought triggers for a Severe Water Shortage and the Critical/Emergency Water Shortage for water users in the region, as available from the Drought Contingency Plans. The water reduction goals for the triggers are also included. Municipal water users exclusively rely on the Gulf Coast aguifer. Some manufacturing water users in Jackson County follow LNRA's triggers.

Table 7-1 Summary of Current Drought Triggers in the Lavaca Region

WUG Name	County	Basin	Source Name	Severe Water Si	hortage	Critical/Emergenc	ncy Water Shortage			
				Trigger	Goal	Trigger	Goal			
EDNA	JACKSON	LAVACA	GULF COAST AQUIFER	ST >= 1.75 MGD for 3 reduction of		Total daily water demand >= 2.0 MGD for 3 consecutive days or 2.25 MGD for 1 day	Total demand reduction of 20%			
GANADO	JACKSON	LAVACA	GULF COAST AQUIFER	Water supply is equal or less than 70% of storage; pumping in wells is equal or less than 370 feet in Well #4 or 180 feet in Well #5; total daily demand equals or exceeds 250,000 gallons for 3 days or 500,000 gallons on a single day	Total demand reduction of 20%	Mayor determines the existence of a water supply shortage or water pressure deficit.	Limited lawn watering schedules or the elimination of all lawn watering			
COUNTY-OTHER	JACKSON	COLORADO- LAVACA	GULF COAST AQUIFER	NA	NA NA		NA			
COUNTY-OTHER	JACKSON	LAVACA	GULF COAST AQUIFER	NA	NA NA		NA			
COUNTY-OTHER	JACKSON	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA NA		NA	NA			

WUG Name	County	Basin	Source Name	Severe Water Si	hortage	Critical/Emergeno	y Water Shortage			
				Trigger	Goal	Trigger	Goal			
MANUFACTURING	JACKSON	COLORADO- LAVACA	TEXANA LAKE/ RESERVOIR	Reservoir Conservation Pool elevation equal to or less than 33.58 feet msl, in accordance with the LNRA DCP; or, the LNRA Board declares a drought worse than the Drought of Record or other water supply emergency and orders the mandatory curtailment of firm water supplies; or, upon notification from LNRA that it is implementing Stage 3 of the LNRA DCP. Pro-rata wate use reduction based on reservoir capacity: 50s capacity - 10 reduction; 40 capacity - 20 reduction; 30 capacity - 35 reduction; 20 capacity - 50 reduction		Contamination of water supply source; or catastrophic event causing failure or damage to structures; or causing emergency evacuation of reservoir; or any other emergency conditions determined by LNRA Board	Pro-rata water use reduction based on reservoir capacity: 50% capacity - 10% reduction; 40% capacity - 20% reduction; 30% capacity - 35% reduction; 20% capacity - 50% reduction			
MANUFACTURING	JACKSON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA			
MINING	JACKSON	COLORADO- LAVACA	GULF COAST AQUIFER	NA	NA NA		NA NA NA		NA	
MINING	JACKSON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA			
MINING	JACKSON	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA			
IRRIGATION	JACKSON	COLORADO- LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA			

WUG Name	County	Basin	Source Name	Severe Water Si	hortage	Critical/Emergenc	y Water Shortage
				Trigger	Goal	Trigger	Goal
IRRIGATION	JACKSON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
IRRIGATION	JACKSON	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA
LIVESTOCK	JACKSON	COLORADO- LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
LIVESTOCK	JACKSON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
LIVESTOCK	JACKSON	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA
HALLETTSVILLE	LAVACA	LAVACA	GULF COAST AQUIFER	When pumpage of the City wells is equal to or greater than 1.5 mgd per day for 3 consecutive days.	30% reduction in total water use.	When pumpage of the City wells is equal to or greater than 1.75 mgd per day for 3 consecutive days.	40% reduction in total water use.
MOULTON	LAVACA	LAVACA	GULF COAST AQUIFER	Static water level in well #1, 2 drops to 250 ft below ground level; well #3 drops to 205 ft below ground level; well #4 drops to 165 ft below ground level and/or capacity of pumpage output is <= 70% of original capacity and/or loss of two or more wells due to mechanical failure	Total demand reduction of 20%	Static water level in well #1, 2 drops to 260 ft below ground level; well #3 drops to 215 ft below ground level; well #4 drops to 175 ft below ground level and/or capacity of pumpage output is <= 60% of original capacity and/or loss of two or more wells due to mechanical failure	Total demand reduction of 25%

WUG Name	County	Basin	Source Name	Severe Water Si	hortage	Critical/Emergenc	y Water Shortage
				Trigger	Goal	Trigger	Goal
SHINER	LAVACA	LAVACA	GULF COAST AQUIFER	Emergency Water Demand Management Program, based on weather conditions or 90% of City's plant capacity. Limit all consumption by citizens either using a fixed percentage of prior month usage or a maximum number of gallons per meter per week.		Emergency Water Demand Management Program, based on weather conditions or 90% of City's plant capacity.	Limit all consumption by citizens either using a fixed percentage of prior month usage or a maximum number of gallons per meter per week.
YOAKUM	LAVACA	LAVACA	GULF COAST AQUIFER	Daily usage equals or exceeds 3.42 mgd, or 100% of the current safe production capacity of the water system for 2 consecutive days.	Achieve 30 percent reduction in total water use.	Daily usage equals or exceeds 3.6 mgd, or 95% of the current safe production capacity of the water system for 2 consecutive days.	Achieve 40 percent reduction in total water use.
COUNTY-OTHER	LAVACA	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
COUNTY-OTHER	LAVACA	GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA
MANUFACTURING	LAVACA	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
MINING	LAVACA	LAVACA	GULF COAST AQUIFER	NA	NA NA NA		NA
MINING	LAVACA	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA

WUG Name	County	Basin	Source Name	Severe Water S	hortage	Critical/Emergenc	ey Water Shortage		
				Trigger	Goal	Trigger	Goal		
IRRIGATION	LAVACA	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA		
LIVESTOCK	LAVACA	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA		
LIVESTOCK	LAVACA	LAVACA- GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA		
LIVESTOCK	LAVACA	GUADALUPE	GULF COAST AQUIFER	NA	NA	NA	NA		
EL CAMPO	WHARTON	COLORADO	GULF COAST AQUIFER	Total daily demand equals or exceeds 4.5 MGD for 3 consecutive days or 5.0 MGD on a single day	Achieve a 15% reduction in daily water pumpage	Total daily demand equals or exceeds 5.0 MGD for 3 consecutive days or 5.5 MGD on a single day	Achieve a 20% reduction in daily water pumpage		
EL CAMPO	WHARTON	COLORADO- LAVACA	GULF COAST AQUIFER	Total daily demand equals or exceeds 4.5 MGD for 3 consecutive days or 5.0 MGD on a single day	Achieve a 15% reduction in daily water pumpage	Total daily demand equals or exceeds 5.0 MGD for 3 consecutive days or 5.5 MGD on a single day	Achieve a 20% reduction in daily water pumpage		
EL CAMPO	WHARTON	LAVACA	GULF COAST AQUIFER	Total daily demand equals or exceeds 4.5 MGD for 3 consecutive days or 5.0 MGD on a single day		Total daily demand equals or exceeds 5.0 MGD for 3 consecutive days or 5.5 MGD on a single day	Achieve a 20% reduction in daily water pumpage		
WHARTON COUNTY WCID 1	WHARTON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA		

WUG Name	County	Basin	Source Name	Severe Water Shortage Trigger Goal		Critical/Emergenc	y Water Shortage
						Trigger	Goal
COUNTY-OTHER	WHARTON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
MANUFACTURING	WHARTON	COLORADO- LAVACA	GULF COAST AQUIFER	COAST NA NA		NA	NA
MINING	WHARTON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
IRRIGATION	WHARTON	COLORADO- LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
IRRIGATION	WHARTON	COLORADO- LAVACA	LCRA - GARWOOD (ROR)	NA	NA	NA	NA
IRRIGATION	WHARTON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA
LIVESTOCK	WHARTON	LAVACA	GULF COAST AQUIFER	NA NA		NA	NA
STEAM- ELECTRIC*	WHARTON	LAVACA	GULF COAST AQUIFER	NA	NA	NA	NA

^{*}Steam-Electric responses to drought may be subject to the Electric Reliability Council of Texas (ERCOT) requirements.

7.3 Existing and Potential Emergency Interconnects

The guidance provided by the Texas Water Development Board states that "RWPGs will collect information on existing major water infrastructure facilities that may be used for interconnections in event of an emergency shortage of water. RWP shall include a description of the RWPG methodology used to collect emergency interconnects information and the number of existing and potential emergency interconnects in the RWPA, including who is connected to whom. Detailed emergency interconnect information must be kept confidential in accordance with TWC 16.053(r) and should be provided separately and confidentially to the EA of the TWDB. Any information regarding the location or descriptions of facilities should be excluded from the plan."

During the last planning cycle, in order for the Lavaca Regional Water Planning Group to comply with this requirement, a request letter was mailed to seven major water infrastructure facilities within the region. The intent of the letter was to obtain information on whether the facilities' water system currently have access to, or the ability to provide, an emergency water supply through an interconnect with another water system.

The RWPG received six responses to the seven request letters. Each response stated that the municipality had no emergency interconnect.

In order to confirm there have been no updates since the last planning cycle, this cycle the Region P consultant submitted an information request to the TCEQ for information on emergency interconnects within the counties in Region P. The data that the TCEQ provided showed no interconnects within the Lavaca Regional Water Planning Area.

As no emergency interconnect data exists within the region, no data was passed along confidentially to the TWDB Executive Administrator. As no emergency interconnects exist in the region, there was no mention of emergency interconnects in the various Drought Contingency Plans that were reviewed.

7.4 Emergency Responses to Local Drought Conditions or Loss of Municipal Supply

Emergency preparedness is of particular importance for entities that rely on a sole-source of water for supply purposes. In instances where water systems rely exclusively on a single source, the State of Texas has identified a need to develop emergency preparedness protocols should source availability be significantly and suddenly reduced for any reason, including drought, equipment failure, or accidental or deliberate source contamination.

The Texas Administrative Code (31 TAC §357.42) requires that regional planning groups evaluate potential emergency responses to drought conditions or loss of existing water supplies for municipal Water User Groups (WUGs) with a 2010 population of less than 7,500 and with a sole-source of water, as well as all county-other WUGs.

A list of identified single-source WUGs with population of less than 7,500 and all county-other WUGs is included in *Table 7-2*, with potential emergency supply options and implementation requirements identified as applicable. Due to limited water sources, individual rural well owners, and large distances between municipalities in the region, the emergency supply options are reduced to trucking in water and drilling a new well.

Table 7-2 Potential Emergency Supplies for Sole-Source Municipal WUGs under 7,500 in Population and all County-Other

	Entity				Po	tential	Emerg	jency \	Nater \$	Supply	Sourc	e(s)	Imple	ementa	tion Re	equiren	nents
Water User Group Name	County	2010 Census Population	2020 Population	2020 Demand (AF/year)	Release from upstream reservoir	Curtailment of upstream/downstream water rights	Local groundwater well	Brackish groundwater limited treatment	Brackish groundwater desalination	Emergency interconnect	Other named local supply	Trucked-in water	Type of infrastructure required	Entity providing supply	Other local entities required to participate/ coordinate	Emergency agreements/ arrangements already in place?	other
EDNA	JACKSON	5,499	5,747	891			Х					Х	well				
GANADO	JACKSON	2,003	2,080	270			Х					Х	well				
COUNTY-OTHER	JACKSON	6,573	6,779	695			Х					Х	well				
HALLETTSVILLE	LAVACA	2,550	2,820	669			Χ					Х	well				
MOULTON	LAVACA	886	874	180			Х	_	_			Х	well				
SHINER	LAVACA	2,069	2,054	480			Х	_	_			Х	well				
YOAKUM	LAVACA	3,677	3,701	662			Х	_	_			Х	well				
COUNTY-OTHER	LAVACA	10,081	9,814	1,208			Х	_	_			Х	well				
WHARTON COUNTY WCID 1	WHARTON	1,014	1,076	177			Χ					Х	well				
COUNTY-OTHER	WHARTON	4,085	3,448	447			Х					Х	well				

7.5 Region-Specific Drought Response Recommendations and Model Drought Contingency Plans

7.5.1 Region-Specific Drought Response Recommendations

The Lavaca Regional Water Planning Group (LRWPG) acknowledges that the Drought Contingency Plan for the Lavaca-Navidad River Authority (LNRA) is the best drought management tool for surface water supplies in the Lavaca Region. LNRA uses multiple triggers at each stage that include water surface elevations of the lake as well as a broad trigger that allows for any additional scenario that would cause the LNRA to notify its customers that a drought stage has been triggered. Please see *Table 7-1* for severe and critical/emergency triggers and responses associated with LNRA customers.

The majority of the region uses groundwater as their main source of supply. Throughout the region, the Drought Contingency Plans for groundwater users are developed specifically to their use and location. Aquifer properties can vary across the region and it can be difficult to require the same triggers for all users of a particular groundwater source that covers several counties. The LRWPG acknowledges that the municipalities that use groundwater have the best knowledge to develop their Drought Contingency Plan triggers and responses. Please see *Table 7-1* for severe and critical/emergency triggers and responses associated with groundwater users in the region. Even so, the LRWPG encourages ongoing coordination between groundwater users, Groundwater Conservation Districts, and the Groundwater Management Areas to monitor local conditions for necessary modifications to the Drought Contingency Plans.

7.5.2 Region-Specific Model Drought Contingency Plans

Model Drought Contingency Plans addressing the requirements of 30 TAC §288(b) were developed for the Lavaca Region and are available in *Appendix 7A*. Model plans were developed for wholesale water providers, water utilities, and irrigation users. The Drought Preparedness Council recommendations included developing a region-specific model drought contingency plan for all water use categories in the region that account for more than 10 percent of water demands in any decade over the 50-year planning horizon. The only water use category that meets that requirement in Region P is the Irrigation water use category. The model plans were developed by starting with the TCEQ's template and making modifications to the template to acknowledge coordination with the Lavaca Regional Water Planning Group and to make the template more source-specific to the region.

7.6 Drought Management Strategies

Drought management can be implemented as a water management strategy to reduce water demands during times of drought. While there were no identified municipal or manufacturing water needs in the region, drought management was considered by the RWPG as a potential strategy based on identified water reduction goals in the Drought Contingency Plans. For the WUGs in the region with identified water needs, which included Irrigation in Wharton County, it was determined that reducing water demands during times of drought could potentially help meet those needs. This was done by looking at rolling out polypipe temporarily to reduce water use during times of drought. See *Chapter 5* for additional details.

7.6.1 Recommended Drought Management Strategies

Drought Management is recommended as a strategy for the municipal utility WUGs in the region. While no water needs exist, the LRWPG supports municipalities following their Drought Contingency Plans and the responses to the various drought triggers identified in their Drought Contingency Plans. Drought Management is recommended for Edna, Ganado, Hallettsville, Moulton, Shiner, Yoakum, El Campo, and Wharton County WCID 1.

7.6.2 Alternative Drought Management Strategies

Drought Management is included as an alternative strategy for Manufacturing in Jackson County. This strategy identifies that there is a portion of the manufacturing sector in Jackson County that purchases surface water from the Lavaca-Navidad River Authority (LNRA). Under drought conditions, LNRA may pose restrictions on surface water use, based on its Drought Contingency Plan. If the manufacturing sector is unable to find additional water to meet its manufacturing demands, it may be forced to cut back, and having to do so will likely have impacts economically.

7.6.3 Potential Drought Management Strategies Considered

Drought Management was considered and evaluated as a potentially feasible water management strategy for those municipal utility WUGs with a Drought Contingency Plan (see *Section 7.6.1*), for Manufacturing in Jackson County, and for Irrigation in Wharton County, as it had a water need. See *Appendix 5B* in *Chapter 5* for additional details.

7.7 Other Drought Recommendations

Housed within the Office of Emergency Management within the Texas Department of Public Safety, the Drought Preparedness Council was authorized and established by the 76th legislature (HB-2660) in 1999, subsequent to the establishment of the Drought Monitoring and Response Committee (75th legislature, SB1). The Council is composed of representatives of state agencies and appointees by the governor. As defined by the Texas Water Code, the Council is responsible for the monitoring and assessing drought conditions and advising elected and planning officials about drought-related topics.

The Lavaca Regional Water Planning Group (LRWPG) reviewed and considered recommendations from the Drought Preparedness Council with regards to developing region-specific model drought contingency plans for water use categories in the region with more than 10 percent of water demands, as well as following the outline template provided by the Texas Water Development Board, making an effort to fully address the assessment of current drought preparations and planned responses, as well as planned responses to local drought conditions or loss of municipal supply. The LRWPG currently has no drought preparation and response recommendations regarding the Drought Preparedness Council and the State Drought Preparedness Plan.

The Lavaca Regional Water Planning Group recognizes that the most valuable contingency will be completed at a local level. Further guidance and regional cooperation would be valuable in producing meaningful plans with clear trigger definition and implementation guidance. Communication of these between state, regional and local levels would also further facilitate necessary emergency responses when drought measures need to be implemented. The following recommendations are made to support development and implementation of meaningful Drought Contingency Plans during times of drought:

- Coordination by water providers with local Groundwater Conservation Districts, in order to consider more uniform triggers and responses from a particular source within the district, as applicable.
- Coordination with wholesale providers regarding drought conditions and potential implementation of drought stages, particularly during times of limited precipitation.
- Communication with customers during times of decreased supply or precipitation in order to facilitate potential implementation of drought measures and reinforce the importance of compliance with any voluntary measures.

 Designation of appropriate resources to allow for consistent application of enforcement procedures as established in the Drought Contingency Plans.

APPENDIX 7A Region-Specific Model Drought Contingency Plans

Model Lavaca Region Drought Contingency Plan Template
Utility/Water Supplier

Model Drought Contingency Plan Template (Utility / Water Supplier)

Brief Introduction and Background

Include information such as

- Name of Utility
- Address, City, Zip Code
- CCN#
- PWS #s

Section I: Declaration of Policy, Purpose, and Intent

n order to conserve the available water supply and protect the integrity of water supply facilities, with articular regard for domestic water use, sanitation, and fire protection, and to protect and preserve publicalth, welfare, and safety and minimize the adverse impacts of water supply shortage or other water upply emergency conditions, the (name of your water supplier) hereby adopts the following regulations and restrictions on the delivery and consumption of water through an ordinance/or resolution.	ic
Vater uses regulated or prohibited under this Drought Contingency Plan (the Plan) are considered to be on-essential and continuation of such uses during times of water shortage or other emergency water upply condition are deemed to constitute a waste of water which subjects the offender(s) to penalties a efined in Section XI of this Plan.	
ection II: Public Involvement	
opportunity for the public to provide input into the preparation of the Plan was provided by the (name of your water supplier) by means of (describe methods	
sed to inform the public about the preparation of the plan and provide opportunities for input; for xample, scheduling and providing public notice of a public meeting to accept input on the Plan).	
ection III: Public Education	
he (name of your water supplier) will periodically provide the public with information bout the Plan, including information about the conditions under which each stage of the Plan is to be itiated or terminated and the drought response measures to be implemented in each stage. This information will be provided by means of (describe methods to be used to provide formation to the public about the Plan; for example, public events, press releases or utility bill inserts).)
ection IV: Coordination with the Lavaca Regional Water Planning Group	
he service area of the (name of your water supplier) is located within the Lavaca egional Water Planning Area and (name of your water supplier) has provided a copy of his Plan to the Lavaca Regional Water Planning Group.	

Section V: **Authorization** The (designated official; for example, the mayor, city manager, utility director, general manager, etc.), or his/her designee is hereby authorized and directed to implement the applicable provisions of this Plan upon determination that such implementation is necessary to protect public health, safety, and welfare. The ______, (designated official) or his/her designee shall have the authority to initiate or terminate drought or other water supply emergency response measures as described in this Plan. Section VI: **Application** The provisions of this Plan shall apply to all persons, customers, and property utilizing water provided (name of your water supplier). The terms person and customer as used in the Plan include individuals, corporations, partnerships, associations, and all other legal entities. Section VII: **Definitions** For the purposes of this Plan, the following definitions shall apply: Aesthetic water use: water use for ornamental or decorative purposes such as fountains, reflecting pools, and water gardens. Commercial and institutional water use: water use which is integral to the operations of commercial and non-profit establishments and governmental entities such as retail establishments, hotels and motels, restaurants, and office buildings. Conservation: those practices, techniques, and technologies that reduce the consumption of water, reduce the loss or waste of water, improve the efficiency in the use of water or increase the recycling and reuse of water so that a supply is conserved and made available for future or alternative uses.

<u>Customer</u>: any person, company, or organization using water supplied by ______(name of your water supplier).

<u>Domestic water use</u>: water use for personal needs or for household or sanitary purposes such as drinking, bathing, heating, cooking, sanitation, or for cleaning a residence, business, industry, or institution.

<u>Even number address</u>: street addresses, box numbers, or rural postal route numbers ending in 0, 2, 4, 6, or 8 and locations without addresses.

<u>Industrial water use</u>: the use of water in processes designed to convert materials of lower value into forms having greater usability and value.

<u>Landscape irrigation use</u>: water used for the irrigation and maintenance of landscaped areas, whether publicly or privately owned, including residential and commercial lawns, gardens, golf courses, parks, and rights-of-way and medians.

Non-essential water use: water uses that are not essential nor required for the protection of public, health, safety, and welfare, including:

(a) irrigation of landscape areas, including parks, athletic fields, and golf courses, except otherwise provided under this Plan;

- (b) use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle;
- (c) use of water to wash down any sidewalks, walkways, driveways, parking lots, tennis courts, or other hard-surfaced areas;
- (d) use of water to wash down buildings or structures for purposes other than immediate fire protection;
- (e) flushing gutters or permitting water to run or accumulate in any gutter or street;
- (f) use of water to fill, refill, or add to any indoor or outdoor swimming pools or Jacuzzi-type pools;
- (g) use of water in a fountain or pond for aesthetic or scenic purposes except where necessary to support aquatic life;
- (h) failure to repair a controllable leak(s) within a reasonable period after having been given notice directing the repair of such leak(s); and
- (i) use of water from hydrants for construction purposes or any other purposes other than fire fighting.

Odd numbered address: street addresses, box numbers, or rural postal route numbers ending in 1, 3, 5, 7, or 9.

Section VIII: Criter	ria for Initiation and Termination of Drought Response Stages
demand conditions of	(designated official) or his/her designee shall monitor water supply and/or a (example: daily, weekly, monthly) basis and shall determine ant initiation or termination of each stage of the Plan, that is, when the specified
The triggering criteria	described below are based on
trigger levels based of	iption of the rationale for the triggering criteria; for example, triggering criteria / n a statistical analysis of the vulnerability of the water source under drought of pased on known system capacity limits).
Stage 1 Triggers M	IILD Water Shortage Conditions
	ation equested to voluntarily conserve water and adhere to the prescribed restrictions defined in Section VII Definitions, when
(Describe triggering ca	riteria / trigger levels; see examples below).
successive st	examples of the types of triggering criteria that might be used <u>in one or more ages</u> of a drought contingency plan. One or a combination of such criteria must or each drought response stage, but usually <u>not all will apply</u> . Select those your system:
Example 1:	Annually, beginning on May 1 through September 30.
Example 2:	When the water supply available to the (name of your water supplier) is equal to or less than (acre-feet, percentage of storage, etc.).
Example 3:	When, pursuant to requirements specified in the(name of your water supplier) wholesale water purchase contract with(name of your wholesale water supplier), notification is received requesting initiation of Stage 1 of the Drought Contingency Plan.

Example 4:	When flows in the (name of stream or river) are equal to or lest thancubic feet per second.	S
Example 5:	When the static water level in the (name of your water supplier) well(s) is equal to or less than feet above/below mean selevel.	er ea
Example 6:	When the specific capacity of the (name of your water supplier) well(s) is equal to or less than percent of the well*s original specific capacity.	ər al
Example 7:	When total daily water demand equals or exceeds million gallons for consecutive days of million gallons on a single day (example: base on the safe. operating capacity of water supply facilities).	
Example 8:	Continually falling treated water reservoir levels which do not refill above _ percent overnight (example: based on an evaluation of minimum treate water storage required to avoid system outage).	
The public water suppl	ier may devise other triggering criteria which are tailored to its system.	
	ination hay be rescinded when all of the conditions listed as triggering events have riod of (e.g. 3) consecutive days.	е
Stage 2 Triggers Mo	ODERATE Water Shortage Conditions	
Requirements for initia Customers shall be red	_	
Requirements for initial Customers shall be reconstructed in sexamples in Stage 1). Requirements for terminating 2 of the Plan in Stage	tion quired to comply with the requirements and restrictions on certain non-essentia Section IX of this Plan when (describe triggering criteria; se ination hay be rescinded when all of the conditions listed as triggering events hav period of (example: 3) consecutive days. Upon termination of Stage 2	e e
Requirements for initial Customers shall be recovater uses provided in examples in Stage 1). Requirements for terminates are 2 of the Plan in character 2 becomes oper stage 1 becomes oper	tion quired to comply with the requirements and restrictions on certain non-essentia Section IX of this Plan when (describe triggering criteria; se ination hay be rescinded when all of the conditions listed as triggering events hav period of (example: 3) consecutive days. Upon termination of Stage 2	e e
Requirements for initial Customers shall be recovater uses provided in examples in Stage 1). Requirements for terminates and the Plan in Stage 2 of the Plan in Stage 1 becomes oper Stage 3 Triggers Stag	tion quired to comply with the requirements and restrictions on certain non-essentian Section IX of this Plan when (describe triggering criteria; section is section in Section IX of this Plan when (describe triggering criteria; section is section in the condition is listed as triggering events have period of (example: 3) consecutive days. Upon termination of Stage 2 active. EVERE Water Shortage Conditions	e e ye 2,
Requirements for initial Customers shall be recovater uses provided in examples in Stage 1). Requirements for terminates and to exist for a Stage 1 becomes oper Stage 3 Triggers Stage 3 Triggers Stage 3 Stage 1). Requirements for initial Customers shall be recovater uses for Stage 3 Stage 1).	tion quired to comply with the requirements and restrictions on certain non-essential Section IX of this Plan when (describe triggering criteria; section in Section IX of this Plan when (describe triggering criteria; section in Section IX of this Plan when all of the conditions listed as triggering events have period of (example: 3) consecutive days. Upon termination of Stage 2 active. EVERE Water Shortage Conditions tion quired to comply with the requirements and restrictions on certain non-essential of this Plan when (describe triggering criteria; see examples in the section of this Plan when all of the conditions listed as triggering events have period of (example: 3) consecutive days. Upon termination of Stage 3	ee e2, al in

Stage 4 Triggers -- CRITICAL Water Shortage Conditions

Requirements for initiation

Customers shall be required to comply with the requirements and restrictions on certain non-essential water uses for Stage 4 of this Plan when (describe triggering criteria; see examples in Stage 1).
Requirements for termination Stage 4 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days. Upon termination of Stage 4, Stage 3 becomes operative.
Stage 5 Triggers EMERGENCY Water Shortage Conditions
Requirements for initiation Customers shall be required to comply with the requirements and restrictions for Stage 5 of this Plan when (designated official), or his/her designee, determines that a water supply emergency exists based on:
1. Major water line breaks, or pump or system failures occur, which cause unprecedented loss of capability to provide water service; or
2. Natural or man-made contamination of the water supply source(s).
Requirements for termination Stage 5 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days.
Stage 6 Triggers WATER ALLOCATION
Requirements for initiation Customers shall be required to comply with the water allocation plan prescribed in Section IX of this Plan and comply with the requirements and restrictions for Stage 5 of this Plan when(describe triggering criteria, see examples in Stage 1).
Requirements for termination - Water allocation may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (example: 3) consecutive days.
Note: The inclusion of WATER ALLOCATION as part of a drought contingency plan may not be required in all cases. For example, for a given water supplier, an analysis of water supply availability under drought of record conditions may indicate that there is essentially no risk of water supply shortage. Hence, a drought contingency plan for such a water supplier might only address facility capacity limitations and emergency conditions (example: supply source contamination and system capacity limitations).
Section IX: Drought Response Stages
The (designated official), or his/her designee, shall monitor water supply and/or demand conditions on a daily basis and, in accordance with the triggering criteria set forth in Section VIII of this Plan, shall determine that a mild, moderate, severe, critical, emergency or water shortage condition exists and shall implement the following notification procedures:
Notification Notification of the Public: The (design and efficient) as his (horselessing a scholl potify the public horselessing).
The (designated official) or his/ her designee shall notify the public by means of:

direct r public s signs p	olles: Ition in a newspaper of general circulation, Ition in a newspaper of general circulation, Itinian in a newspaper of general circulation in
Additional Notif The directly, the foll	ication: _ (designated official) or his/ her designee shall notify directly, or cause to be notified owing individuals and entities:
Fire Ch	/ Chairman and members of the City Council / Utility Board
County State D TCEQ Major v	Judge & Commissioner(s) Disaster District / Department of Public Safety (required when mandatory restrictions are imposed) water users water users, i.e. hospitals
	street superintendents & public facilities managers
Note: 7	The plan should specify direct notice only as appropriate to respective drought stages.
Stage 1 Respo	onse MILD Water Shortage Conditions
<u>Target</u>	: Achieve a voluntary percent reduction in(example: total water use, daily water demand, etc.).
Best M	anagement Practices for Supply Management:
	Describe additional measures, if any, to be implemented directly by (name of your water supplier) to manage limited water supplies and/or reduce water demand. Examples include: reduced or discontinued flushing of water mains, activation and use of an alternative supply source(s); use of reclaimed water for non-potable purposes.
<u>Volunta</u>	ary Water Use Restrictions for Reducing Demand:
(a)	Water customers are requested to voluntarily limit the irrigation of landscaped areas to Sundays and Thursdays for customers with a street address ending in an even number (0, 2, 4, 6 or 8), and Saturdays and Wednesdays for water customers with a street address ending in an odd number (1, 3, 5, 7 or 9), and to irrigate landscapes only between the hours of midnight and 10:00 a.m. and 8:00 p.m. to midnight on designated watering days.
(b)	All operations of the (name of your water supplier) shall adhere to water use restrictions prescribed for Stage 2 of the Plan.
(c)	Water customers are requested to practice water conservation and to minimize or discontinue water use for non-essential purposes.

Target: Achieve a ____ percent reduction in _____ (example: total water use, daily

Best Management Practices for Supply Management:

Stage 2 Response -- MODERATE Water Shortage Conditions

water demand, etc.).

Describe additional measures, if any, to be implemented directly by ______ (name of your water supplier) to manage limited water supplies and/or reduce water demand. Examples include: reduced or discontinued flushing of water mains, reduced or discontinued irrigation of public landscaped areas; use of an alternative supply source(s); use of reclaimed water for non-potable purposes.

Water Use Restrictions for Demand Reduction:

Under threat of penalty for violation, the following water use restrictions shall apply to all persons:

- (a) Irrigation of landscaped areas with hose-end sprinklers or automatic irrigation systems shall be limited to Sundays and Thursdays for customers with a street address ending in an even number (0, 2, 4, 6 or 8), and Saturdays and Wednesdays for water customers with a street address ending in an odd number (1, 3, 5, 7 or 9), and irrigation of landscaped areas is further limited to the hours of 12:00 midnight until 10:00 a.m. and between 8:00 p.m. and 12:00 midnight on designated watering days. However, irrigation of landscaped areas is permitted at anytime if it is by means of a hand-held hose, a faucet filled bucket or watering can of five (5) gallons or less, or drip irrigation system.
- (b) Use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle is prohibited except on designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8:00 p.m. and 12:00 midnight. Such washing, when allowed, shall be done with a hand-held bucket or a hand-held hose equipped with a positive shutoff nozzle for quick rises. Vehicle washing may be done at any time on the immediate premises of a commercial car wash or commercial service station. Further, such washing may be exempted from these regulations if the health, safety, and welfare of the public is contingent upon frequent vehicle cleansing, such as garbage trucks and vehicles used to transport food and perishables.
- (c) Use of water to fill, refill, or add to any indoor or outdoor swimming pools, wading pools, or Jacuzzi-type pools is prohibited except on designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight.
- (d) Operation of any ornamental fountain or pond for aesthetic or scenic purposes is prohibited except where necessary to support aquatic life or where such fountains or ponds are equipped with a recirculation system.
- (e) Use of water from hydrants shall be limited to fire fighting, related activities, or other activities necessary to maintain public health, safety, and welfare, except that use of water from designated fire hydrants for construction purposes may be allowed under special permit from the _______ (name of your water supplier).
- (f) Use of water for the irrigation of golf course greens, tees, and fairways is prohibited except on designated watering days between the hours 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight. However, if the golf course utilizes a water source other than that provided by the ______ (name of your water supplier), the facility shall not be subject to these regulations.
- (g) All restaurants are prohibited from serving water to patrons except upon request of the patron.
- (h) The following uses of water are defined as non-essential and are prohibited:

- wash down of any sidewalks, walkways, driveways, parking lots, tennis courts, or other hard-surfaced areas:
- 2. use of water to wash down buildings or structures for purposes other than immediate fire protection;
- 3. use of water for dust control;
- 4. flushing gutters or permitting water to run or accumulate in any gutter or street; and
- 5. failure to repair a controllable leak(s) within a reasonable period after having been given notice directing the repair of such leak(s).

Stage 3 Response SEVERE Water Shortage Conditions
<u>Target</u> : Achieve a percent reduction in (example: total water use, daily water demand, etc.).
Best Management Practices for Supply Management:
Describe additional measures, if any, to be implemented directly by
Water Use Restrictions for Demand Reduction: All requirements of Stage 2 shall remain in effect during Stage 3 except:
(a) Irrigation of landscaped areas shall be limited to designated watering days between the hours of 12:00 midnight and 10:00 a.m. and between 8 p.m. and 12:00 midnight and shall be by means of hand-held hoses, hand-held buckets, drip irrigation, or permanently installed automatic sprinkler system only. The use of hose-end sprinklers is prohibited at all times.
(b) The watering of golf course tees is prohibited unless the golf course utilizes a water source other than that provided by the (name of your water supplier).
(c) The use of water for construction purposes from designated fire hydrants under special permit is to be discontinued.
Stage 4 Response CRITICAL Water Shortage Conditions
<u>Target</u> : Achieve a percent reduction in (example: total water use, daily water demand, etc.).
Best Management Practices for Supply Management:

Describe additional measures, if any, to be implemented directly by _____

use of reclaimed water for non-potable purposes.

(name of your water supplier) to manage limited water supplies and/or reduce water demand. Examples include: reduced or discontinued flushing of water mains, reduced or discontinued irrigation of public landscaped areas; use of an alternative supply source(s);

<u>Water Use Restrictions for Reducing Demand:</u> All requirements of Stage 2 and 3 shall remain in effect during Stage 4 except:

- (a) Irrigation of landscaped areas shall be limited to designated watering days between the hours of 6:00 a.m. and 10:00 a.m. and between 8:00 p.m. and 12:00 midnight and shall be by means of hand-held hoses, hand-held buckets, or drip irrigation only. The use of hose-end sprinklers or permanently installed automatic sprinkler systems are prohibited at all times.
- (b) Use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle not occurring on the premises of a commercial car wash and commercial service stations and not in the immediate interest of public health, safety, and welfare is prohibited. Further, such vehicle washing at commercial car washes and commercial service stations shall occur only between the hours of 6:00 a.m. and 10:00 a.m. and between 6:00 p.m. and 10 p.m.
- (c) The filling, refilling, or adding of water to swimming pools, wading pools, and Jacuzzitype pools is prohibited.
- (d) Operation of any ornamental fountain or pond for aesthetic or scenic purposes is prohibited except where necessary to support aquatic life or where such fountains or ponds are equipped with a recirculation system.
- (e) No application for new, additional, expanded, or increased-in-size water service connections, meters, service lines, pipeline extensions, mains, or water service facilities of any kind shall be approved, and time limits for approval of such applications are hereby suspended for such time as this drought response stage or a higher-numbered stage shall be in effect.

Stage 5 Response -- EMERGENCY Water Shortage Conditions

water demand, etc.).	(example: total water use, dally
Best Management Practices for Supply Management:	
Describe additional measures, if any, to be imposed (name of your water supplier) to manage limited demand. Examples include: reduced or discontinued discontinued irrigation of public landscaped areas; use of reclaimed water for non-potable purposes.	I water supplies and/or reduce water ed flushing of water mains, reduced or

<u>Water Use Restrictions for Reducing Demand</u>. All requirements of Stage 2, 3, and 4 shall remain in effect during Stage 5 except:

- (a) Irrigation of landscaped areas is absolutely prohibited.
- (b) Use of water to wash any motor vehicle, motorbike, boat, trailer, airplane or other vehicle is absolutely prohibited.

Section X: Enforcement

(a) No person shall knowingly or intentionally allow the use of water from the (name of your water supplier) for residential, commercial, industrial	
agricultural, governmental, or any other purpose in a manner contrary to any provision of this Plan, or an amount in excess of that permitted by the drought response stage in effect at the time pursual to action taken by(designated official), or his/her designee, in accordance with provisions of this Plan.	or nt
(b) Any person who violates this Plan is guilty of a misdemeanor and, upon conviction shall be punished by a fine of not less than dollars (\$) and not more than dollars (\$) Each day that one or more of the provisions in this Plan is violated shall constitute a separate offense of a person is convicted of three or more distinct violations of this Plan, the (designated official) shall, upon due notice to the customer, be authorized to discontinue water service to the premises where such violations occur. Services discontinued under such circumstances shall be restored only upon payment of a re-connection charge, hereby established a \$, and any other costs incurred by the (name of your water supplied in discontinuing service. In addition, suitable assurance must be given to the (designated official) that the same action shall not be repeated while the Plan is in effect. Compliance with this plan may also be sought through injunctive relief in the district court.). er h at r)
(c) Any person, including a person classified as a water customer of the	ill en. a a d
d) Any employee of the (name of your water supplier), police officer, or othe employee designated by the (designated official), may issue a citation to person he/she reasonably believes to be in violation of this Ordinance. The citation shall be prepare in duplicate and shall contain the name and address of the alleged violator, if known, the offens charged, and shall direct him/her to appear in the (example: municipal court) on the date shown on the citation for which the date shall not be less than 3 days nor more than 5 days from the date the citation was issued. The alleged violator shall be served a copy of the citation. Service of the citation shall be complete upon delivery of the citation to the alleged violator, to a agent or employee of a violator, or to a person over 14 years of age who is a member of the violator immediate family or is a resident of the violator's residence. The alleged violator shall appear im (example: municipal court) to enter a plea of guilty or not guilty for the violation of the Plan. If the alleged violator fails to appear in (example: municipal court), a warrant for his/her arrest may be issued. A summons to appear may be issued in lieu of an arrest warrant. The cases shall be expedited and given preferential setting in (example: municipal courb) before all other cases.	adeen n. n.s.n.s.r.e
Section XI: Variances	
The (designated official), or his/her designee, may, in writing, grant temporal variance for existing water uses otherwise prohibited under this Plan if it is determined that failure to grant such variance would cause an emergency condition adversely affecting the health, sanitation or fire protection for the public or the person requesting such variance and if one or more of the following conditions are met:	o 1,

- (a) Compliance with this Plan cannot be technically accomplished during the duration of the water supply shortage or other condition for which the Plan is in effect.
- (b) Alternative methods can be implemented which will achieve the same level of reduction in water use.

Persons requesting an exemption from the provisions of this Ordinance shall file a petition for variance with the ______ (name of your water supplier) within 5 days after the Plan or a particular drought response stage has been invoked. All petitions for variances shall be reviewed by the _____ (designated official), or his/her designee, and shall include the following:

- (a) Name and address of the petitioner(s).
- (b) Purpose of water use.
- (c) Specific provision(s) of the Plan from which the petitioner is requesting relief.
- (d) Detailed statement as to how the specific provision of the Plan adversely affects the petitioner or what damage or harm will occur to the petitioner or others if petitioner complies with this Ordinance.
- (e) Description of the relief requested.
- (f) Period of time for which the variance is sought.
- Alternative water use restrictions or other measures the petitioner is taking or proposes to take to meet the intent of this Plan and the compliance date.
- (h) Other pertinent information.

EXAMPLE RESOLUTION FOR ADOPTION OF A

DROUGHT CONTINGENCY PLAN

RESUL	UTION NO.	

A RESOLUTION OF THE BOARD OF DIRECTORS OF	
CONTINGENCY PLAN. (name of water supplier) ADOPTING A DROU	JGHT
WHEREAS, the Board recognizes that the amount of water available to the water supplier) and its water utility customers are limited and subject to deple extended drought;	
WHEREAS, the Board recognizes that natural limitations due to drought conditi God cannot guarantee an uninterrupted water supply for all purposes;	ons and other acts of
WHEREAS, Section 11.1272 of the <i>Texas Water Code</i> and applicable rules of the on Environmental Quality require all public water supply systems in Texas contingency plan; and	
WHEREAS, as authorized under law, and in the best interests of the (name of water supply system), the Board deems it exped establish certain rules and policies for the orderly and efficient management of during drought and other water supply emergencies;	ient and necessary to
NOW THEREFORE, BE IT RESOLVED BY THE BOARD OF DIRECTORS OF (name of water supplier):	THE
SECTION 1. That the Drought Contingency Plan attached hereto as part hereof for all purposes be, and the same is hereby, adopted as the (name of water supplier).	
SECTION 2. That the (e.g., general manager) implement, administer, and enforce the Drought Contingency Plan.	is hereby directed to
SECTION 3.	The
t this resolution shall take effect immediately upon its passage.	Tha
DULY PASSED BY THE BOARD OF DIRECTORS OF THE,	ON THIS day of
President, Board of Directors ATTESTED TO:	
Secretary, Board of Directors	

Model Lavaca Region Drought Contingency Plan Template
Irrigation Uses

Model Drought Contingency Plan Template (Irrigation Uses)

DROUGHT CONTINGENCY PLAN FOR

(Name of irrigation district) (Address) (Date)

Section I: **Declaration of Policy, Purpose, and Intent** The Board of Directors of the _ (name of irrigation district) deems it to be in the interest of the District to adopt Rules and Regulations governing the equitable and efficient allocation of limited water supplies during times of shortage. These Rules and Regulations constitute the District's drought contingency plan required under Section 11.1272, Texas Water Code, Vernon's Texas Codes Annotated, and associated administrative rules of the Texas Commission on Environmental Quality (Title 30, Texas Administrative Code, Chapter 288). Section II: **User Involvement** _ (name of irrigation district) was provided Opportunity for users of water from the ___ _ (describe methods used to inform water users about the preparation by means of of the plan and opportunities for input; for example, scheduling and providing notice of a public meeting to accept user input on the plan). Section III: **User Education** (name of irrigation district) will periodically provide water users with information The about the Plan, including information about the conditions under which water allocation is to be initiated or terminated and the district's policies and procedures for water allocation. This information will be provided by means of _____ (e.g. describe methods to be used to provide water users with information about the Plan; for example, by providing copies of the Plan and by posting water allocation rules and regulations on the district's public bulletin board). Section IV: **Authorization** (e.g., general manager) is hereby authorized and directed to implement the applicable provision of the Plan upon determination by the Board that such implementation is necessary to ensure the equitable and efficient allocation of limited water supplies during times of shortage. Section V: **Application** The provisions of the Plan shall apply to all persons utilizing water provided by the (name of irrigation district). The term "person" as used in the Plan includes individuals, corporations, partnerships, associations, and all other legal entities. Section VI: Initiation of Water Allocation for Severe or Critical/Emergency Conditions (designated official) shall monitor water supply conditions on a weekly, monthly) basis and shall make recommendations to the Board regarding irrigation of water allocation. Upon approval of the Board, water allocation will become effective when __ (describe the criteria and the basis for the criteria):

Below are examples of the types of triggering criteria that might be used; singly or in combination, in an irrigation district's drought contingency plan:

Example 1:	Water in storage in the (name of reservoir) is equal to or less than (acre-feet and/or percentage of storage capacity).
Example 2:	Combined storage in the (name or reservoirs) reservoir system is equal to or less than (acre-feet and/or percentage of storage capacity).
Example 3:	Flows as measured by the U.S. Geological Survey gage on the, Texas reaches cubic feet per second (cfs).
Example 4:	The storage balance in the district's irrigation water rights account reaches acre-feet.
Example 5:	The storage balance in the district's irrigation water rights account reaches ar amount equivalent to (number) irrigations for each flat rate acre in which all flat rate assessments are paid and current.
Example 6:	The (name of entity supplying water to the irrigation district notifies the district that water deliveries will be limited to acre-feet per year (i.e. a level below that required for unrestricted irrigation).
Example 7:	Water levels in the Gulf Coast Aquifer fall tofeet or lower.
Section VII:	Termination of Water Allocation
	rater allocation policies will remain in effect until the conditions defined in Section IV or ger exist and the Board deems that the need to allocate water no longer exists.
Section VIII:	Notice
	itiation of water allocation will be given by notice posted on the District's public bulleting all to each (e.g. landowner, holders of active irrigation accounts, etc.).
Section IX:	Water Allocation
(a)	In identifying specific , quantified targets for water allocation to be achieved during periods of water shortages and drought, each irrigation user shall be allocated irrigations or acre-feet of water each flat rate acre on which all taxes, fees and charges have been paid. The water allotment in each irrigation account will be expressed in acre-feet of water.
	Include explanation of water allocation procedure. For example, in the Lower Rio Grande Valley, an "irrigation" is typically considered to be equivalent to eight (8) inches of water per irrigation acre; consisting of six (6) inches of water per acre applied plus two (2) inches of water lost in transporting the water from the river to the land. Thus, three irrigations would be equal to 24 inches of water per acre or an allocation of 2.0 acre-feet of water measured at the diversion from the river.
(b)	As additional water supplies become available to the District in an amount reasonably sufficient for allocation to the District's irrigation users, the additional water made available to the District will be equally distributed, on a pro rata basis, to those irrigation users having
	Example 1: An account balance of less than irrigations for each flat

rate acre (i.e. ____ acre-feet).

Example 2: An account balance of less than _____ acre-feet of water for each flat rate acre.

Example 3: An account balance of less than _ ___ acre-feet of water. (c)

The amount of water charged against a user's water allocation will be _____ (e.g. eight inches) per irrigation, or one allocation unit, unless water deliveries to the land are metered. Metered water deliveries will be charges based on actual measured use. In order to maintain parity in charging use against a water allocation between non-metered and metered deliveries, a loss factor of _____ percent of the water delivered in a metered situation will be added to the measured use and will be charged against the user's water allocation. Any metered use, with the loss factor applied, that is less than eight (8) inches per acre shall be credited back to the allocation unit and will be available to the user. It shall be a violation of the Rules and Regulations for a water user to use water in excess of the amount of water contained in the users irrigation account.

(d) Acreage in an irrigation account that has not been irrigated for any reason within the last two (2) consecutive years will be considered inactive and will not be allocated water. Any landowner whose land has not been irrigated within the last two (2) consecutive years, may, upon application to the District expressing intent to irrigate the land, receive future allocations. However, irrigation water allocated shall be applied only upon the acreage to which it was allocated and such water allotment cannot be transferred until there have been two consecutive years of use.

Section X: Transfers of Allotments

- (a) A water allocation in an active irrigation account may be transferred within the boundaries of the District from one irrigation account to another. The transfer of water can only be made by the landowner's agent who is authorized in writing to act on behalf of the landowner in the transfer of all or part of the water allocation from the described land of the landowner covered by the irrigation account.
- (b) A water allocation may not be transferred to land owned by a landowner outside the District boundaries.

or

A water allocation may be transferred to land outside the District's boundaries by paying the current water charge as if the water was actually delivered by the District to the land covered by an irrigation account. The amount of water allowed to be transferred shall be stated in terms of acre-feet and deducted from the landowner's current allocation balance in the irrigation account. Transfers of water outside the District shall not affect the allocation of water under Section VII of these Rules and Regulations.

(c) Water from outside the District may not be transferred by a landowner for use within the District.

or

Water from outside the District may be transferred by a landowner for use within the District. The District will divert and deliver the water on the same basis as District

water is delivered, except that a ____ percent conveyance loss will be charged against the amount of water transferred for use in the District as the water is delivered.

Section XI: Penalties

Any person who willfully opens, closes, changes or interferes with any headgate or uses water in violation of these Rules and Regulations, shall be considered in violation of Section 11.0083, Texas Water Code, *Vernon's Texas Codes Annotated*, which provides for punishment by fine of not less than \$10.00 nor more than \$200.00 or by confinement in the county jail for not more than thirty (30) days, or both, for each violation, and these penalties provided by the laws of the State and may by enforced by complaints filed in the appropriate court jurisdiction in _____ County, all in accordance with Section 11.083; and in addition, the District may pursue a civil remedy in the way of damages and/or injunction against the violation of any of the foregoing Rules and Regulations.

Section XII: Severability

It is hereby declared to be the intention of the Board of Directors of the ______ (name of irrigation district) that the sections, paragraphs, sentences, clauses, and phrases of this Plan shall be declared unconstitutional by the valid judgment or decree of any court of competent jurisdiction, such unconstitutionality shall not affect any of the remaining phrases, clauses, sentences, paragraphs, and sections of this Plan, since the same would not have been enacted by the Board without the incorporation into this Plan of any such unconstitutional phrase, clause, sentence, paragraph, or section.

Section XIII: Authority

The foregoing rules and regulations are adopted pursuant to and in accordance with Sections 11.039, 11.083, 11.1272; Section 49.004; and Section 58.127-130 of the Texas Water Code, *Vernon's Texas Codes Annotated.*

Section XIV: Effective Date of Plan

The effective date of this Rule shall be five (5) days following the date of Publication hereof and ignorance of the Rules and Regulations is not a defense for a prosecution for enforcement of the violation of the Rules and Regulations.

EXAMPLE RESOLUTION FOR ADOPTION OF A DROUGHT CONTINGENCY PLAN

	Α	RESOLU	JTION		THE ame of										
	СО	NTINGEN	ICY PLA					,							
WHEREA water sup extended	plier)	and its													
WHEREA God cann										ght co	nditi	ons a	ınd oth	ner ac	ts of
WHEREA on Enviro contingen	nme	ntal Qual													
WHEREA establish during dro	certa	(na in rules a	me of w	vater s ies for	upply sy the ord	ystem), lerly an	the Bo	oard	deems	s it ex	pedi	ient a	ind ne	cessa	ry to
NOW TI	HERE		BE IT ame of v				THE	ВО	ARD	OF	DIR	ECTO	ORS	OF	THE
S part here	_	r all purp	That the coses be me of wa	e, and	d the s										
S implemen		ON 2. minister, a								nanag	er) i	is he	reby o	directe	ed to
S	ECTI	ON 3.	That thi	s resol	ution sh	all take	effect	imm	ediatel	y upo	n its	passa	age.		
D day of		PASSED		E BOA	RD OF	DIREC	TORS	OF	THE _				, OI	N THI	s
										Pres	iden	t, Bo	ard of	Direc	tors
ATTESTE	D TO	D:													
Secretary	, Boa	rd of Dire	ctor												

Model Lavaca Region Drought Contingency Plan Template
Wholesale Water Providers

Model Drought Contingency Plan Template (Wholesale Public Water Suppliers)

DROUGHT CONTINGENCY PLAN FOR THE (Name of wholesale water supplier) (address) (CCN) (PWS) (Date)

Section I: Declaration of Policy, Purpose, and Intent

with particular regard for preserve public health,	available water supply and/or to protect the integrity of water supply facilities, or domestic water use, sanitation, and fire protection, and to protect and welfare, and safety and minimize the adverse impacts of water supply supply emergency conditions, the (name of your expollowing Drought Contingency Plan (the Plan).
Section II: Public In	volvement
Plan was provided by (describe methods used	and wholesale water customers to provide input into the preparation of the (name of your water supplier) by means of to inform the public and wholesale customers about the preparation of the or input; for example, scheduling and proving public notice of a public n the Plan).
Section III: Wholesa	le Water Customer Education
with information about the the Plan is to be initiated each stage. This information methods to be used to p	e of your water supplier) will periodically provide wholesale water customers e Plan, including information about the conditions under which each stage of d or terminated and the drought response measures to be implemented in ation will be provided by means of (e.g., describe rovide customers with information about the Plan; for example, providing a lically including information about the Plan with invoices for water sales).
Section IV: Coordina	ation with the Lavaca Regional Water Planning Group
Regional Water Planning	(name of your water supplier) is located within the Lavaca Area and (name of your water supplier) has provided a copy Regional Water Planning Group.
Section V: Authoriz	ation
director), or his/her des provisions of this Plan u health, safety, and welfar	(designated official; for example, the general manager or executive signee, is hereby authorized and directed to implement the applicable pon determination that such implementation is necessary to protect public re. The, or his/her designee, shall have the authority to the or other water supply emergency response measures as described in this

Section VI: Application

· 	is Plan shall apply to all customers utilizing water provided by the (name of your water supplier). The terms person and customer as used in uals, corporations, partnerships, associations, and all other legal entities.
Section VII: Criteri	a for Initiation and Termination of Drought Response Stages
and/or demand condition conditions warrant initial	esignated official), or his/her designee, shall monitor water supply ons on a (e.g., weekly, monthly) basis and shall determine when ation or termination of each stage of the Plan. Customer notification of tion of drought response stages will be made by mail or telephone. so be informed.
The triggering criteria d	escribed below are based on:
a statistical analysis of	rationale for the triggering criteria; for example, triggering criteria are based on the vulnerability of the water source under drought of record conditions).
Stage 1 Triggers MI	LD Water Shortage Conditions
	tion: The (name of your water supplier) will recognize that a ndition exists when (describe triggering criteria, see examples
wholesale wa	camples of the types of triggering criteria that might be used in a ter supplier s drought contingency plan. One or a combination of such e defined for each drought response stage:
Example 1:	Water in storage in the (name of reservoir) is equal to or less than (acre-feet and/or percentage of storage capacity).
Example 2:	When the combined storage in the (name of reservoirs) is equal to or less than (acre-feet and/or percentage of storage capacity).
Example 3:	Flows as measured by the U.S. Geological Survey gage on the (name of river) near, Texas reaches cubic feet per second (cfs).
Example 4:	When total daily water demand equals or exceeds million gallons forconsecutive days or million gallons on a single day.
Example 5:	When total daily water demand equals or exceeds percent of the safe operating capacity of million gallons per day for consecutive days or percent on a single day.
	nation: Stage 1 of the Plan may be rescinded when all of the conditions listed ave ceased to exist for a period of (e.g., 30) consecutive days. The

(name of water supplier) will notify its wholesale customers and the media of the termination of Stage 1 in the same manner as the notification of initiation of Stage 1 of the Plan.
Stage 2 Triggers MODERATE Water Shortage Conditions
Requirements for initiation: The (name of your water supplier) will recognize that a moderate water shortage condition exists when (describe triggering criteria).
Requirements for termination: Stage 2 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (e.g., 30) consecutive days. Upon termination of Stage 2, Stage 1 becomes operative. The (name of your water supplier) will notify its wholesale customers and the media of the termination of Stage 2 in the same manner as the notification of initiation of Stage 1 of the Plan.
Stage 3 Triggers SEVERE Water Shortage Conditions
Requirements for initiation: The (name of your water supplier) will recognize that a severe water shortage condition exists when (describe triggering criteria; see examples in Stage 1).
Requirements for termination: Stage 3 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (e.g., 30) consecutive days. Upon termination of Stage 3, Stage 2 becomes operative. The (name of your water supplier) will notify its wholesale customers and the media of the termination of Stage 2 in the same manner as the notification of initiation of Stage 3 of the Plan.
Stage 4 Triggers CRITICAL Water Shortage Conditions
Requirements for initiation - The (name of your water supplier) will recognize that an emergency water shortage condition exists when (describe triggering criteria; see examples below).
Example 1. Major water line breaks, or pump or system failures occur, which cause unprecedented loss of capability to provide water service; or
Example 2. Natural or man-made contamination of the water supply source(s).
Requirements for termination: Stage 4 of the Plan may be rescinded when all of the conditions listed as triggering events have ceased to exist for a period of (e.g., 30) consecutive days. The (name of your water supplier) will notify its wholesale customers and the media of the termination of Stage 4.
Section VIII: Drought Response Stages
The (designated official), or his/her designee, shall monitor water supply and/or demand conditions and, in accordance with the triggering criteria set forth in Section VI, shall determine that mild, moderate, or severe water shortage conditions exist or that an emergency condition exists and shall implement the following actions:

Stage 1 Response -- MILD Water Shortage Conditions

	rget: Achieve a voluntary ter demand, etc.).	percent reduction in	_ (e.g., total water use, daily
<u>Be</u>	(designated official), or reduce water demand.	Supply Management: asures, if any, to be implemente his/her designee(s), to manage l Examples include modifying rese nother water system, and use of	limited water supplies and/or ervoir operations procedures,
Wa	ater Use Restrictions for Redu	ucing Demand:	
	wholesale water customers request that wholesale water	(designated official), or his/h to discuss water supply and/or er customers initiate voluntary me the customers drought continger	demand conditions and will easures to reduce water use
	weekly report to news me demand conditions, projector	(designated official), or his/hedia with information regarding of the water supply and demand contact on water conservation means.	current water supply and/or nditions if drought conditions
Stage 2 Re	esponse MODERATE Wat	er Shortage Conditions	
<u>Ta</u>	rget: Achieve a perce water demand, etc.).	nt reduction in (e	e.g., total water use, daily
<u>Be</u>	st Management Practices for	Supply Management:	
	(designated official), or his reduce water demand. Ex	ures, if any, to be implemented s/her designee(s), to manage lii ramples include modifying reser er water system, and use of recl	mited water supplies and/or voir operations procedures,
Wa	ater Use Restrictions for Redu	ucing Demand:	
	weekly contact with wholes	(designated official), or his/hale water customers to discuss water of pro rata curtailment of water	water supply and/or demand
	(b) Thewholesale water customers use (e.g., implement Stage	_ (designated official), or his/h to initiate mandatory measures to 2 of the customer•s drought conti	er designee(s), will request o reduce non-essential water ingency plan).
	deliveries by preparing a r	(designated official), or his/linentation of pro rata curtailmen monthly water usage allocation brocedures specified in Section VI	paseline for each wholesale

we de	The (designated official), or his/her designee(s), will provide a eekly report to news media with information regarding current water supply and/or emand conditions, projected water supply and demand conditions if drought conditions ersist, and consumer information on water conservation measures and practices.
Stage 3 Resp	onse SEVERE Water Shortage Conditions
	t: Achieve a percent reduction in (e.g., total water use, daily ater demand, etc.).
Best N	Management Practices for Supply Management:
(d re in:	escribe additional measures, if any, to be implemented directly byesignated official), or his/her designee(s), to manage limited water supplies and/or duce water demand. Examples include modifying reservoir operations procedures, terconnection with another water system, and use of reclaimed water for non-potable urposes.
Water	Use Restrictions for Reducing Demand:
wh re no	The (designated official), or his/her designee(s), will contact nolesale water customers to discuss water supply and/or demand conditions and will quest that wholesale water customers initiate additional mandatory measures to reduce on-essential water use (e.g., implement Stage 2 of the customer*s drought contingency an).
ra) The (designated official), or his/her designee(s), will initiate protected taction to the procedures specified in Section VI of the Plan.
we de	The (designated official), or his/her designee(s), will provide a eekly report to news media with information regarding current water supply and/or emand conditions, projected water supply and demand conditions if drought conditions ersist, and consumer information on water conservation measures and practices.
Stage 4 Resp	onse EMERGENCY Water Shortage Conditions
	ever emergency water shortage conditions exist as defined in Section VII of the Plan, (designated official) shall:
1.	Assess the severity of the problem and identify the actions needed and time required to solve the problem.
2.	Inform the utility director or other responsible official of each wholesale water customer by telephone or in person and suggest actions, as appropriate, to alleviate problems (e.g., notification of the public to reduce water use until service is restored).
3.	If appropriate, notify city, county, and/or state emergency response officials for assistance.

- 4. Undertake necessary actions, including repairs and/or clean-up as needed.
- 5. Prepare a post-event assessment report on the incident and critique of emergency response procedures and actions.

Section IX: Pro Rata Water Allocation

In the event that the triggering criteria specified in Section VII of the Plan for Stage 3 Severe Water Shortage Conditions have been met, the (designated official) is hereby authorized initiate allocation of water supplies on a pro rata basis in accordance with Texas Water Code Section 11.039.			
Section X:	ţ	Enforcement	
		riod when pro rata allocation of available water supplies is in effect, wholesale pay the following surcharges on excess water diversions and/or deliveries:	
		times the normal water charge per acre-foot for water diversions and/or deliveries in excess of the monthly allocation up through 5 percent above the monthly allocation.	
		times the normal water charge per acre-foot for water diversions and/or deliveries in excess of the monthly allocation from 5 percent through 10 percent above the monthly allocation.	
		times the normal water charge per acre-foot for water diversions and/or deliveries in excess of the monthly allocation from 10 percent through 15 percent above the monthly allocation.	
		times the normal water charge per acre-foot for water diversions and/or deliveries more than 15 percent above the monthly allocation.	
The Section XI		ove surcharges shall be cumulative. Variances	

(a) Compliance with this Plan cannot be technically accomplished during the duration of the water supply shortage or other condition for which the Plan is in effect.

welfare, or safety and if one or more of the following conditions are met:

The ______ (designated official), or his/her designee, may, in writing, grant a temporary variance to the pro rata water allocation policies provided by this Plan if it is determined that failure to grant such variance would cause an emergency condition adversely affecting the public health,

(b) Alternative methods can be implemented which will achieve the same level of reduction in water use.

Perso	ons requesting an exemption from the provisions of this Plan shall file a petition for variance with			
the _	(designated official) within 5 days after pro rata allocation has been			
	ed. All petitions for variances shall be reviewed by the (governing body), and shall			
includ	de the following:			
(a)	Name and address of the petitioner(s).			
(b)	Detailed statement with supporting data and information as to how the pro rata allocation of water under the policies and procedures established in the Plan adversely affects the petitioner or what damage or harm will occur to the petitioner or others if petitioner complies with this Ordinance.			
(c)	Description of the relief requested.			
(d)	Period of time for which the variance is sought.			
(e)	Alternative measures the petitioner is taking or proposes to take to meet the intent of this Plan and the compliance date.			
(f)	Other pertinent information.			
Varia condi	nces granted by the (governing body) shall be subject to the following itions, unless waived or modified by the (governing body) or its designee:			
(a)	Variances granted shall include a timetable for compliance.			
(b)	Variances granted shall expire when the Plan is no longer in effect, unless the petitioner has failed to meet specified requirements.			
issua	ariance shall be retroactive or otherwise justify any violation of this Plan occurring prior to the nce of the variance.			
	·			
suppl and, uncor uncor section (gove	hereby declared to be the intention of the (governing body of your water lier) that the sections, paragraphs, sentences, clauses, and phrases of this Plan are severable if any phrase, clause, sentence, paragraph, or section of this Plan shall be declared estitutional by the valid judgment or decree of any court of competent jurisdiction, such estitutionality shall not affect any of the remaining phrases, clauses, sentences, paragraphs, and cons of this Plan, since the same would not have been enacted by the erning body of your water supplier) without the incorporation into this Plan of any such estitutional phrase, clause, sentence, paragraph, or section.			

EXAMPLE RESOLUTION FOR ADOPTION OF A

DROUGHT CONTINGENCY PLAN

RESOLUTION	NO
------------	----

A RESOLUTION OF THE BOARD OF DIRECTORS OF THEsupplier) ADOPTING A DROUGHT CONTINGENCY PLAN.	_ (name of water			
WHEREAS, the Board recognizes that the amount of water available to the water supplier) and its water utility customers is limited and subject to depletion durin extended drought;				
WHEREAS, the Board recognizes that natural limitations due to drought conditions a God cannot guarantee an uninterrupted water supply for all purposes;	nd other acts of			
WHEREAS, Section 11.1272 of the <i>Texas Water Code</i> and applicable rules of the Te on Environmental Quality require all public water supply systems in Texas to prepare contingency plan; and				
WHEREAS, as authorized under law, and in the best interests of the customers of the(name of water supply system), the Board deems it expedient a establish certain rules and policies for the orderly and efficient management of limited during drought and other water supply emergencies;	nd necessary to			
NOW THEREFORE, BE IT RESOLVED BY THE BOARD OF DIRECTORS OF THE (name of water supplier):				
SECTION 1. That the Drought Contingency Plan attached hereto as "Exhibit A" a	ind made			
part hereof for all purposes be, and the same is hereby, adopted as the official po (name of water supplier).	olicy of the			
SECTION 2. That the (e.g., general manager) is hereby direct implement, administer, and enforce the Drought Contingency Plan.	ted to			
SECTION 3. That this resolution shall take effect immediately upon its passage.				
DULY PASSED BY THE BOARD OF DIRECTORS OF THE, ON, 20	THIS day of			
President, Board of Directors				
ATTESTED TO:				
Secretary, Board of Directors				

Contents

Chapte	r 8 – Uni	que Stream Segments, Reservoir Sites, and Legislative Recommendatio	ns 8-1
8.1	Unique	e Stream Segments and Reservoir Sites	8-1
8.2	Propo	sed Regulatory Changes or Resolutions	8-3
	8.2.1	Environmental Issues	8-3
	8.2.2	Ongoing Regional Water Planning Activities	8-3
	8.2.3	Inter-Regional Coordination	8-3
	8.2.4	Conservation Policy	8-3
	8.2.5	Sustainable Yield of the Gulf Coast Aquifer	8-4
	8.2.6	Support of the Rule of Capture	8-4
	8.2.7	Groundwater Conservation Districts	8-4
	8.2.8	Establishment of Fees for Groundwater Export	8-4
	8.2.9	Limits for Groundwater Conservation Districts	8-4

List of Appendices

Appendix 8A - TPWD Ecologically Significant Stream Segments

This page intentionally left blank.

Chapter 8 – Unique Stream Segments, Reservoir Sites, and Legislative Recommendations

The LRWPG has made the following recommendations regarding unique ecological stream segments (USS) and unique reservoir sites (URS.) Additionally, the group has considered the creation of regulatory entities in accordance with legislative and regional water policy issues.

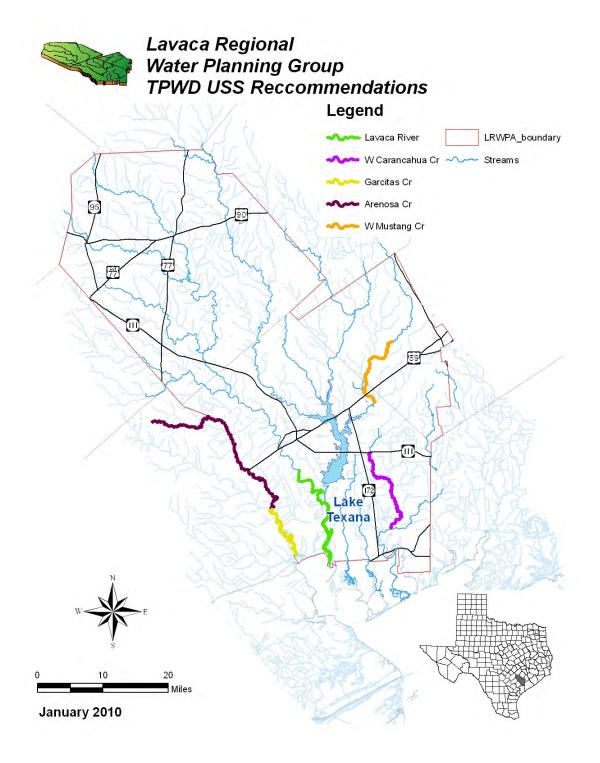
8.1 Unique Stream Segments and Reservoir Sites

In 1999, the Texas Parks and Wildlife Department (TPWD) identified Ecologically Significant Stream Segments for the Lavaca Regional Water Planning Area using criteria in accordance with TWDB rules.

The LRWPG may recommend these ecologically significant segments or other identified segments to be classified as unique in the RWP. When recommending these segments, the RWPG may develop special provisions to ensure no unintended consequences occur from designation. Once recommended, the TPWD provides a written evaluation of the recommendation. The recommendation is then sent to Texas State Legislature for approval.

A planning group may also recommend a site as unique for reservoir construction based upon several criteria:

- site-specific reservoir development is recommended as a specific water management strategy or in an alternative long-term scenario in an adopted regional water plan
- location; hydrology; geology; topography; water availability; water quality; environmental, cultural, and current development characteristics; or other pertinent factors make the site
- uniquely suited for: (a) reservoir development to provide water supply for the current planning period; or (b) to meet needs beyond the 50-year planning period


The proposed Palmetto Bend Stage II Reservoir had been designated as a unique reservoir site (URS). It was one of 19 sites (17 major and 2 minor) recommended by the 2007 SWP and designated by the 80th Texas Legislature as sites of unique value. The designation of this unique reservoir site ended on September 1, 2015, as LNRA made the decision not to move forward with construction expenditures or permitting by that time. No other unique reservoir sites have been recommended by the LRWPG.

LNRA is currently evaluating an off-channel option as the desired future treatment of the Lavaca River. Development of an off-channel alternative would necessitate alteration of the Certificate of Adjudication or cancellation of the Certificate and development and application for a new water right.

Appendix 8A includes information from TPWD concerning potential USSs within the LRWPA from the 2006 RWP. TPWD-recommended segments are illustrated in *Figure 8-1*. Note that subsequent to the publication of TPWD recommendations, conditions along stream segments in the LRWPA may have changed. Since the TPWD study, much of West Carancahua Creek has been channelized for

drainage improvement. The LRWPG has elected not to recommend any USS for the current round of regional water planning.

Figure 8-1
Major Surface Water Sources

8.2 Proposed Regulatory Changes or Resolutions

The primary concern of the LRWPG has been the protection of existing groundwater sources to maintain agricultural production because of its direct economic impact to the area. As a result of the planning process, the LRWPG considered and approved several policy resolutions as presented in the 2006 RWP. These policy recommendations and rationales for the proposals are detailed below and have been modified as needed for the current round of planning. Section 8.2.2 addresses the HB 807 requirement regarding regional water planning process improvements. See Section 9.3 in Chapter 9 for recommendations related to financing.

8.2.1 Environmental Issues

LRWPG has developed a water plan to address projected water demands within LRWPA. The construction of the Palmetto Bend Stage II reservoir was considered as a potential management strategy to meet shortages in the 2001 and 2006 RWPs for LRWPA. Currently, LNRA has designated an off-channel option in its Management Plans as the desired future treatment of the Lavaca River. The LRWPG has recommended this off-channel reservoir option in this regional water plan. An off-channel reservoir would negate many of the environmental issues related to an on-channel impoundment. The LRWPG understands that any water development strategy can have potentially threatening environmental consequences and fully supports efforts to identify and mitigate environmental impacts to the extent feasible.

8.2.2 Ongoing Regional Water Planning Activities

LRWPG recommends that the Texas Legislature establish funding through TWDB for the continued existence of the regional planning groups. Duties would include the monitoring of ongoing research needed for planning, environmental flows issues, processing of any amendments to the plan, and monitoring the implementation of new crop varieties and other improvements to the area's primary water user. Provision of funding to pursue the above activities will allow LRWPG to continue to perform a vital role as a focal point for communications with the various user groups concerning development of and amendments to the Plan.

8.2.3 Inter-Regional Coordination

LRWPG recognizes the importance of inter-regional coordination efforts in order to maintain consistency among regional plans in situations where activities in one region may impact water availability or project needs in other regions. As population growth and other development activities increase over time for much of the state, multi-regional issues and the ability of regions to cooperatively use resources will be of increasing importance. The LRWPG supports the creation of the Interregional Planning Council established by House Bill 807 from the 86th Legislative Session.

8.2.4 Conservation Policy

LRWPG supports existing and continued efforts of agricultural producers to practice good stewardship of surface and groundwater resources of the state of Texas. The group recognizes the economic impact that a voluntary conservation effort has on the viability of agricultural operations on the area. The group also supports state and federally funded programs administered by NRCS, State Soil and Water Conservation Board, and local soil and water conservation districts. These programs provide technical and financial assistance to agricultural producers to install, manage, and maintain structural and vegetative measures for increased irrigation efficiency and overall water conservation. They are important in successfully implementing the regional water plan.

8.2.5 Sustainable Yield of the Gulf Coast Aquifer

LRWPG supports the use of the sustainable yield of the Gulf Coast aquifer as the amount of water that should be included in the State Water Plan for areas using the Gulf Coast aquifer. While the Gulf Coast aquifer has significant amounts of water in storage, the aquifer levels impact regional agricultural, municipal, and manufacturing users directly. Mining of significant quantities of water over and above the sustainable annual yield will result in increasing pumping costs for all users. Increased pumping costs will have the most detrimental effect on agricultural production in the area.

8.2.6 Support of the Rule of Capture

LRWPG supports the Rule of Capture as the means of allocating groundwater in the state of Texas. The group also supports TWDB in its monitoring activities with regard to well static-water levels and groundwater pumpage in the state.

8.2.7 Groundwater Conservation Districts

LRWPG supports the control of groundwater resources through local control by GCDs. The group supported the creation of the Coastal Bend GCD in Wharton County and the Texana GCD in Jackson County. The primary focus of the districts is to preserve and protect groundwater supplies in their respective counties for future generations. The management plans for the Coastal Bend and Texana districts were certified by TWDB on September 28, 2004. The Coastal Bend GCD management plan was updated most recently on April 10, 2018, and the Texana GCD management plan was updated most recently on February 18, 2016. The group supports the further efforts of these districts as a tool in protecting water resources in the Lavaca Regional Water Planning Area.

8.2.8 Establishment of Fees for Groundwater Export

LRWPG supports the use of the sustainable yield of the Gulf Coast aquifer as the limit for water development and the use of groundwater conservation and management districts as the appropriate method of retaining local control of groundwater. LRWPG understands large-scale groundwater mining of the Gulf Coast aquifer is in direct opposition to the concept of sustainable yield for aquifer management. While local entities are encouraged to conserve groundwater for the use of local citizens with attendant impacts on the local economy, the citizens of large municipalities at great distances from the Lavaca area are relatively insulated from the impacts of increasing depth to the water table for the Lavaca area. Use of an export fee may help offset the negative impacts of transferring water out of the basin to other areas of the state. The transfer of water by export would be permitted provided the transfer would not present the possibility of unreasonable interference with the production of water from exempt, existing, or previously permitted wells. This could potentially be administered by the local GCDs through their regulations.

8.2.9 Limits for Groundwater Conservation Districts

LRWPG recommends that the sustainable yield of the aquifer be used for all GCDs in the region as the upper limit of groundwater available for all uses. For this region, there is no overall surplus of groundwater and any use of groundwater contemplated outside the region must be subject to the same rules for protection of the basin of origin as interbasin transfers of surface water.

APPENDIX 8A TPWD Ecologically Significant Stream Segments

Evaluation of Natural Resources in Lavaca Water Planning Area (Region P)

Wetlands in Lake Texana State Park (D.W. Moulton)

RESOURCE PROTECTION DIVISION: WATER RESOURCES TEAM

Evaluation of Natural Resources in Lavaca Water Planning Area (Region P)

By: Albert El-Hage

Peter D. Sorensen Daniel W. Moulton

October 1999

TABLE OF CONTENTS

	Pages
Tables	ii
Figures	ii
Acknowledgments	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	2
Location and Extent	2
Geography and Ecology	2
Population	2
Economy and Land Use	5
SELECTED NATURAL RESOURCES	5
Soils	5
Vegetation	8
Rivers and Reservoirs	10
Wetlands	11
Springs	13
Gulf Coast Aquifer	13
Freshwater Mussels	14
Fish	15
Birds and Waterfowl	19
Mammals, Amphibians, and Reptiles	19
CONCLUSIONS	22
REFERENCES	23
APPENDIX A: Scientific Names of Plants Mentioned	25
APPENDIX B: Lake Texana State Park Economic Data	28
APPENDIX C: TPWD Information Supporting River and Stream Segment	
Designations	31
APPENDIX D: §357.8 Ecologically Unique River and Stream Segments	33

TABLES

		Pages
1.	Projections for Population Growth in the Study Area	2
2.	Soil Associations of the Study Area	6
3.	Streams that meet the high water quality/exceptional aquatic life/high aesthetic value criteria	10
4.	Streams that meet the threatened or endangered species/unique community criteria	10
5.	Distribution and Estimated Size (in 1980) of Springs and Seeps in the Study Area.	13
6.	Freshwater Mussels	14
7.	Fish Species Reported in the Study Area	15
8.	Species of Special Concern in the Study Area	17
9.	Mammals of the Study Area	20
10.	Amphibians of the Study Area	20
11.	Reptiles of the Study Area	21
	FIGURES	
1.	Location of the Study Area	3
2.	Water Resources of the Study Area	4
3.	Soil Types of the Study Area	7
4.	Vegetation Types of the Study Area	9
5.	Aerial DOQ of Lavaca-Navidad Estuary and Lavaca River Forested Wetlands	12
6.	Special Species by County	18

Acknowledgments

The authors wish to thank those individuals who cooperated in providing information on the selected natural resources in the study area. Additional thanks are given to those individuals whose comments and proofreading allowed us to produce this report. We appreciate and acknowledge the help and expertise of Gordon Linam, Cindy Loeffler, and David Bradsby.

EXECUTIVE SUMMARY

The study area is located in the mid-coastal region of Texas and includes Jackson and Lavaca counties, and part of Wharton County. It is located within the Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins.

Drainage of the study area is by the Lavaca and Navidad rivers and their tributaries. Elevations range from sea level in Jackson County to about 503 feet in Lavaca County. The study area is entirely within the Upland Prairie and Woods natural subregion. The land surface of the area is generally rolling to prairie.

The economy of the area consists primarily of petroleum production and operations, agribusiness and tourism. Agricultural production is varied. It consists of cattle, poultry, corn, cotton, and rice with rice being the principal crop for Wharton County. The market value for the agriculture in the study area is around \$192.4 million. Outdoor recreational facilities also contribute to the area's economy. The Lavaca-Navidad estuary, the estuarine wetlands along the east side of Garcitas Creek and Lake Texana provide opportunities for bird watching, fishing, waterfowl hunting, boating, and other water sports. All these areas are located in Jackson County.

The natural regions of Texas were delineated largely on the basis of soil types and major vegetation types. Soils in the study area vary from alluvial, sandy soils with loamy surface to black waxy soils with loamy or sandy surface. Most of the region is on the Beaumont and Lissie Geological Formations.

There are seven major vegetation types found in the study area (Figure 4). The main vegetation types are Crops, and Post Oak Woods/Forest, followed closely by Post Oak Woods, Forest and Grassland Mosaic. The Pecan-Elm Forest, Other Native or Introduced Grasses, Bluestem Grassland, and Marsh/Barrier Island types are also found with decreasing distributions, respectively, in the study area.

Region P has a variety of valuable aquatic, wetland, riparian, and estuarine habitats. The estuary of the Lavaca and Navidad Rivers, in Jackson County, provides habitats for economically important marine and estuarine animals as well as for freshwater and terrestrial animals.

The region has 5 rivers or stream segments that satisfy one or more of the criteria defined in Senate Bill 1 for ecologically unique river and stream segments. These are in Jackson and Wharton Counties.

INTRODUCTION

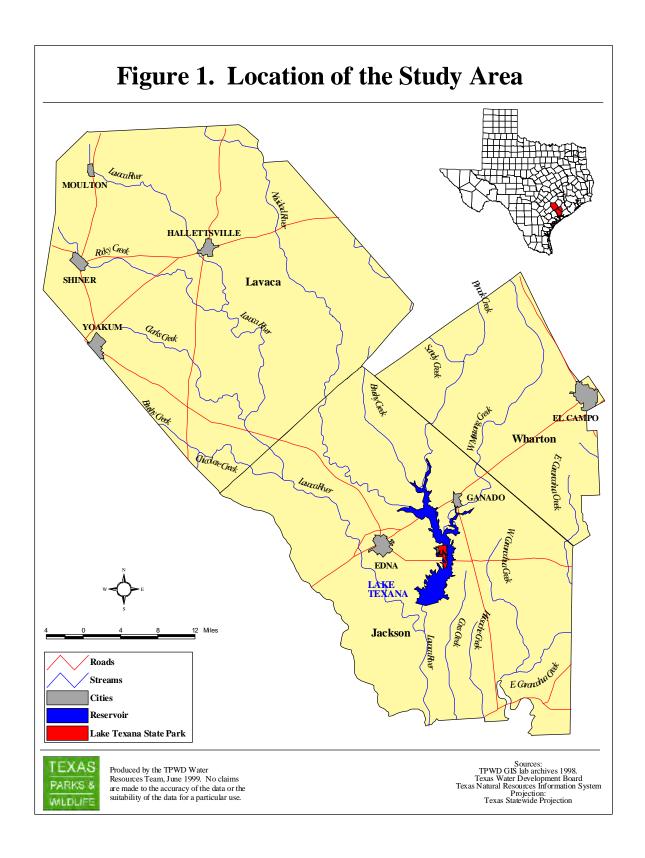
Location and Extent

The study area is located in the mid-coastal region of Texas and includes Jackson and Lavaca counties, and part of Wharton County (Figure 1). It is located within the Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins (Figure 2).

Geography and Ecology

Drainage of the study area is by the Lavaca and Navidad rivers and their tributaries. Elevations range from about sea level in Jackson County to about 503 feet in Lavaca County (Dallas Morning News 1997). The study area includes the Uplands Prairie and Woods natural subregion (Lyndon B. Johnson School of Public Affairs 1978). The land surface of the area is generally rolling to prairie (Dallas Morning News 1997).

Long, hot summers and short, mild winters characterize the study area's climate. The average daily minimum temperature for January is about 41.5?F and the average daily maximum temperature for July is about 93.7?F. The average annual precipitation is 40 inches (Dallas Morning News 1997).


Population

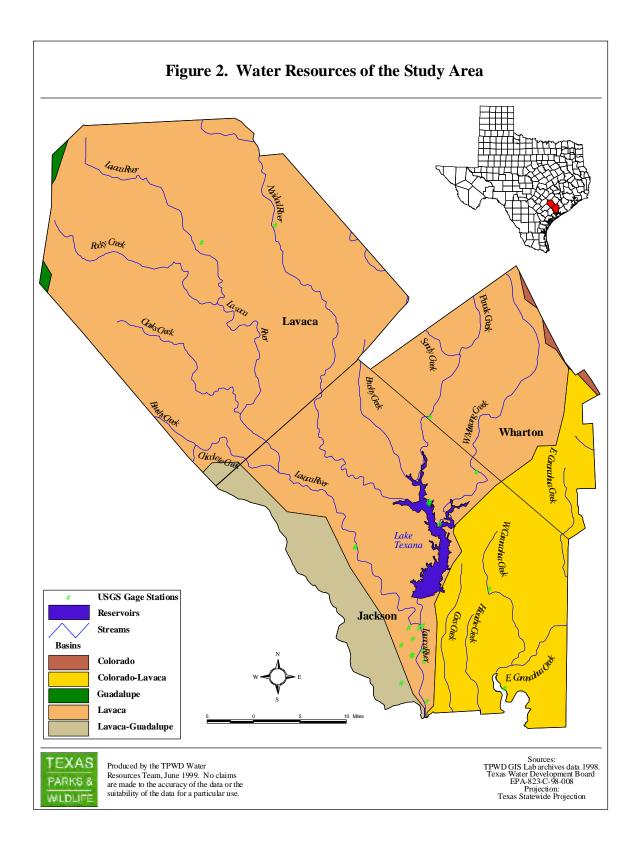

The 1990 census estimated the population of the study area to be 45,039 (Table 1, TWDB 1998). TWDB (1998) predicted a 2050 population of 58,958. Moderate increase in population is projected for all three counties, Jackson, Lavaca, and Wharton.

Table 1. Projections for Population Growth in the Study Area (TWDB 1998)

County ?	Year ? City ?	1990	2000	2010	2020	2030	2040	2050
Jackson	City .	13,039	14,748	14,984	15,040	15,058	15,076	15,085
Jackson	Edna	5,343	6,193	6,324	6,355	6,365	6,375	6,385
Jackson	Ganado	1,701	1,892	1,922	1,928	1,930	1,932	1,934
Jackson	County-other	5,995	6,663	6,738	6,757	6,763	6,769	6,766
Lavaca		18,690	20,764	21,507	22,193	23,264	24,398	25,648
Lavaca	Hallettsville	2,718	3,052	3,257	3,413	3,626	3,828	4,041
Lavaca	Moulton	923	936	950	963	977	991	1,005
Lavaca	Shiner	2,074	2,348	2,432	2,510	2,631	2,759	2,901
Lavaca	Yoakum (P)	3,457	3,919	4,059	4,188	4,390	4,604	4,840
Lavaca	County-other	9,518	10,509	10,809	11,119	11,640	12,216	12,861
Wharton	(P)	13,310	13,830	14,615	15,501	16,325	17,241	18,225
Wharton	El Campo	10,511	10,851	11,355	11,961	12,486	13,100	13,744
Wharton	County-other	2,799	2,979	3,260	3,540	3,839	4,141	4,481
	Total	45,039	49,342	51,106	52,734	54,647	56,715	58,958

^{*}P- partial

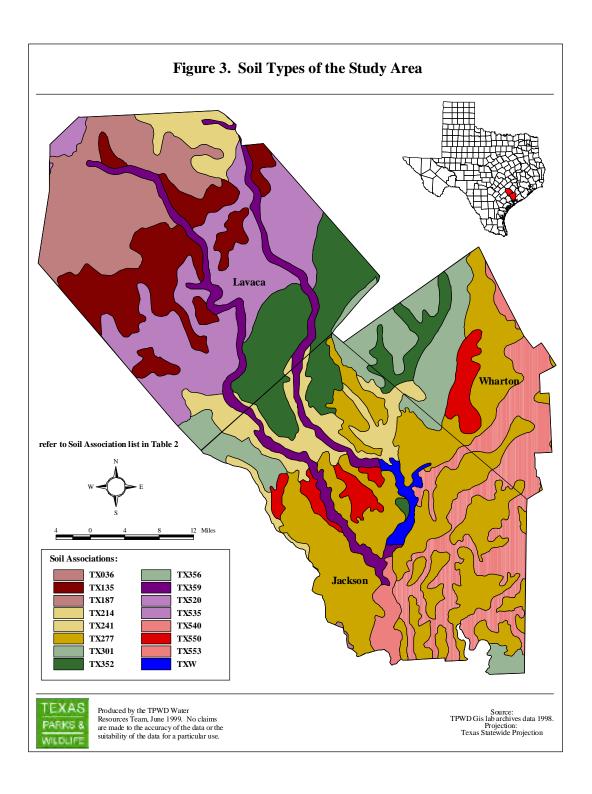
Economy and Land Use

The economy of the area consists primarily of petroleum production and operation, agribusiness and tourism. Agricultural production is varied. It consists of cattle, poultry, corn, cotton, and rice, with rice being the principal crop for Wharton County. The market value for the agriculture in the study area is around \$192.4 million (Dallas Morning News 1997).

Outdoor recreational facilities also contribute to the area's economy. Lake Texana, the estuarine areas of the Lavaca River, and Garcitas Creek provide opportunities for bird watching, fishing, waterfowl hunting, boating, and other water sports. All these areas are located in Jackson County.

The Texana Loop of the Great Texas Coastal Birding Trail (Central Texas Coast) includes 9 sites (Sites 17-25), all in Jackson County, on Lake Texana, the Lavaca/Navidad estuary, and on Arenosa/Garcitas Creek. Lake Texana SP alone contributes \$ 5-6 million per year to the local economy in Jackson County (see Appendix B).

SELECTED NATURAL RESOURCES


Soils

The natural regions of Texas were delineated largely on the basis of soil types and major vegetation types. Soils in the study area vary from alluvial, sandy soils with loamy surface to black waxy soils with loamy or sandy surface (Godfrey et al. 1973). Soil associations found in the area are described as follows:

- 1. Level soils of the coast Prairie and Marsh
 - (a) Somewhat poorly to moderatly well drained cracking clayey soils; and mostly poorly drained soils with loamy surface layers and cracking clayey subsoils: Vertisols.
 - (b) Cracking clayey soil and friable loamy soils of the Brazos and Colorado River flood plains: Mollisols.
 - (c) Soils with loamy surface layers and mottled clayey or mottled to gray loamy subsoils: Alfisols.
- 2. Undulating alkaline to slightly acid soils of the Blackland Prairie
 - (a) Slightly acid soils with loamy surface layers and cracking clayey subsoils; and noncalcareous cracking clayey soils: Alfisols
 - (b) Noncalcareous and calcareous cracking clayey soils; and slightly acid soils with loamy surface layers: Vertisols.
 - (c) Soils with loamy surface layers and mottled gray and red or yellow cracking clayey subsoils: Alfisols.

Table 2. Soil Associations of the study area

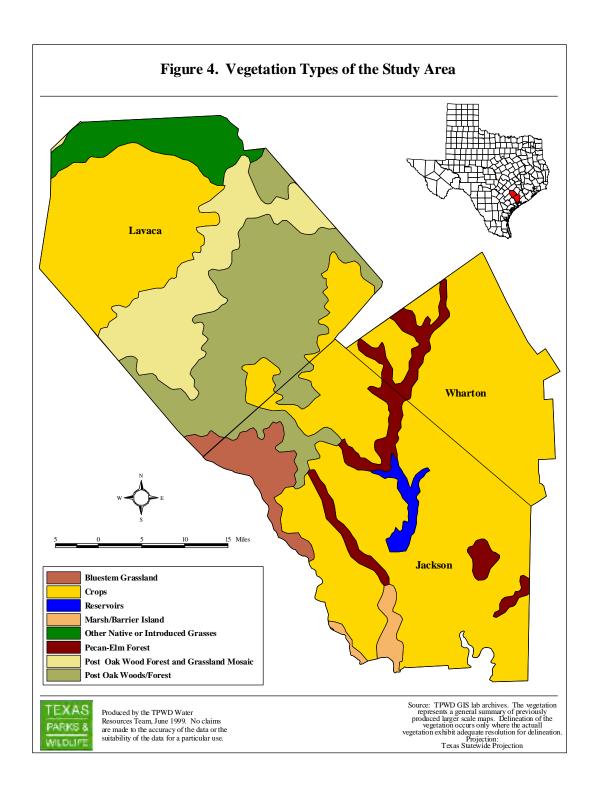
Soil Association	Soil Name
TX036	Austwell-Aransas-Placedo
TX135	Denhawken-Elmendorf-Hallettsville
TX187	Frelsburg-Carbengle-Hallettsville
TX214	Hallettsville-Dubina-Straber
TX241	Inez-Milby-Kuy
TX277	Lake Charles-Dacosta-Contee
TX301	Livia-Palacios-Francitas
TX352	Morales-Cieno-Inez
TX356	Nada-Telferner-Cieno
TX359	Lavaca-Navidad-Ganado
TX520	Singleton-Burlewash-Shiro
TX535	Straber-Tremona-Catilla
TX540	Swan-Aransas-Placedo
TX550	Telferner-Edna-Cieno
TX553	Texana-Edna-Cieno
TXW	Water

Vegetation

As stated in the introduction, the study area includes parts of the following natural subregions: Blackland Prairie, and the Upland Prairies and Woods subregions (Lyndon B. Johnson School of Public Affairs 1978).

There are seven major vegetation types found in the study area (Figure 4). The main vegetation types are Crops, and Post Oak Woods/Forest, followed closely by Post Oak Woods, Forest and Grassland Mosaic, Pecan-Elm Forest, Other Native or Introduced Grasses, Bluestem Grassland, and Marsh/Barrier Island are also found with decreasing distributions, respectively, in the study area. The scientific names for the plants mentioned below can be found in Appendix A (McMahan et al. 1984).

Commonly associated plants of the Crops type are: cultivated cover crops or row crops providing food and/or fiber for either man or domestic animals. This type also includes grassland associated with crop rotation.


Commonly associated plants of the Post Oak Woods/Forest, and Post Oak Woods, Forest, and Grassland Mosaic vegetation types are: Post oak, blackjack oak, eastern redcedar, mesquite, black hickory, live oak, sandjack oak, cedar elm, hackberry, yaupon, poison oak, American beautyberry, hawthorn, supplejack, trumpet creeper, dewberry, coral-berry, little bluestem, silver bluestem, sand lovegrass, beaked panicum, three-awn, sprangle-grass, and tickclover. These vegetation types are most apparent on the sandy soils of the Post Oak Savannah.

Pecan-Elm Forest includes: Pecan, American elm, cedar elm, cottonwood, sycamore, black willow, live oak, green ash, bald cypress, water oak, hackberry, virgin's bower, yaupon, greenbrair, mustang grape, poison oak, Johnsongrass, Virginia wildrye, Canada wildrye, rescuegrass, frostweed, and western ragweed.

Other Native or Introduced Grasses include: mixed native or introduced grasses and forbs on grassland sites or mixed herbaceous communities resulting from the clearing of woody vegetation. This type is associated with the clearing of forests and may portray early stages of Young Forest.

Bluestem Grassland includes: bushy bluestem, slender bluestem, little bluestem, silver bluestem, three-awn, buffalograss, bermudagrass, brownseed paspalum, single-spike paspalum, smutgrass, Gulf cordgrass, windmillgrass, southern dewberry, live oak, mesquite, huisache, baccharis, and Macartney rose.

Marsh/Barrier Island includes: marshhay cordgrass, Olney's bulrush, saltmarsh bulrush, widgeongrass, California bulrush, seashore paspalum, Gulf cordgrass, and common reed.

Rivers and Reservoirs

The study area includes four river basins: Lavaca, Colorado-Lavaca, Guadalupe, and Lavaca-Guadalupe river basins (Figure 2). Two major rivers run through the study area (Figure 1): the Lavaca River, in the northwest portion of the study area, and the Navidad River, in the northeast portion of the study area. The Navidad River flows into Lake Texana, the only lake in the study area. Lake Texana covers 11,000 surface acres, with approximately 125 miles of shoreline.

Texas Parks and Wildlife Department drafted a list (See Appendix C for Region P List) of Texas streams and rivers (Figure 2) satisfying at least one of the criteria (See Appendix D) for ecologically unique river and stream segments. Four (Table 3); streams met the high water quality/exceptional aquatic life/high aesthetic value criteria, while the threatened or endangered species/unique communities criteria was met by 2 streams (Table 4). Two stream segments, the Lavaca River and Garcitas Creek, were found to meet the biological function criteria (Appendix C).

Table 3. Streams that meet the high water quality/exceptional aquatic life/high aesthetic value criteria (31 TAC §357.8 (b) (4)); (Bayer et al. 1992; Davis, J.R. 1998) Refer to Appendix C.

River or Stream	County	Criteria
Segment		
Arenosa Creek	Jackson	Ecoregion Stream; Benthic macroinvertebrates
Garcitas Creek	Jackson	Ecoregion Stream, Dissolved oxygen; Benthic
		macroinvertebrates
West Carancahua Creek	Jackson	Ecoregion Stream, Dissolved oxygen; Benthic
		macroinvertebrates
West Mustang Creek	Jackson	Ecoregion Stream; Benthic macroinvertebrates
West Mustang Creek	Wharton	Ecoregion Stream; Benthic macroinvertebrates

Table 4. Streams that meet the threatened or endangered species/unique community criteria (31 TAC §357.8 (b) (5); (Ortego, B. 1999))

River or Stream Segment	County	Threatened/endangered species
Garcitas Creek	Jackson	Texas palmetto; Diamondback terrapin
Lavaca River	Jackson	Diamondback terrapin

Wetlands

The study area has significant wetland resources. There are extensive forested wetlands (pecan-elm bottomland forests) occurring along the Lower Lavaca River in Jackson County (Figure 4); north of Lake Texana along Sandy Creek and its tributaries in Jackson and western Wharton counties, along the Navidad River west of Lake Texana; and along West and East Carancahua Creeks in southeastern Jackson County.

Rather extensive estuarine wetlands occur in southwestern Jackson County (Figures 4 & 5). The Lavaca/Navidad estuary wetlands extend from the juncture of the two rivers at FM 616 about 10 miles downstream to Lavaca Bay. The lakes, marshes, and flats of this area (Figure 5) provide habitat for estuarine fish and shellfish, freshwater river fishes, birds, mammals, reptiles, and amphibians. The same is true for the estuarine wetlands along Garcitas Creek, which forms part of the western Jackson County line.

Lake Texana supports fringing freshwater wetlands including emergent marshes, pecanelm bottomlands, and beds of floating aquatic plants. Lake Texana State Park (575 acres), located on the west-central shore of the lake, has all these wetland types (See cover photo).

There are nine sites on the Great Texas Coastal Birding Trail (the Texana Loop) in Jackson County. Six of these are associated with forested riparian habitats fringing Lake Texana as well as the Lake itself. The other three are associated with the estuarine and riparian habitats of the Lavaca/Navidad estuary and Garcitas/Arenosa Creeks.

Springs

The distribution and size, as of 1980, of springs and seeps in the area are given by county, in Table 5 (Brune 1981). Brune conducted most of the fieldwork, which produced the following information, during the period of February 11-17, 1977. Information on Lavaca County springs was not available at the time.

Jackson and Wharton Counties springs are not numerous or large due to the relatively flat topography of the Counties. Spring waters in the county are generally of the sodium bicarbonate type, hard, and alkaline (Brune 1981).

Table 5. Distribution and Estimated Size (in 1980) of Springs and Seeps in the Study Area (Brune 1981)

County	Large	Moderately	Medium	Small	Very	Seep	Former
		large			small		
Jackson	0	0	0	1	0	0	5
Lavaca	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Wharton	0	0	0	0	0	1	3

The numbers above are a reflection of either a spring or a group of springs.

Codes:

Large = 280 to 2,800 cfs

Moderately large = 28 to 280 cfs Medium = 2.8 to 28 cfs

Former = no flow or inundated

Small = 0.28 to 2.8 cfs

Very Small = 0.028 to 0.28 cfs

 $Seep = less \ than \ 0.028 \ cfs$

Gulf Coast Aquifer

The Gulf Coast Aquifer forms an irregular shaped belt along the Gulf of Mexico from Florida to Mexico. In Texas, the aquifer provides water to all or parts of 54 counties and extends from the Rio Grande northeastward to the Louisiana-Texas border. Total pumpage was approximately 1.1 million acre-feet in 1994. Municipal pumpage accounted for 51 percent of the total, irrigation accounted for 36 percent, and industrial accounted for 12 percent. The Greater Houston Metropolitan Area is the largest user (Texas Water Development Board 1997).

Water quality is generally good in the shallower portion of the aquifer. Groundwater containing less than 500 mg/l dissolved solids is usually encountered to a maximum depth of 3,200 feet in the aquifer from San Antonio River Basin northeastward to Louisiana. From the San Antonio River Basin southward to Mexico, quality deterioration is evident in the form of increased chloride concentration and salt-water encroachment along the coast (Texas Water Development Board 1997).

Freshwater Mussels

Freshwater mussels (Family Unionidae) are sensitive biological indicators of environmental quality and are often the first organisms to decline when environmental quality of aquatic ecosystems begins to degrade (Howells et al. 1996). Consequently, freshwater mussels have become important elements of environmental impact considerations. Surveys of mussels in Texas show many of the 52 species recognized in the state have declined greatly in recent years. These population declines probably reflect poor land and water management practices and subsequent loss of mussel habitat (Howells et al. 1997). Over-grazing, the clearing of native vegetation, the design and construction of highways and bridges, and general land clearing and development have contributed to the increase of runoff and scouring floods. Scouring in upstream reaches often results in excessive deposits of soft silt or deep shifting sand on downstream substrates, eliminating mussel habitat. Mussels with reported occurrence in the study area are shown in Table 6.

Table 6. Freshwater Mussels (Howells et al. 1996)

Table 6. Freshwater Mussels (Howells et al. 1996)			
Scientific Name	Common Name		
Amblema plicata	Threeridge		
Anodonta grandis	Giant floater		
Anodonta imbecillis	Paper pondshell		
Arcidens confragosus	Rock-pocket book		
Cyrtonais tampicoensis	Tampico pearlymussel		
Glebula rotundata	Round pearlshell		
Lampsilis bracteata	Texas fatmucket		
Lampsilis teres	Yellow sandshell		
Leptodea fragilis	Fragile papershell		
Ligumaia subrostrata	Pond mussel		
Potamilus ohiensis	Pink papershell		
Potamilus purpuratus	Bleufer		
Quadrula apiculata	Southern Mapleleaf		
Quadrula houstonensis	Smooth pimpleback		
Toxolasma texasensis	Texas lilliput		
Truncilla macrodon	Texas fawnsfoot		
Uniomerus declivis	Tapered pondhorn		
Uniomerus tetralasmus	Pondhorn		

Fish

Most Texas estuaries that receive freshwater inflow from rivers provide habitats for over 200 species of fish and shellfish. Many of these are important to the commercial and recreational fishing industries. Species such as brown, white and pink shrimp, oysters, blue crab, redfish, sea trout, and flounder are very important to the economy of the Texas coast. The estuarine habitats of Jackson County contribute to this economy.

One of the species of fish reported in the area (Table 7) is included on the Special Species List (Table 8) produced by the Texas Parks and Wildlife Department (1998a). This species is Guadalupe bass, it is the official state fish of Texas (Hubbs et. al 1991). The Guadalupe bass is endemic to the streams of the northern and eastern Edwards Plateau including portions of the Brazos, Colorado, Guadalupe, and San Antonio basins.

Table 7. Fish Species Reported in the Study Area (Lee et al. 1980; Hubbs et al. 1991)

(Lee et al. 1980; Hubbs et al. 1991)			
Species	Common Name		
Ameiurus melas	Black bullhead		
Ameiurus natalis	Yellow bullhead		
Anguilla rostrata	American eel		
Aplodinotus grunniens	Freshwater drum		
Astyanax mexicanus	Mexican tetra		
Campostoma anomalum	Central stoneroller		
Carassius auratus	Goldfish		
Carpiodes carpio	River carpsucker		
Cycleptus elongatus	Blue sucker		
Cyprinella lutrensis	Red shiner		
Cyprinella venusta	Blacktail shiner		
Cyprinodon variegatus	Sheepshead minnow		
Cyprinus carpio	Common carp		
Dorosoma cepedianum	Gizzard shad		
Dorosoma petenense	Threadfin shad		
Etheostoma gracile	Slough darter		
Fundulus chrysotus	Golden topminnow		
Fundulus grandis	Gulf killifish		
Fundulus notatus	Blackstripe topminnow		
Fundulus pulvereus	Bayou killifish		
Gambusia affinis	Western mosquitofish		
Ictalurus furcatus	Blue catfish		
Ictalurus punctatus	Channel catfish		
Ictiobus bubalus	Smallmouth buffalo		
Lepisosteus oculatus	Spotted gar		

Table 7 cont'd.

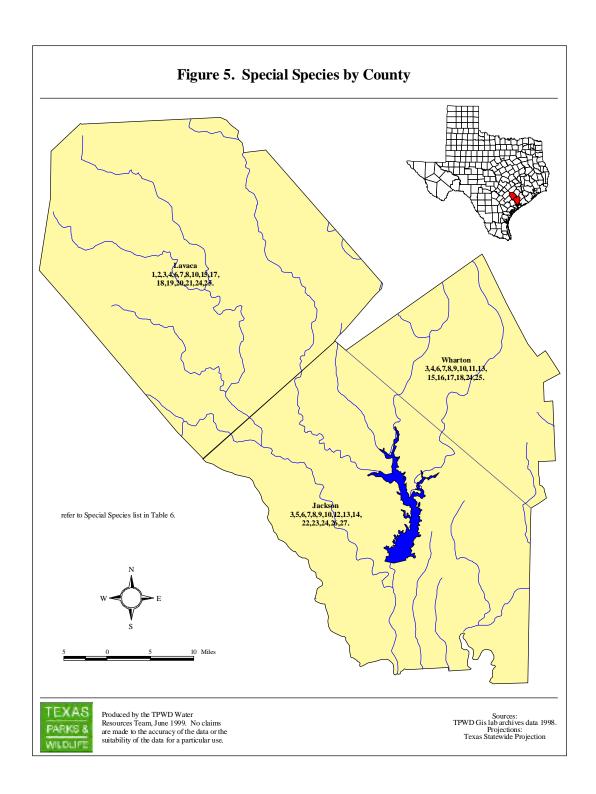

Table / cont u.	
Lepisosteus osseus	Longnose gar
Lepisosteus spatula	Alligator gar
Lepomis auritus	Redbreast sunfish
Lepomis cyanellus	Green sunfish
Lepomis gulosus	Warmouth
Lepomis humilis	Orangespotted sunfish
Lepomis macrochirus	Bluegill
Lepomis megalotis	Longear sunfish
Lepomis microlophus	Redear sunfish
Lepomis punctatus	Spotted sunfish
Lythrurus fumeus	Ribbon shiner
Macrhybopsis aestivalis	Speckled chub
Menidia beryllina	Inland silverside
Micropterus treculi	Guadalupe bass
Micropterus salmoides	Largemouth bass
Morone chrysops	White bass
Mugil cephalus	Stiped mullet
Notemigonus crysoleucas	Golden shiner
Notropis amnis	Pallid shiner
Notropis buchanani	Ghost shiner
Notropis shumardi	Silverband shiner
Notropis texanus	Weed shiner
Notropis volucellus	Mimic shiner
Noturus gyrinus	Tadpole madtom
Opsopoeodus emiliae	Pugnose minnow
Percina macrolepida	Bigscale logperch
Pimephales promelas	Fathead minnow
Pimephales vigilax	Bullhead minnow
Pomoxis annularis	White crappie
Pomoxis nigromaculatus	Black crappie
Pylodictis olivaris	Flathead catfish
Syngnathus scovelli	Gulf pipefish

Table 8. Species of Special Concern in the Study Area (Texas Parks and Wildlife Department 1998a)

Map	Scientific name	Common name	Fed.	State
code*			Status	Status
	AMPHIBIANS			
1	Bufo houstonensis	Houston toad	LE	E
	BIRDS			
2	Ammodramus henslowii	Henslow's sparrow		
3	Buteo albicaudatus	White-tailed hawk		T
4	Charadrius montanus	Mountain plover	PT	
5	Egretta rufescens	Reddish egret		T
6	Falco peregrinus anatum	American peregrine falcon	LE	E
7	Falco peregrinus tundrius	Arctic peregrine falcon	E/SA	T
8	Grus americana	Whooping crane	LE	E
9	Haliaeetus leucocephalus	Bald eagle	LT	T
10	Mycteria americana	Wood stork		T
11	Numenius borealis	Eskimo curlew	LE	E
12	Pelecanus occidentalis	Brown pelican	LE	E
13	Plegadis chihi	White-faced ibis		T
14	Sterna antillarum athalassos	Interior least tern	LE	\mathbf{E}
15	Tympanuchus cupido attwateri	Attwater's greater prairie- chicken	LE	E
	FISHES			
16	Micropterus treculi	Guadalupe bass		
	MAMMALS	•		
17	Spilogale putorius interrupta REPTILES	Plains spotted skunk		
18	Crotalus horridus	Timber/Canebrake rattlesnake		T
19	Gopherus berlandieri	Texas tortoise		T
20	Graptemys caglei	Cagle's map turtle	C1	
21	Liochlorophis vernalis	Smooth green snake		T
22	Malaclemys terrapin littoralis	Texas diamondback terrapin		
23	Nerodia clarkii	Gulf saltmarsh snake		
24	Phrynosoma cornutum	Texas horned lizard		T
25	Thamnophis sirtalis annectens VASCULAR PLANTS	Texas garter snake		
26	Psilactis heterocarpa	Welder machaeranthera		
27	Thurovia triflora	Threeflower broomweed		

* Lookup code for map of Figure 6.

Status Code: LE, LT – Federally Listed Endangered/Threatened; E/SA – Federally Endangered by Similarity of Appearance; E, T – State Endangered/Threatened; PT – Federally Proposed Threatened; C1 – Federal Candidate, Category 1, information supports proposing to list as endangered/threatened.

Birds and Waterfowl

Many species of neotropical songbirds, wintering shorebirds, and a large number of waterfowl stop-over in the study area to feed and rest along the river banks and creek bottoms. The Special Species List (Texas Parks and Wildlife Department 1998a) for the study area includes 14 birds (Table 8), some of which are riparian and/or wetland dependent. Several of the birds occur in the study area only as migrants (i.g. peregrine falcon, whooping crane). Migrating peregrine falcons utilize wetlands as they prey mostly on ducks and shorebirds. Migrating whooping cranes use wetlands for feeding and roosting. An extensive list of birds observed in Lake Texana State Park can be obtained at the park headquarters (also see http:www.tpwd.state.tx.us/park/laketexa/laketexa.htm).

Mammals, Amphibians, and Reptiles

There are 1,100 vertebrate species in Texas, 60 of which are endemic to the state (Texas Audubon Society 1997). There are at least 87 species of mammals (Table 9), amphibians (Table 10), and reptiles (Table 11), listed in the Texas Parks and Wildlife Biological Conservation Database (BCD), present in the study area.

The plains spotted skunk is the only mammal in Table 9 that is listed in the Special Species List. Table 10 includes one amphibian that is listed in the Special Species List, the Houston toad. Table 11 includes eight reptiles that are listed in the Special Species List (Table 8), the timber rattlesnake, Texas horned lizard, Texas garter snake, Texas tortoise, Cagle's map turtle, smooth green snake, Texas diamondback terrapin, and the Gulf saltmarsh snake. Figure 6 shows the county distribution of those species listed on the Special Species List.

The Houston Toad, a federally and state listed endangered species is found only in a small pocket of southeastern Texas, including Austin, Bastrop, Burleson, Colorado, Lavaca, Leon, Milam, and Robertson Counties. It is found in pine forests and prairies with sandy ridges (Texas Parks and Wildlife 1999).

The Houston Toad is endangered because many small natural breeding ponds have been drained. Clearing natural vegetation and planting pasture grasses such as bermudagrass also eliminates habitat. Also, fire ants may kill young toads as they leave the pond (Texas Parks and Wildlife 1999).

The Texas garter snake is found in wet or moist microhabitats, but not necessarily restricted to them. It hibernates underground or under surface cover. The Timber/Canebrake rattlesnake occurs in swamps, floodplains, upland pine, deciduous woodlands, riparian zones, and abandoned farms.

The Cagle's map turtle is endemic to the Guadalupe River System. It occurs in short stretches of shallow water with swift to moderate flow and gravel or cobble bottom, connected to deeper pools with a slower flow rate and a silt or mud bottom. It nests on gently sloping sand banks within 30 feet of the water.

Table 9. Mammals of the Study Area (Davis and Schmidly 1994; Texas Parks and Wildlife Department 1998a)

Scientific Name	Common Name
Baiomys taylori	Northern pygmy mouse
Canis rufus	Red wolf (extirpated)
Chaetodipus hispidus	Hispid pocket mouse
Didelphis virginiana	Virginia opossum
Geomys attwateri	Attwater's pocket gopher
Lasiurus borealis	Eastern red bat
Lepus californicus	Black-tailed jack rabbit
Mephitis mephitis	Striped skunk
Neotoma floridana	Eastern woodrat
Oryzomys palustris	Marsh rice rat
Peromyscus leucopus	White-footed mouse
Peromyscus maniculatus	Deer mouse
Reithrodontomys fulvescens	Fulvous harvest mouse
Sciurus niger	Eastern fox squirrel
Sigmodon hispidus	Hispid cotton rat
Spermophilus tridecemlineatus	Thirteen-lined ground squirrel
Spilogale putorius interrupta	Plains spotted skunk
Sylvilagus floridanus	Eastern cottontail
Urocyon cinereoargenteus	Gray fox

Table 10. Amphibians of the Study Area (Texas Parks and Wildlife Department 1998a)

Scientific Name	Common Name
Acris crepitans	Northern cricket frog
Ambystoma texanum	Smallmouth salamander
Bufo houstonensis	Houston toad
Bufo speciosus	Texas toad
Bufo valliceps	Gulf coast toad
Bufo woodhousii	Woodhouse's toad
Gastrophryne carolinensis	Eastern narrowmouth toad
Gastrophryne olivacea	Great plains narrowmouth toad
Hyla chrysoscelis	Cope's gray treefrog
Hyla cinerea	Green treefrog
Hyla versicolor	Northern gray treefrog
Notophthalmus viridescens	Eastern newt
Pseudacris clarkii	Spotted chorus frog
Pseudacris streckeri	Strecker's chorus frog
Pseudacris triseriata	Striped chorus frog
Rana catesbeiana	Bullfrog
Rana sphenocephala	Southern leopard frog
Scaphiopus holbrookii	Eastern spadefoot
Siren intermedia	Lesser siren

Table 11. Reptiles of the Study Area (Texas Parks and Wildlife Department 1998a)

Scientific Name	Common Name				
Agkistrodon contortrix	Copperhead				
Agkistrodon piscivorus	Cottonmouth				
Alligator mississippiensis	American alligator				
Anolis carolinensis	Green anole				
Chelydra serpentina	Snapping turtle				
Cnemidophorus gularis	Texas spotted whiptail				
Cnemidophorus sexlineatus	Six-lined racerunner				
Coluber constrictor	Racer				
Crotalus atrox	Western diamondback rattlesnake				
Crotalus horridus	Timber (canebrake) rattlesnake				
Deirochelys reticularia	Chicken turtle				
Elaphe obsoleta	Black rat snake				
Eumeces fasciatus	Five-lined skink				
Eumeces laticeps	Broadhead skink				
Eumeces septentrionalis	Prairie skink				
Farancia abacura	Mud snake				
Gopherus berlandieri	Texas tortoise				
Graptemys caglei	Cagle's map turtle				
Hemidactylus turcicus	Mediterranean gecko				
Heterodon platirhinos	Eastern hognose snake				
Kinosternon flavescens	Yellow mud turtle				
Kinosternon subrubrum	Eastern mud turtle				
Lampropeltis calligaster	Prairie kingsnake				
Lampropeltis getula	Common kingsnake				
Liochlorophis aestivus	Rough green snake				
Malaclemys terrapin littoralis	Texas diamondback terrapin				
Masticophis flagellum	Coachwhip				
Micrurus fulvius	Eastern coral snake				
Nerodia cyclopion	Green water snake				
Nerodia erythrogaster	Plainbelly water snake				
Nerodia fasciata	Southern water snake				
Nerodia rhombifer	Diamondback water snake				
Ophisaurus attenuatus	Slender glass lizard				
Phrynosoma cornutum	Texas horned lizard				
Pseudemys texana	Texas river cooter				
Regina grahamii	Graham's crayfish snake				
Sceloporus undulatus	Eastern fence lizard				
Scincella lateralis	Ground skink				
Sistrurus miliarius	Pigmy rattlesnake				
Storeria dekayi	Brown snake				
Tantilla gracilis	Flathead snake				
Terrapene carolina	Eastern box turtle				

Table 11 cont'd.

Terrapene ornata	Western box turtle
Thamnophis marcianus	Checkered garter snake
Thamnophis proximus	Western ribbon snake
Trionyx muticus	Smooth softshell
Trionyx spiniferus	Spiny softshell
Virginia striatula	Rough earth snake

Conclusions

Region P has a variety of valuable aquatic, wetland, riparian, and estuarine habitats. The estuary of the Lavaca and Navidad Rivers provides habitats for economically important and ecologically characteristic marine and estuarine animals as well as for freshwater and terrestrial animals. This is true also for the smaller estuarine reach of Garcitas Creek from Lavaca Bay upstream to the Arenosa Creek confluence. The estuarine habitats are in southern Jackson County.

Extensive pecan-elm type bottomland hardwood forests occur along several rivers and streams in Jackson and Wharton Counties. The Lavaca River, Garcitas Creek, Arenosa Creek, West Carancahua Creek, and West Mustang Creek all satisfy at least one of the criteria for ecologically unique river and stream segments. These include: the Lavaca River from the Navidad river confluence upstream about 20 miles; the Navidad River west of Lake Texana; Sandy Creek and its tributaries north of Lake Texana in Jackson County and Wharton Counties; and West and East Carancahua Creeks in southeastern Jackson County. Arenosa Creek on the Western border of Jackson County and West Mustang Creek in Jackson and Wharton Counties have also been identified as ecologically significant stream segments (see Appendix C & D).

Lake Texana, in Jackson County, also supports fringing wetland and bottomland habitats as well as several recreational areas, including Lake Texana State Park, that are economic assets to the region.

The above habitats include 9 sites on the Texana loop of the Great Texana Coastal Birding Trail, all in Jackson County. These are also of high economic value to the region.

References

Bauer J., R. Frye, and B. Spain. 1991. A Natural Resource Survey for Proposed Reservoir Sites and Selected Stream Segments in Texas. Texas Parks and Wildlife Dept., PWD-BK-0300-06 7/91, Austin, Texas.

Bayer, C.W., J.R. Davis, S.R. Twidwell, R. Kleinsasser, G. Linam, K. Mayes, and E. Hornig. 1992. Texas Aquatic Ecoregion Project: An Assessment of Least Disturbed Streams (draft). Texas Water Commission, Austin. Texas Parks and Wildlife Department, Austin. U.S. Environmental Protection Agency, region VI, Dallas, Texas.

Brune, G. 1981. Springs of Texas: Vol. I. Branch-Smith, Inc. Fort Worth, Texas.

Crompton, J.L., T.Var, and S. Lee. 1998. Repositioning TPWD and Local Park and Recreation Agencies. Texas A&M Univ., Dept. of Recreation, Parks and Tourism Sciences, College Station, Texas.

Dallas Morning News. 1997. Texas Almanac. Texas A&M Consortium, College Station, Texas.

Davis, J.R. 1998. Personal communication. Texas Natural Resource Conservation Commission, Austin, Texas.

Davis, W.B., and D.J. Schmidly. 1994. The Mammals of Texas. Texas Parks and Wildlife. University of Texas Press, Austin, Texas.

Garrett, J.M., and D.G. Barker. 1987. A Field Guide to Reptiles and Amphibians of Texas. Texas Monthly Fieldguide Series. Gulf Publishing Company. Houston, Texas.

Godfrey, C.L., G.S. Mackree, and H. Oaks. 1973. General Soil Map of Texas. Texas Agricultural Experiment Station, Texas A&M University and the Soil Conservation Service, U.S. Department of Agriculture.

Howells, R.G., R.W. Neck, and H.D. Murray. 1996. Freshwater Mussels of Texas. Texas Parks and Wildlife Department, Inland Fisheries Division. Texas Parks and Wildlife Press.

Howells, R.G., C.M. Mather, and J.A.M. Bergmann. 1997. Conservation Status of Selected Freshwater Mussels in Texas. Pages 117-128 *in* K.S.Cummings, A.C. Buchanan, C.A. Mayer, and T.J. Naimo, eds. Conservation and Management of Freshwater Mussels II: Initiatives for the Future. Proc. of a UMRCC Symposium, 16-18 Oct. 1995, St. Louis, MO. Upper Mississippi River Conservation Committee, Rock Island, Illinois.

Hubbs, C., R.J. Edwards, and G.P. Garrett. 1991. An annotated checklist of the freshwater fishes of Texas, with keys to identification of species. Texas Journal of Science 43(4): 1-56.

Lee, D.S., C.R. Gilbert, C.H. Hocutt, R.E. Jenkins, D.E. McAllister, and J.R. Stauffer, Jr. 1980 et seq. Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, North Carolina. 854 pp.

Lyndon B. Johnson School of Public Affairs. 1978. Preserving Texas' Natural Heritage. Natural Heritage Policy Research Project Report No. 31, Univ. of Texas at Austin.

McMahan, C.A., R. Frye, and K.L. Brown. 1984. The Vegetation Types of Texas Including Cropland: An Illustrated Synopsis to Accompany the Map. Wildlife Division, Texas Parks and Wildlife Department.

Natural Resources Conservation Service. No Date. Soils Information Including Soil Component Data and Soils. State Soil and Geographic (STATSGO) Database. U.S. Department of Agriculture.

Ortego, B. 1999. Personal communication. Texas Parks and Wildlife Department, Victoria, Texas.

Texas Auduban Society. 1997. Facts About Texas's Birds, Wildlife, and Habitat: A Texas Briefing Guide for Policy Makers. The Audubon Society, Austin, Texas.

Texas Parks and Wildlife Department. 1998a. Texas Biological and Conservation Data System (TXBCD). Texas Parks and Wildlife Department, Austin, Texas.

Texas Parks and Wildlife Department. 1998b. Texas Parks and Historic Sites. [Online] Available at http://www.tpwd.state.tx.us/park/.

Texas Parks and Wildlife Department. 1999. Endangered and Threatened species: The Houston Toad. [Online] Available at http://www.tpwd.state.tx.us/nature/endang/htoad.htm

Texas Water Development Board. 1997. Water for Texas: Today and Tomorrow. A Consensus-Based Update to the State Water Plan. TWDB Document No. GP-6-2.

Texas Water Development Board. 1998. Counties Population Projections in Texas. [Online] Available at http://www.twdb.state.tx.us.

APPENDIX A

Scientific Names of Plants Mentioned (from McMahan et al. 1984)

APPENDIX A

Scientific Names of Plants Mentioned

American beautyberry	Callicarpa americana
Ash, green	Fraxinus pennsylvanica
Baccharis	Baccharis spp.
Bermudagrass	Cynodon dactylon
Bluestem, bushy	Andropogon glomeratus
, little	Schizachyrium scoparium var.
	frequens
, silver	Bothriochloa saccharoides
, slender	Schizachyrium tenerum
Buffalograss	Buchloe dactyloides
Bulrush, California	Scirpus californicus
, Olney's	S. americanus
, saltmarsh	S. maritimus
Coral-berry	Symphoricarpos orbiculatus
Cordgrass, Gulf	Spartina spartinae
, marshhay	S. patens
Cottonwood	Populus deltoides
Cypress, bald	Taxodium distichum
Dewberry	Rubus spp.
Elm, American	Ulmus americana
, cedar	U. crassifolia
Frostweed	Verbesina virginica
Grape, mustang	Vitis mustangensis
Greenbriar	Smilax spp.
Hackberry	Celtis spp.
Hawthorn	Crataegus spp.
Hickory, black	Carya texana
Huisache	Acacia farnesiana
Johnsongrass	Sorghum halepense
Lovegrass, sand	Eragrostis trichodes
Mesquite	Prosopis glandulosa

Oak, blackjack	Quercus marilandica
, live	Q. virginiana
, post	Q. stellata
, sandjack	Q. incana
, water	Q. nigra
Panicum, beaked	Panicum anceps
Paspalum, brownseed	Paspalum plicatulum
, seashore	P. vaginatum
, single-spike	P. monostachyum
Pecan	Carya illinoinensis
Poison oak	Rhus toxicodendron
Ragweed, western	Ambrosia psilostachya
Reed, common	Phragmites australis
Redcedar, eastern	Juniperus virginiana
Rescuegrass	Bromus unioloides
Rose, Macartney	Rosa bracteata
Smutgrass	Sporobolus indicus
Sprangle-grass	Chasmanthium sessiliflorum
Supplejack	Berchemia scandens
Sycamore	Platanus occidentalis
Three-awn	Aristida spp.
Tickclover	Desmondium spp.
Trumpet creeper	Campsis radicans
Virgin's bower	Clematis virginiana
Widgeon grass	Ruppia maritima
Wildrye, Canada	Elymus canadensis
, Virginia	E. virginicus
Willow, black	Salix nigra
Windmillgrass	Chloris spp.
Yaupon	Ilex vomitoria

APPENDIX B

Estimated Economic Importance of Selected TPWD Facilities (from Crompton et al. 1998)

LAKE TEXANA STATE RECREATION AREA

JACKSON COUNTY

AVERAGE PARTY SIZE:

Day Visitors = 3.62

Overnight Visitors = 3.41

AVERAGE DISTANCE TRAVELED TO SITE:

Day Visitors = 72.6 Miles

Overnight Visitors = 100.6 Miles

ACTUAL 1997 VISITATION (Fiscal Year):

Day Visitors = 556,092

Overnight Visitors = 58,659

PERCENT OF OUT-OF-COUNTY VISITORS:

Day Visitors = 80.95

Overnight Visitors = 94.43

PER PERSON PER DAY EXPENDITURES

Sector		Day Visitors*		11 4 1 1 1	C	S	Visitor	
	Adjacent	Enroute		Total	Adjacent	Enroute	Total	Average
Transportation	\$1.68	\$1.88		\$3.56	\$1.68	\$0.45	\$2.12	\$2.84
Food	2.69	1.47		4.17	4.21	0.65	4.86	4.51
Lodging	0.31	0.15		0.46	0.04	0.00	0.04	0.25
Other	1.01	0.15	-	1.16	1.07	0.00	1.07	1.12
Total	5.70	3.65		9.35	6.99	1.10	8.09	8.72

ESTIMATED ANNUAL ECONOMIC IMPACT ON SALES

Sector		Day Visitors*		. (Visitor		
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$755,125	\$755,125	\$1,049,171	\$92,918	\$92,918	\$129,100	\$1,178,271
Food	1,211,854	1,211,854	2,164,249	233,044	233,044	416,194	2,580,443
Lodging	140,063	140,063	237,170	2,248	2,248	3,807	240,976
Other	456,729	456,729	882,400	59,198	59,198	114,370	996,770
Total	2,563,771	2,563,771	4,332,989	387,408	387,408	663,471	4,996,460

ESTIMATED ANNUAL ECONOMIC IMPACT ON PERSONAL INCOME

Sector		Day Visitors*		(Visitor		
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$755,125	\$330,292	\$401,047	\$92,918	\$40,642	\$49,349	\$450,396
Food	1,211,854	354,588	572,601	233,044	68,189	110,113	682,714
Lodging	140,063	38,952	62,090	2,248	625	997	63,087
Other	456,729	152,410	253,621	59,198	19,754	32,873	286,494
Total	2,563,771	876,242	1,289,359	387,408	129,211	193,331	1,482,691

ESTIMATED ANNUAL ECONOMIC IMPACT ON EMPLOYMENT

Sector Ex		Day Visitors*		(Overnight Visitors			
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total	
Transportation	\$755,125	10.62	15.43	\$92,918	1.31	1.90	17.33	
Food	1.211.854	39.56	55.22	233,044	7.61	10.62	65.84	
Lodging	140,063	3.27	4.88	2,248	0.05	0.08	4.96	
Other	456,729	20.11	27.36	59,198	2.61	3.55	30.90	
Total	2,563,771	73.56	102.88	387,408	11.57	16.14	119.03	

^{*} Average PPPD expenditure data for Texas State Recreation Areas were used.

LAKE TEXANA STATE RECREATION AREA

JACKSON COUNTY

AVERAGE PARTY SIZE:

Day Visitors = 3.62 Overnight Visitors = 3.41 AVERAGE DISTANCE TRAVELED TO SITE:

Day Visitors = 72.6 miles Overnight Visitors = 100.6 miles

ACTUAL 1997 VISITATION (Fiscal Year):

Day Visitors = 556,092 Overnight Visitors = 58,659 PERCENT OF OUT-OF-COUNTY VISITORS:

Day Visitors = 80.95 Overnight Visitors = 94.43

PER PERSON PER DAY EXPENDITURES

Sector		Day Visitors*			Overnight Visitors			
	Adjacent	Enroute	Total	Adjacent	Enroute	Total	Average	
Transportation	\$1.68	\$1.88	\$3.56	\$1.68	\$0.45	\$2.12	\$2.84	
Food	2.69	1.47	4.17	4.21	0.65	4.86	4.51	
Lodging	0.31	0.15	0.46	0.04	0.00	0.04	0.25	
Other	1.01	0.15	1.16	1.07	0.00	1.07	1.12	
Total	5.70	3.65	9.35	6.99	1.10	8.09	8.72	

ESTIMATED ANNUAL ECONOMIC SURGE ON SALES (Including Local Visitors)

Sector	- T-	Day Visitors*	The second	(Visitor		
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	\$932,829	\$1,296,072	\$98,399	\$98,399	\$136,715	\$1,432,788
Food	1,497,040	1,497,040	2,673,563	246,791	246,791	440,743	3,114,307
Lodging	173,025	173,025	292,983	2,381	2,381	4,031	297,014
Other	564,211	564,211	1,090,056	62,690	62,690	121,116	1,211,172
Total	3,167,104	3,167,104	5,352,674	410,260	410,260	702,606	6,055,280

ESTIMATED ANNUAL ECONOMIC SURGE ON PERSONAL INCOME (Including Local Visitors)

Sector	Day Visitors*			Overnight Visitors			Visitor
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	\$408,019	\$495,425	\$98,399	\$43,040	\$52,260	\$547,685
Food	1,497,040	438,034	707,351	246,791	72,211	116,609	823,960
Lodging	173,025	48,118	76,702	2,381	662	1,055	77,757
Other	564,211	188,277	313,306	62,690	20,920	34,812	348,118
Total	3,167,104	1,082,448	1,592,785	410,260	136,832	204,735	1,797,520

ESTIMATED ANNUAL ECONOMIC SURGE ON EMPLOYMENT (Including Local Visitors)

Sector	Day Visitors*			Overnight Visitors			Visitor
	Expenditures	Direct Impact	Total Impact	Expenditures	Direct Impact	Total Impact	Total
Transportation	\$932,829	13.12	19.06	\$98,399	1.38	2.01	21.07
Food	1,497,040	48.87	68.22	246,791	8.06	11.25	79.46
Lodging	173,025	4.04	6.03	2,381	0.06	0.08	6.11
Other	564,211	24.84	33.80	62,690	2.76	3.76	37.55
Total	3,167,104	90.87	127.10	410,260	12.26	17.09	144.19

^{*} Average PPPD expenditure data for Texas State Recreation Areas were used.

APPENDIX C

TPWD Information Supporting River and Stream Segment Designations

Texas Parks and Wildlife Department Draft List of Texas streams and rivers satisfying at least one of the criteria defined in Senate Bill 1 for ecologically unique river and stream segments.

REGION P (LAVACA)

Arenosa Creek - From the confluence with Garcitas Creek in Jackson/Victoria County upstream to its headwaters along the northern boundary of Victoria County

Aq. Life: Ecoregion Stream¹; Benthic macroinvertebrates^{1,2}

Garcitas Creek - From the confluence with Lavaca Bay in Jackson/Victoria/Calhoun County upstream to the Arenosa Creek confluence in Jackson/Victoria County

Aq. Life: Ecoregion Stream, Dissolved oxygen¹; Benthic macroinvertebrates^{1,2} End/Threat: One of only a few locales in Texas where Texas palmetto occurs naturally³²; Diamondback terrapin³²

Biol. Function: Extensive estuarine wetland habitat

Lavaca River - From the confluence with Lavaca Bay in Calhoun/Jackson County to a point 5.3 miles downstream of US 59 in Jackson County (TNRCC stream segment 1601)

Biol. Function: Extensive freshwater and estuarine wetland habitat¹⁴

End/Threat: Diamondback terrapin³²

Hydrologic Function: Forested riparian habitats perform all hydrologic functions

West Carancahua Creek - From the confluence with Carancahua Creek in Jackson County upstream to the FM 111 crossing east of Edna in Jackson County

Aq. Life: Ecoregion Stream, Dissolved oxygen¹; Benthic macroinvertebrates^{1,2} Hydrologic Function: Forested riparian habitats perform all hydrologic functions

West Mustang Creek - From the point where East Mustang Creek and West Mustang Creek join to form Mustang Creek in Jackson County upstream to FM 1160 in Wharton County Aq. Life: Ecoregion Stream¹; Benthic macroinvertebrates^{1,2}

REFERENCES

¹ Bayer, C.W., J.R. Davis, S.R. Twidwell, R. Kleinsasser, G. Linam, K. Mayes, and E. Hornig. 1992. Texas aquatic ecoregion project: an assessment of least disturbed streams (draft). Texas Water Commission, Austin, Texas.

¹⁴Bauer J., R. Frye, and B. Spain. 1991. A Natural Resource Survey for Proposed Reservoir Sites and Selected Stream Segments in Texas. Texas Parks and Wildlife Dept., PWD-BK-0300-06 7/91, Austin, Texas

² Davis, J.R. 1998. Personal communication. Texas Natural Resource Conservation Commission, Austin, Texas.

³² Ortego, B. 1999. Personal communication. Texas Parks and Wildlife Department, Victoria, Texas.

Appendix D

§357.8 Ecologically Unique River and Stream Segments

Title 31. NATURAL RESOURCES AND CONSERVATION

Part X. TEXAS WATER DEVELOPMENT BOARD

Chapter 357. REGIONAL WATER PLANNING GUIDELINES

§ 357.8 Ecologically Unique River and Stream Segments

- (a) Regional water planning groups may include in adopted regional water plans recommendations for all or parts of river and stream segments of unique ecological value located within the regional water planning area by preparing a recommendation package consisting of a physical description giving the location of the stream segment, maps, and photographs of the stream segment and a site characterization of the stream segment documented by supporting literature and data. The recommendation package shall address each of the criteria for designation of river and stream segments of ecological value found in subsection (b) of this section. The regional water planning group shall forward the recommendation package to the Texas Parks and Wildlife Department and allow the Texas Parks and Wildlife Department 30 days for its written evaluation of the recommendation. The adopted regional water plan shall include, if available, Texas Parks and Wildlife Department's written evaluation of each river and stream segment recommended as a river or stream segment of unique ecological value.
- (b) A regional water planning group may recommend a river or stream segment as being of unique ecological value based upon the following criteria:
- (1) biological function--stream segments which display significant overall habitat value including both quantity and quality considering the degree of biodiversity, age, and uniqueness observed and including terrestrial, wetland, aquatic, or estuarine habitats;
- (2) hydrologic function--stream segments which are fringed by habitats that perform valuable hydrologic functions relating to water quality, flood attenuation, flow stabilization, or groundwater recharge and discharge;
- (3) riparian conservation areas--stream segments which are fringed by significant areas in public ownership including state and federal refuges, wildlife management areas, preserves, parks, mitigation areas, or other areas held by governmental organizations for conservation purposes, or stream segments which are fringed by other areas managed for conservation purposes under a governmentally approved conservation plan;
- (4) high water quality/exceptional aquatic life/high aesthetic value--stream segments and spring resources that are significant due to unique or critical habitats and exceptional aquatic life uses dependent on or associated with high water quality; or
- (5) threatened or endangered species/unique communities--sites along streams where water development projects would have significant detrimental effects on state or federally listed

threatened and endangered species, and sites along streams significant due to the presence of unique, exemplary, or unusually extensive natural communities.

Source: The provisions of this § 357.8 adopted to be effective March 11, 1998, 23 TexReg 2338.

Contents

Chapter 9 – Water Infrastructure Financing Recommendations				
9.1	Introdu	ıction	9-′	
9.2	Summ	ary of Survey Responses	9-	
9.3	Policy Recommendations			
	9.3.1	Summary	9-	
	9.3.2	Recommendations Relating to Direct Financial Assistance Programs	9-2	
	9.3.3	Policy Recommendations Which Indirectly Impact Financing for Water Infrastructure	9-4	

This page intentionally left blank.

Chapter 9 – Water Infrastructure Financing Recommendations

9.1 Introduction

In SB 2 of the 77th Texas Legislature, the preparation of an infrastructure financing report (IFR) was added to the regional planning process and this step is carried into the 2021 Planning Round. The purpose of the report is to identify the funding needed to implement the water management strategies recommended in RWPs. The primary objectives of this chapter/report are:

- Determine the number of political subdivisions with identified needs that will be unable to finance their water infrastructure needs
- Determine the amount of infrastructure costs in the RWPs that cannot be financed by the local political subdivisions
- Determine funding options, such as state funding, that are proposed by the political subdivisions to finance water infrastructure costs that cannot be financed locally
- Determine additional roles the RWPG propose for the state in financing the recommended water supply projects

[REMAINDER OF INTRODUCTION TO BE PROVIDED AS PART OF FINAL PLAN]

9.2 Summary of Survey Responses

[RESULTS OF IFR SURVEY TO BE INCLUDED AS PART OF FINAL PLAN]

9.3 Policy Recommendations

The LRWPG is directed by the TWDB to propose roles for the State to take in financing the recommended water supply projects. In previous Regional Water Plans, recommendations were made regarding policies and programs that directly or indirectly funded water projects and water infrastructure. While there are no new recommendations for the 2021 RWP, those still relevant recommendations are discussed below.

9.3.1 Summary

The LRWPG reviewed the existing state and federal programs for funding water supply and infrastructure for their applicability to the Lavaca RWP. Generally, recommendations were classified into two categories: those addressing direct assistance programs (loans and grants) and those addressing indirect actions that impact water infrastructure financing. The LRWPG recommendations are summarized below and detailed discussions of each program or policy are provided in the following sections.

The LRWPG recommends the State develop programs to provide matching funds to farmers for implementing water conservation measures. This would include costs for precision leveling

and the conversion of irrigation canals to pipelines. These funds would provide a mechanism to leverage federal grant programs by providing the local matching share.

The LRWPG recommends increased funding of the Agricultural Water Conservation Loan Program and adding a one-time grant or subsidy program to stimulate early adoption of conservation practices by individual irrigators.

The LRWPG recommends increased funding of the State Revolving Fund (SRF) Programs in future decades. This program will remain important to assist some systems in upgrading their infrastructure to meet future demands and minimum water quality standards. As infrastructure ages and water quality standards increase, the demand for this assistance will grow. The State Loan Program for political subdivisions and water supply corporations offers loans at a cost advantage over many commercial and many public funding options.

The LRWPG supports the continued and increased funding of the USDA's Rural Utilities Service program at the federal level as well as the state Rural Water Assistance Fund at the state level. These programs offer water and waste disposal loans and grants to rural areas and towns of up to 10,000 people. Certain communities within Texas are specifically targeted for these grants.

The LRWPG supports the placement of a five-cent state tax on the sale of all bottled water to be used for the funding of water-related projects by TWDB. These would include municipal and agricultural conservation programs.

The LRWPG supports financial assistance from the State, in the form of grants and low-interest loans (including SWIFT), for infrastructure improvements including Advanced Metering Infrastructure (AMI) and leak detection technologies. Small municipalities in Texas tend to have older infrastructure and lack the budget needed for improvements.

The LRWPG supports the Legislature reviewing private activity bonds to expand the authority beyond the current \$50 million cap. Private activity bonds provide areas with the opportunities to encourage economic growth.

The LRWPG has and continues to support desalination as a supply alternative to neighboring regions that will develop shortages in the near future. However, desalination is not yet cost-competitive with more traditional water supply projects. It is recommended that the State continue to fund programs to promote desalination research and implementation.

The LRWPG supports provision of increased research grants to study and better develop efficient irrigation practices and to develop varieties of crops that require less water to grow and provide increased first-crop yields. Irrigators cannot generally afford the increased cost of water when new supplies are developed. By reducing demand in a cost-efficient manner, small irrigators may be able to continue farming.

9.3.2 Recommendations Relating to Direct Financial Assistance Programs

Program/Policy Item: Agricultural Water Conservation Programs

<u>Discussion</u>: The Agricultural Water Conservation Loan Program provides loans to soil and water conservation districts, underground water conservation districts, and districts authorized to supply water for irrigation. These districts may further lend the funds to private individuals for equipment and materials, labor, preparation, and installation costs to improve water-use efficiency related to irrigation of their private lands. There is also a grant program for equipment purchases by eligible districts for

the measurement and evaluation of irrigation systems and agricultural water conservation practices and for efficient irrigation and conservation demonstration projects, among others. However, these grants are not available directly to individual irrigators. The program also includes a linked deposit loan program allowing individuals to access TWDB funding through participant farm credit institutions and local state depository banks.

EQIP, available through USDA, provides some limited funding to natural resources issues, including water quantity and availability. In 2008, Texas was allocated over \$105 million in EQIP funds for projects including irrigation supply, brush control, water and air quality from livestock operations, wildlife, and invasive species. These funds are typically provided at a 50 percent cost-share rate. Jackson, Lavaca, and Wharton Counties were designated within the primary area of concern for irrigation water quantity issues. The implementation of a similar program at the state level would allow additional opportunities for irrigators to receive assistance in implementing conservation practices.

Eligible districts will need to act as conservation brokers, identifying those irrigators with the potential to reduce water demand through equipment improvements, and matching them with available loans. To assist with the immediate adoption of these improved conservation practices, a one-time grant or subsidy program for water-efficient equipment purchases may help by reducing the loan amount required by each irrigator. If the requirements of an existing federal loan or grant program could be met, the state could provide all or part of the local matching share. Since the methods used by irrigators vary across the state, such a program would need to be flexible, with local oversight provided by those districts currently eligible for the Agricultural Water Conservation Loan Program. Consistency with the applicable RWP may be included as a prerequisite for this program, as it is for other state grants and loans.

<u>Policy Recommendation</u>: Provide a mechanism to leverage federal grant programs by providing the local matching share. Increase funding of this loan program and consider adding a one-time grant or subsidy component to stimulate early adoption of conservation practices by individual irrigators.

Program/Policy Item: Drinking Water State Revolving Fund Program

<u>Discussion</u>: This program provides loans at subsidized interest rates for the construction of water treatment and distribution systems and for source water protection. As the loans are paid off, the TWDB uses the funds to make new loans (thus the name revolving fund). State funds for the program receive a federal match through the U.S. Environmental Protection Agency. These loans are intended for projects to bring existing systems into compliance with rules and regulations and are available to political subdivisions, water supply corporations, and privately-owned water systems. Applications are collected at the beginning of each year, given a priority ranking, and funded to the extent possible. Projects not funded in a given year may be carried forward into the next year's ranking.

These programs are important in that they assist sub-standard water systems in attaining the minimum water quality mandated by federal and state regulations, but they are not intended to fund system expansions due to projected growth. However, the SRF Fund may provide assistance to water providers with aging infrastructure.

Policy Recommendation: Increase the funding of this program in future decades.

Program/Policy Item: State Loan Program

<u>Discussion</u>: The State Loan Program provides loans to political subdivisions and water supply corporations for water, wastewater, flood control, and municipal solid waste projects. The interest rates for this program are not subsidized as they are in the Drinking Water SRF Program. The loan can be used for a number of water system improvements including the improvement or construction of wells, treatment facilities, and transmission and distribution systems. Loans are made on a first

come, first served basis. This program will be helpful to regions that are seeking funding alternatives for adding groundwater supply infrastructure.

<u>Policy Recommendation</u>: Increase funding of this program to meet near-term infrastructure cost projections.

Program/Policy Item: Water and Waste Disposal Loans and Grants from the USDA's Rural Utilities Service

<u>Discussion</u>: This federal program provides loans and grants in rural areas and communities of up to 10,000 people for water, wastewater, storm water, and municipal solid waste projects. The program is intended for communities that cannot obtain commercial loans at reasonable rates. Loans are made at or below market rates, depending upon the eligibility of the recipient. Grants can cover up to 75 percent of project costs when required to reduce user costs to a reasonable level. A separate program of Emergency Community Water Assistance Grants (up to \$500,000 per project) is also available to communities experiencing rapid declines in water quality or quantity.

This program is similar to the state loan and revolving fund programs. It offers another option to small communities and rural areas unable to finance required infrastructure without assistance. However, this is a nationwide program, and the competition for available funds is correspondingly greater. Colonias and border areas are specifically identified as target areas for the grant portion of this program, and it is therefore in the state's interest to support its continued funding.

At the state level, the Rural Water Assistance Fund provides low-interest loans to municipalities, water districts, and non-profit water supply corporations. LRWPG also promotes the funding of this program in an effort to assist small rural utilities in providing safe, reliable water supplies.

<u>Policy Recommendation</u>: Support continued and increased funding of this program at the federal level and fund the state Rural Water Assistance Fund.

9.3.3 Policy Recommendations Which Indirectly Impact Financing for Water Infrastructure

Program/Policy Item: TWDB Funding Through Taxation of Bottled Water Sales

<u>Discussion</u>: In order to finance programs relating to water-related issues, the state should develop a dedicated means of acquiring funds for these projects. A tax on bottled water would generate revenue that could then be applied to conservation of water for municipal, agricultural, and industrial uses.

<u>Policy Recommendation</u>: Use funds generated from sales tax on the sale of bottle water to fund water-related projects, namely municipal and agricultural infrastructure projects.

Program/Policy Item: Desalination Research and Demonstration Projects

<u>Discussion</u>: House Bill 1370 of the 78th Texas Legislature directed TWDB to "undertake or participate in research, feasibility and facility planning studies, investigations and surveys as it considers necessary to further the development of cost-effective water supplies from seawater desalination in the state." Funding was appropriated under the 79th Texas Legislature to continue and expand the State's efforts in desalination research. Subsequently, TWDB has participated in two seawater desalination pilot projects and several brackish water desalination demonstration projects

The Lavaca Region anticipates meeting future shortages through other methods; LRWPG recognizes the growing demands of surrounding regions. By supporting programs to promote the research and implementation of desalination, LRWPG wishes to promote desalinated water as a strategy to allow regions to meet their future needs without increasing the pressure to transfer supplies from rural areas in other regions.

<u>Policy Recommendation</u>: Provide research grants for the study of current and upcoming desalination technologies available to wholesale and retail water suppliers. Continue to fund appropriate demonstration facilities and subsidize the use of these facilities to develop a customer base.

Program/Policy Item: Water Research Program – Agriculture

<u>Discussion</u>: The TWDB offers research grants to individuals or political subdivisions for water research on topics published in the TWDB's Request for Proposals. Eligible topics include product and process development.

One recommendation to the Legislature is to establish funding for agricultural research in the areas of efficient irrigation practices and the development of new crop varieties that provide more yield with less water. Generally, irrigators cannot afford the increased cost of water when new supplies are developed in today's market. By reducing demand in a cost-efficient manner, small irrigators may be able to continue farming. This is another potential topic for the Water Research Program.

<u>Policy Recommendation</u>: Provide increased research grants to study and better develop efficient irrigation practices.

Contents

Ch	apter	10 – Public Participation	10-1			
	10.1	Introduction	10-1			
	10.2	Public Meetings				
		10.2.1 March 21, 2016, Meeting	10-1			
		10.2.2 May 24, 2016, Meeting	10-1			
		10.2.3 December 12, 2016, Meeting	10-2			
		10.2.4 February 23, 2017, Meeting	10-2			
		10.2.5 October 2, 2017, Meeting	10-2			
		10.2.6 April 16, 2018, Meeting	10-3			
		10.2.7 June 18, 2018, Meeting	10-3			
		10.2.8 August 6, 2018, Meeting	10-3			
		10.2.9 January 28, 2019 Meeting	10-3			
		10.2.10 May 20, 2019, Meeting	10-4			
		10.2.11 August 19, 2019, Meeting	10-4			
		10.2.12 December 16, 2019, Meeting	10-4			

List of Appendices

Appendix 10A – Meeting Minutes

This page intentionally left blank.

Chapter 10 – Public Participation

10.1 Introduction

The Lavaca Regional Water Planning Group's (LRWPG) approach to public involvement has been to secure early participation of interested parties so that concerns could be addressed as the Plan is being developed. From its initial deliberations, the LRWPG has made a commitment to an open planning process and has actively solicited public input and involvement in developing the elements of the Regional Water Plan. This has been accomplished by pursuing several avenues to gain public involvement.

The first line of public involvement occurs through the membership of the LRWPG. As a result of the small geographic area and the relatively small population, the LRWPG members are highly visible and well-known representatives of the interests of water users in the Lavaca Regional Water Planning Area. The individual group members provide a liaison with identified associations, such as the soil and water conservation districts, the farm service agencies in the counties, the Texas Farm Bureau, and similar organizations. In addition, individual group members, staff members of the Lavaca-Navidad River Authority (LNRA), and members of the consultant team have made themselves available to other regional planning groups and to civic organizations such as the Lion's Clubs, Kiwanis Clubs, Rotary Clubs, and Chambers of Commerce throughout the regional planning area and in neighboring regional planning areas where LNRA customers were located. All planning group meetings are open to members of the public in order to welcome public participation in the planning process. The 2021 Lavaca Regional Water Plan was developed in accordance with the public participation requirements of the Texas Open Meetings Act.

Members of the LRWPG and personnel from LNRA attended various other regional planning meetings and meetings of community and civic organizations to present findings and decisions made by the group.

10.2 Public Meetings

LRWPG held the first meeting for the 2021 Planning Cycle in March of 2016. All of these meetings welcomed public participation as elements of RWP were addressed. The following is a summary of the minutes of those meetings. The complete minutes can be found in *Appendix 10A*.

10.2.1 March 21, 2016, Meeting

Jim Coleman of Jackson Electric Cooperative, Inc., elected as new voting member to fill position of Roy Griffin. Tom Chandler elected as voting member to fill water utilities position. Motion passed to re-elect Harrison Stafford II, chairman, L. G. Raun, Vice-Chairman, and Patrick Brzozowski, Secretary of the LRWPG and Ed Weinheimer to the Executive Committee. Motion passed to ratify Executive Committee's authorization for Lavaca-Navidad River Authority to provide public notice and hold a public meeting to take public input on issues that should be addressed or provisions that should be included in the regional or state water plan for the fifth cycle of regional water planning. Texas Water Development Board Project Manager, Ron Ellis, updated the Group on the 2021 Regional Planning Cycle. No public comments received.

10.2.2 May 24, 2016, Meeting

The Group approved a Notice of Solicitation for Nominations for Persons to Serve on the LRWPG for two open positions on the LRWPG. The Group ratified previous group action taken in January and March 2015 to execute an agreement with the Texas Water Development Board for funding related to

the Fifth Cycle of the Regional Water Planning and include subsequent amendments to the agreement. The Group reviewed qualifications received for professional services related to regional water management planning for the Lavaca Regional Water Planning Area – 2021 Regional Water Plan. Qualifications were received from Freese and Nichols and AECOM. The Group approved AECOM to provide professional services related to regional water management planning for the Lavaca Regional Water Planning Area – 2021 Regional Water Plan. Contracting entity, Lavaca-Navidad River Authority, approved to execute a contract with approved consultant group (AECOM), for professional services related to regional water management planning for the Lavaca Regional Water Area – 2021 Regional Water Plan. Ron Ellis, TWDB Project Manager, informed the Group of TWDB's new Executive Administrator, Jeff Walker, who was appointed on May 19, 2016. Ron Ellis presented an overview of the 2017 State Water Plan to the Group. Kevin Kluge presented information on Population and Water Demand Projections – 2021 Regional Water Plans. No public comments received.

10.2.3 December 12, 2016, Meeting

At the time of this meeting, the Group had four open positions: Agriculture, Small Business, and Industries in Lavaca County and Agriculture in Jackson County. Marie Day, a Lavaca County resident an Analyst for Shell Exploration and Production Company, was approved to join LRWPG for Lavaca County, Industries. Patrick Brzozowski recommended that the Group circulate and publish a Notice of Solicitation for Nominations for Persons to Serve on the LRWPG for the remaining three open positions. The Group passed the motion to authorize the Region P political subdivision, Lavaca-Navidad River Authority, to provide public notice and submit a grant application to the TWDB on behalf of Region P for funding to complete the fifth round of regional water planning, and to negotiate and execute the amendment to the TWDB contract. Ron Ellis and Scott Galloway presented SWIFT information and 2016 Planning Rule Revisions. No public comments received.

10.2.4 February 23, 2017, Meeting

No response received for Notice of Solicitation for Nominations for Persons to Serve on the LRWPG for the three positions had been published in the area newspapers. Gary Skalicky nominated to fill the Jackson County, Agriculture position. AECOM Consultant briefed the Group on the following topics: Notice to Apply for Grant Funds posted on February 1, 2017; Grant application for funding was submitted to TWDB on February 6, 2017; Scope and Schedule for 5th Planning Cycle; Draft Population and Municipal Demand Projections; and Draft Mining Demand Projections. Scott Galloway and Ron Ellis briefed the group on the SWIFT funding applications, modeled available groundwater (MAG) peak factor produced by TWDB; and the Water Planning process. Stephen Cortes from Kip Averitt and Associates presented the Group with information regarding the Goldwater Project. Averitt and Associates have been contracted by the TWDB to quantify and measure water conservation strategies being implemented in all 16 regions under the 2017 State Water Plan. One of the goals of the Goldwater Project is to ensure methodology for measuring conservation in all regions that also accounts for unique situations among utilities. Ultimately, planners will have a reliable numerical value for the conservation work being done. No public comments received.

10.2.5 October 2, 2017, Meeting

Consultant briefed the Group about draft population, municipal and non-municipal demand projections. The Group was presented copies of the draft projections for their review. Multiple revisions were requested, and the Group passed motions to make revisions. Consultant stated a letter with supporting documentation will be prepared to communicate to TWDB the comments and revision requests from the LRWPG discussed and voted on today. Ron Ellis briefed group on upcoming rule revisions to the regional planning rules (31 Texas Administrative Code Chapter 357), SWIFT Projects Update, and Simplified Planning. No public comments received.

10.2.6 April 16, 2018, Meeting

The Group accepted resignation of Chairman Harrison Stafford II's and Vice Chairman L. G. Raun. New voting members nominated to serve include: Steve Cooper, Wharton County, nominated to serve representing Agricultural, Wharton County; Dennis Simons, Jackson County Judge, nominated to serve representing Agricultural, Jackson County; Bart McBeth, Lavaca County, nominated to serve representing Agricultural, Lavaca County, Neil Hudgins nominated to serve as Vice Chairman of LRWPG. Phillip Spenrath nominated to serve as Chairman. Executive committee elected as follows: Phillip Spenrath, Neil Hudgins, Patrick Brzozowski, Jim Coleman, Marie Day, Jack Maloney, and Ed Weinheimer, Group briefed on TWDB Update on revised 31 Texas Administrative Code Rules, Chapters 355 and 357. Consultant briefed group on the project status to date, the final population and water demand projections, water availability and supplies, wholesale water providers and major water providers, work effort and timeline. Consultant also briefed the Group on the process of identifying potentially feasible water management strategies. The Group approved this process. Group was briefed on the proposed regional water planning contract amendment with TWDB for additional funding (an amount of \$83,547). Lavaca-Navidad River Authority (LNRA) approved as contract entity to execute contract amendment with TWDB for additional funding and to negotiate with TWDB for additional funding if available. No public comments received.

10.2.7 June 18, 2018, Meeting

New voting member sought for Lavaca County, Small Business position. TWDB project manager Elizabeth McCoy briefed the Group on the revised 31 TAC Rules, which are on the TWDB website; Flood Assessment report to be posted for public comments in the summer; Identification of Major Water Providers (MWP). Consultant briefed the Group on project status and timeline, existing water supplies, initial identification of water needs in the region, and potentially feasible water management strategies. The Group was presented with information supporting LRWPG request to use a modified TCEQ Water Availability Model (WAM) Run 3 for surface water availability modeling in the 2021 Lavaca Regional Water Plan development (Hydrologic Variance Request). The Group was presented a draft letter to TWDB requesting hydrologic variance. LNRA identified as the single Major Water Provider in the region. No public comments received.

10.2.8 August 6, 2018, Meeting

Group updated on TWDB approval of LRWPG's request to modify surface water availability hydrologic assumptions for development of the 2021 Region P Regional Water Plan, the State Flood Assessment, and the Water for Texas 2019 Conference. Consultant updated the Group about work effort to date and timeline, existing water supplies and identified water needs, potentially feasible water management strategies. Resignation announced for Robert Martin, Jackson County, Agriculture. New voting member sought for the same position. Consultant briefed the Group on the Technical Memorandum which is a compilation of the task work performed to date as part of the regional water planning process to develop the 2021 Lavaca Regional Water Plan for Region P, prepared for TWDB. Consultant authorized to address the Region P changes to the draft Technical Memorandum and approve submittal of the Technical Memorandum to TWDB prior to September 10, 2018, including public comments received through August 20, 2018. The Group was briefed on potential water management strategy evaluation scope of work (Task 5A). Task 5A Scope of Work was approved as presented and consultant was authorized to make minor adjustments as needed. LNRA was authorized to submit a request to the TWDB for a Notice-to-Proceed with the Scope of Work for Task 5A and execute subsequent contract amendments. No public comments received.

10.2.9 January 28, 2019 Meeting

Nominations needed for Lavaca County, Small Business and Jackson County, Agriculture. Officers and executive committee members re-elected to current positions. The Group was briefed on the Regional and State Water Planning Rules and Texas Statute Reference Pamphlet, Task 5A notice to

Proceed Request (approved on 10/24/18), Technical Memorandum (administratively complete letter issued 10/2/18), Water Management Strategies (WMS) evaluation tools available on TWDB website, socioeconomic impact analysis required by 31 TAC 357.33(c) and 357.40(a), Uniform Standards Stakeholder Committee Meeting, Texas Water Service Boundary Viewer, and State Flood Assessment 2019 SWIFT abridged applications. Consultant briefed the Group on the effort to date, 2021 Lavaca Regional Water Plan draft chapters 1-4, conservation and drought managements water management strategies and consideration of potential methodologies for developing evaluations, and upcoming work effort and timeline. The Group approved request to TWDB to conduct a socioeconomic analysis of not meeting identified water needs for Region P for inclusion in the 2021 Lavaca Regional Water Plan. No public comments received.

10.2.10 May 20, 2019, Meeting

Nominations needed for Lavaca County, Small Business; Jackson County, Agriculture; and Jackson County, Counties. Briefing and update from TWDB covered 2019 Texas Legislative Bills, anticipated recommendations from the Drought Preparedness Council and template for Chapter 7, and educational information available on TWDB website. The Group authorized Lavaca-Navidad River Authority to amend and execute their regional water planning contract with TWDB for additional funding (an amount of \$41,775) as presented. Consultant briefed group on project status to date and timeline. Drafts for Chapters 1-4 were presented, and comments were solicited. Updates for strategy evaluations presented for Municipal Drought Management, Manufacturing Drought Management, Municipal Conservation, Conservation for Manufacturing, and El Campo Reuse. Group moved to not moved forward with a MAG Peak Factor request. No public comments received.

10.2.11 August 19, 2019, Meeting

The Group was briefed on LNRA Water Conservation and Drought Contingency Plans. Briefing and update from TWDB included Socio-Economic Impact Analysis Reports (available December 2019), newly launched interactive RWP data dashboard from TWDB, Legislative update. The legislature passed three bills directly relevant to regional water planning and significant bills related to flood planning and project funding, including House Bill (HB) 807, HB 721, HB 723, SB 7 and SB 8. HB 807 directs the TWDB to appoint an Interregional Planning Council consisting of one member from each RWPG. Patrick Brzozowski nominated by group as a member of the TWDB Interregional Planning Council and naming the Region P Chair as an alternate. Consultant briefed the Group on project status and timeline. Draft water management strategy evaluations presented. Comments for draft evaluations were solicited. Consultant presented on unique stream segments and reservoirs, indicating that no ecologically unique stream segments are identified in Region P. No public comments received.

10.2.12 December 16, 2019, Meeting

Nominations needed for new members for Small Business and Municipalities in Lavaca County and Counties and Agriculture (2) in Jackson County. Jill Sklar, Jackson Judge was approved to fill the position of Counties, Jackson County. The Group was introduced to their new TWDB project manager, Jean Devlin. The Group was briefed on TWDB rulemaking efforts, 2020 SWIFT applications, agriculture water conservation grants, the Socioeconomic Impact Analysis Dashboard, and the IPP / Final Plan process. Consultant briefed the Group on project status and timeline. Updated draft water management strategy evaluations were presented, and the Group determine which strategies should be recommended, alternative, or just considered. Additional information on unique stream segments and reservoirs was presented. No public comments received.

APPENDIX 10A

Meeting Minutes

Minutes of Lavaca Regional Water Planning Group March 21, 2016 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, March 21, 2016 at 1:30 p.m.

Voting Group Members present were: Patrick Brzozowski, Gerald Clark, Robert Martin, Phillip Spenrath, Richard Ottis, Edward Pustka, L.G. Raun, Harrison Stafford II and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Neil Hudgins, Lester Little, Jack Maloney, Robert Shoemate, Michael Skalicky, and David Wagner.

Also present was: Ron Ellis and Carmen Cernosek of Texas Water Development Board, Jaime Burke of AECOM, Joshua Harper of Texas Parks and Wildlife Department, Jami H. McCool of the Texas Department of Agriculture, Tom Chandler, citizen, Jim Coleman of Jackson Electric Cooperative, Inc., Kevin Conlon, SAM, LLC, and Mike Rivet of Formosa Plastics Corporation. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President and Sandy Johs, LNRA Board member, Karen Gregory, LNRA Deputy General Manager, Administration and Doug Anders, LNRA Deputy General Manager, Operations.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the November 17, 2015 were reviewed.

Pustka moved to approve the minutes as presented. Weinheimer seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski introduced Jim Coleman, Jackson Electric Cooperative, Inc. as a potential new voting member to fill the position of Roy Griffin who retired. He also introduced Tom Chandler to fill the position in Water Utilities.

Raun moved to elect Coleman and Chandler as voting members to the Lavaca Regional Water Planning Group. Brzozowski seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group March 21, 2016 Page 2

Election of Officers

Clark moved to re-elect Stafford, Chairman, Raun, Vice-Chairman, and Brzozowski, Secretary of the Lavaca Regional Water Planning Group and Ed Weinheimer to the Executive Committee. Pustka seconded the motion. Motion passed.

Ratify Executive Committee's Action

Spenrath moved to ratify the Executive Committee's authorization for Lavaca-Navidad River Authority to provide public notice and hold a public meeting to take public input on issues that should be addressed or provisions that should be included in the regional or state water plan for the fifth cycle of regional water planning. Clark seconded the motion. Motion passed.

Public Input

There were no public comments.

<u>Update from Texas Water Development Board Project Manager</u>

Ellis briefed the Group on the new regional planning cycle and the State Water Plan draft plan schedule for comments. He briefly discussed utility-based planning and indicated that Kevin Kluge would be at the next group meeting to present more information.

A TWDB Potential Projection Distribution to Regional Water Planning Groups for the 2021 Regional Water Plans and a Fifth Planning Cycle Schedule is attached to these minutes.

The Group's next tentative scheduled meeting is May 24, 2016 at 1:30 p.m.

Public Comments

There were no public comments.

The meeting adjourned at 2:28 p.m.

Harrison Stafford II

Chairman

Minutes of Lavaca Regional Water Planning Group May 24, 2016 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Tuesday, May 24, 2016 at 1:30 p.m.

Voting Group Members present were: Patrick Brzozowski, John Butschek, Tom Chandler, Gerald Clark, Neil Hudgins, Jack Maloney, Robert Martin, Phillip Spenrath, L.G. Raun, Robert Shoemate, Michael Skalicky, and Chairman Harrison Stafford II.

Absent Voting Group Members were: Jim Coleman, Lester Little, Richard Ottis, Edward Pustka, David Wagner, and Ed Weinheimer.

Also present was: Ron Ellis and Kevin Kluge of Texas Water Development Board, Jaime Burke of AECOM, Jami H. McCool of the Texas Department of Agriculture, and Mike Rivet of Formosa Plastics Corporation. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President and Sandy Johs, LNRA Board member, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the March 21, 2016 were reviewed.

Brzozowski moved to approve the minutes as presented. Spenrath seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that there were two voting member positions open on the LRWPG. One open position is in Small Business and one is in Industries, both in Lavaca County. He recommended that the Group circulate and publish a Notice of Solicitation for Nominations for Persons to Serve on the Lavaca Regional Water Planning Group. A copy of the draft notice was presented to the Group for their review.

Maloney moved to approve the Notice of Solicitation as presented. Hudgins seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group May 24, 2016 Page 2

Authorizing LNRA to Execute Contract for Fifth Cycle

Spenrath moved to ratify previous Group action taken in January and March 2015 to execute an agreement with the Texas Water Development Board for funding related to the Fifth Cycle of Regional Water Planning and include subsequent amendments to the agreement. Butschek seconded the motion. Motion passed.

Request for Qualifications

The Group reviewed and discussed the qualifications received for professional services related to regional water management planning for the Lavaca Regional Water Planning Area – 2021 Regional Water Plan. Qualifications were received from Freese and Nichols and AECOM.

Spenrath moved to approve AECOM to provide professional services related to regional water management planning for the Lavaca Regional Water Planning Area – 2021 Regional Water Plan. Skalicky seconded the motion. Motion passed.

Authorize LNRA to Contract with Consultant Group for Professional Services

Maloney moved to authorize the contracting entity, Lavaca-Navidad River Authority, to execute a contract with approved consultant group (AECOM), for professional services related to regional water management planning for the Lavaca Regional Water Area -2021 Regional Water Plan. Clark seconded the motion. Motion passed.

Texas Water Development Board Updates

Ellis, TWDB Project Manager, informed the Group of TWDB's new Executive Administrator, Jeff Walker, who was appointed on May 19, 2016.

Ellis also presented an overview of the 2017 State Water Plan as adopted by the Board on May 19, 2016. Information was presented via Power Point, a copy of which is attached and made a part of the minutes.

Kluge presented the Group information on Population and Water Demand Projections – 2021 Regional Water Plans. Information was presented via Power Point, a copy of which is attached and made part of the minutes.

Future Meeting Dates

The Group agreed to schedule a Committee meeting to discuss water use methodology for agriculture and power projections prior to the next regular LRWPG meeting. The Committee will include Brzozowski, Raun, Hudgins, Skalicky, and Spenrath or other members interested. Information will be available prior to the Committee meeting.

Minutes of Lavaca Regional Water Planning Group May 24, 2016 Page 3

The Group's next regular meeting will tentatively be scheduled in August.

Public Comments

There were no public comments.

The meeting adjourned at 2:48 p.m.

Harrison Stafford II

Chairman

Minutes of Lavaca Regional Water Planning Group December 12, 2016 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, December 12, 2016 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Neil Hudgins, Jack Maloney, L.G. Raun, Phillip Spenrath, Michael Skalicky, Chairman Harrison Stafford II, and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Lester Little, Robet Martin, Richard Ottis, Edward Pustka, Robert Shoemate, and David Wagner.

Also present was: Ron Ellis and Scott Galaway of Texas Water Development Board, Jaime Burke of AECOM, and Marie Day, Lavaca County citizen. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, Sandy Johs, LNRA Board member, Doug Anders, LNRA Deputy General Manager, Operations, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the May 24, 2016 meeting were reviewed.

Skalicky moved to approve the minutes as presented. Weinheimer seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that Gerald Clark, Lavaca Regional Water Planning Group member, Jackson County, Agriculture, has passed away. He also informed the Group that Lester Little, Lavaca County, Agriculture, had submitted his resignation from the LRWPG. The Group now has four open positions, Agriculture, Small Business, and Industries in Lavaca County and Agriculture in Jackson Coutny.

Minutes of Lavaca Regional Water Planning Group December 12, 2016 Page 2

Brzozowski introduced Marie Day, a Lavaca County resident and RtP Analyst for Shell Exploration and Production Company. Brzozowski moved for Marie Day to fill the position as LRWPG member, Lavaca County, Industries. Weinheimer seconded the motion. Motion passed.

Brzozowski recommended that the Group circulate and publish a Notice of Solicitation for Nominations for Persons to Serve on the Lavaca Regional Water Planning Group for the remaining three open positions.

Authorizing LNRA to Provide Public Notice and Submit a Grant Application

Ellis briefed the Group on the need to authorize the Region P political subdivision, Lavaca-Navidad River Authority, to provide public notice and submit a grant application to the Texas Water Development Board (TWDB) on behalf of Region P for funding to complete the fifth round of regional water planning, and to negotiate and execute the amendment to the TWDB contract. This grant application is to provide additional funding for the fifth cycle of regional water planning.

Raun moved to authorize the Region P political subdivision, Lavaca-Navidad River Authority, to provide public notice and submit a grant application to the Texas Water Development Board (TWDB) on behalf of Region P for funding to complete the fifth round of regional water planning, and to negotiate and execute the amendment to the TWDB contract. Weinheimer seconded the motion. Motion passed.

Briefing from Region P Committee

The Group reviewed and discussed the draft comments prepared by the Committee regarding proposed draft water demand projection methodologies. The Group was presented a copy of the draft comments for their review.

Weinheimer moved to approve and submit to Texas Water Development Board the draft comments as presented by the Committee. Brzozowski seconded the motion. Motion passed.

Update from TWDB

Ellis and Galloway presented the following:

- SWIFT Information
- 2016 Planning Rule Revisions

Future Meeting Dates

The Group's next regular meeting is scheduled for Thursday, February 23, 2017 at noon.

Minutes of Lavaca Regional Water Planning Group December 12, 2016 Page 3

Public Comments

There were no public comments.

The meeting adjourned at 1:55 p.m.

Harrison Stafford II
Chairman

Minutes of Lavaca Regional Water Planning Group February 23, 2017 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Thursday, February 23, 2017 at noon.

Voting Group Members present were: Patrick Brzozowski, John Butschek, Tom Chandler, Jim Coleman, Marie Day, Neil Hudgins, Jack Maloney, Robert Martin, Richard Ottis, L.G. Raun, Robert Shoemate, Phillip Spenrath, Michael Skalicky, Chairman Harrison Stafford II, and Ed Weinheimer.

Absent Voting Group Members were: Robert Martin, Edward Pustka, and David Wagner.

Also present was: Ron Ellis and Scott Galaway of Texas Water Development Board, Jaime Burke of AECOM, Josh Harper of Texas Parks and Wildlife Department, and Gary Skalicky, Jackson County citizen. Also present was Stephen Cortes of Kip Averitt and Associates, Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, Sandy Johs, LNRA Board member, Doug Anders, LNRA Deputy General Manager, Operations, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the December 12, 2016 meeting were reviewed.

Skalicky moved to approve the minutes as presented. Weinheimer seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that a Notice of Solicitation for Nominations for Persons to Serve on the LRWPG for the three open positions had been published in the area newspapers, with no response.

Michael Skalicky moved to nominate Gary Skalicky to fill the Jackson County, Agriculture position. Brzozowski seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group February 23, 2017 Page 2

Day informed the Group that she was actively seeking potential members for the Lavaca County open positions.

Election of Officers

Maloney moved to re-elect Stafford, Chairman, Raun, Vice-Chairman, and Brzozowski, Secretary of the Lavaca Regional Water Planning Group and Jim Coleman, Jack Maloney, Phillip Spenrath, and Ed Weinheimer to the Executive Committee. Shoemate seconded the motion. Motion passed.

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Notice to Apply for Grant Funds was posted on February 1, 2017.
- Grant application for funding was submitted to TWDB on February 6, 2017.
- Scope and Schedule for 5th Planning Cycle.
- Draft Population and Municipal Demand Projections.
- Draft Mining Demand Projections

Briefing and Update from Texas Water Development Board

Galaway updated the Group on the SWIFT funding. Applications were due February 3rd and 22 applications were received totaling approximately 1.9 billion from across the state of Texas.

Ellis briefed the Group on the modeled available groundwater (MAG) peak factor. The Group was presented information regarding the MAG peak factor produced by the Texas Water Development Board.

Ellis also presented the Group via powerpoint a Water Planning introduction, indicating information on the water planning process.

Briefing on Goldwater Project

Stephen Cortes from Kip Averitt and Associates presented the Group with information regarding the Goldwater Project.

Averitt and Associates have been contracted by the Texas Water Development Board (TWDB) to quantify and measure water conservation strategies being implemented in all 16 regions under the 2017 State Water Plan. The TWDB wants to know how much progress is being made toward reaching the conservation goals laid out in the state water plan.

Minutes of Lavaca Regional Water Planning Group February 23, 2017 Page 3

One of the goals of the Goldwater Project is to ensure a uniform methodology for measuring conservation in all regions that also accounts for unique situations among utilities. Ultimately, planners will have a reliable numerical value for the conservation work being done. Cortes stated that reports should be available for the Group by August 2017.

Future Meeting Dates

The Group's next regular meeting will be scheduled for mid July.

Public Comments

There were no public comments.

The meeting adjourned at 2:45 p.m.

Harrison Stafford

Chairman

Minutes of Lavaca Regional Water Planning Group October 2, 2017 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, October 2, 2017 at 1:30 p.m.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Neil Hudgins, Jack Maloney, Richard Ottis, Edward Pustka, L.G. Raun, Robert Shoemate, Gary Skalicky, Michael Skalicky, Phillip Spenrath, Chairman Harrison Stafford II, and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Marie Day, Robert Martin, and David Wagner.

Also present was: Ron Ellis of Texas Water Development Board, Jaime Burke of AECOM, Josh Harper of Texas Parks and Wildlife Department, Steve Ramos, City of Corpus Christi. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, Sandy Johs, LNRA Board member, Doug Anders, LNRA Deputy General Manager, Operations, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the February 23, 2017 meeting were reviewed. Coleman moved to approve the minutes as presented. Brzozowski seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that Voting Member Marie Day was actively seeking potential members for the Lavaca County open positions.

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Update on draft population and municipal demand projections.
- Presentation of draft non-municipal demand projections.
 - o Draft irrigation demand projections

Minutes of Lavaca Regional Water Planning Group October 2, 2017 Page 2

- o Draft manufacturing demand projections
- o Draft steam-electric demand projections
- o Draft mining demand projections
- o Draft livestock demand projections

The Group was presented copies of the draft projections for their review.

Spenrath moved to request revising the Base GPCD numbers for the municipal WUGs be modified to reflect the 2011 historical utility-boundary GPCD, and that the municipal demands reflect this change. M. Skalicky seconded the motion. Motion passed.

Spenrath moved to request revising the irrigation demand projections in all counties to equal an average of the water use in the years 2011- 2013, rather than 2010-2014. Raun seconded the motion. Motion passed.

Brzozowski moved to request changing the manufacturing demand projections in Wharton County to include the potentially unaccounted-for additional manufacturing use data provided by TWDB, and in Jackson County to include a recently increased LNRA customer demand. Ottis seconded the motion. Motion passed.

TWDB inadvertently listed a Region K steam-electric facility as part of the Region P demand. Brzozowski moved to request TWDB move the demand to Region K. Spenrath seconded the motion. Motion passed.

Spenrath moved to request revising the livestock demand projections in all counties to reflect a water use rate of 30 GPCD for fed/other cattle, rather than 15 GPCD. M. Skalicky seconded the motion. Motion passed.

Burke will prepare a letter with supporting documentation to TWDB to communicate the comments and revision requests from the LRWPG discussed and voted on today.

Briefing and Update from Texas Water Development Board

Ellis briefed the Group on legislative updates including:

- Upcoming rule revisions to the regional planning rules (31 Texas Administrative Code Chapter 357)
- SWIFT Projects Update
- Simplified Planning

Future Meeting Dates

The Group's next regular meeting was tentatively scheduled for January 18, 2018 at 1:30 p.m.

Minutes of Lavaca Regional Water Planning Group October 2, 2017 Page 3

Public Comments

There were no public comments.

The meeting adjourned at 3:40 p.m.

Harrison Stafford II
Chairman

Minutes of Lavaca Regional Water Planning Group April 16, 2018 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, April 16, 2018 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Marie Day, Neil Hudgins, Jack Maloney, Richard Ottis, Edward Pustka, L.G. Raun, Gary Skalicky, Michael Skalicky, Phillip Spenrath, Chairman Harrison Stafford II, and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Jim Coleman, Robert Martin, Robert Shoemate and David Wagner.

Also present was: Ron Ellis and Elizabeth McCoy of Texas Water Development Board, Jaime Burke of AECOM, Josh Harper of Texas Parks and Wildlife Department, Mike Rivet of Formosa Plastics Corporation, Rusty Ray of Texas State Soil and Water Conservation Board, Dennis Simons, Steve Cooper, and Bart McBeth, public. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, Doug Anders, LNRA Deputy General Manager, Operations, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Stafford called the meeting to order.

Public Comments

There were no public comments.

Minutes 4 1

The minutes of the October 2, 2017 meeting were reviewed. M Skalicky moved to approve the minutes as presented. Weinheimer seconded the motion. Motion passed.

Accept Resignation

Brzozowski informed the Board that Chairman Stafford had submitted his resignation letter to the Lavaca Regional Water Planning Group.

Brzozowski moved to accept the resignation, with regrets, from Harrison Stafford II as Chairman and voting member of the Lavaca Regional Water Planning Group. Ottis seconded the motion. Motion passed.

Vice Chairman Raun announced his resignation from the Lavaca Regional Water Planning Group.

Minutes of Lavaca Regional Water Planning Group April 16, 2018 Page 2

Brzozowski moved to accept the resignation, with regrets, from L.G. Raun as Vice Chairman and voting member of the Lavaca Regional Water Planning Group. Ottis seconded the motion. Motion passed.

Resolution Presentation to Harrison Stafford II

Brzozowski presented Stafford with a Resolution recognizing his diligence in carrying out the duties and responsibilities while serving twenty years on the Lavaca Regional Water Planning Group.

M Skalicky moved to approve the Resolution as presented. Maloney seconded the motion. Motion passed.

Nominations for New Voting Members

Raun introduced Steve Cooper, Wharton County, and nominated Cooper to serve on the Lavaca Regional Water Planning Group representing Agricultural, Wharton County. Weinheimer seconded the motion. Motion passed.

Brzozowski introduced Dennis Simons, Jackson County Judge, and nominated Simons to serve on the Lavaca Regional Water Planning Group representing Counties, Jackson County. Ottis seconded the motion. Motion passed.

Maloney introduced Bart McBeth, Lavaca County, and nominated McBeth to serve on the Lavaca Regional Water Planning Group representing Agricultural, Lavaca County. Putska seconded the motion. Motion passed.

Conduct Election of Officers

Weinheimer moved to re-elect Brzozowski as Secretary of the Lavaca Regional Water Planning Group. G Skalicky seconded the motion. Motion passed.

Brzozowski moved to nominate Hudgins to serve as Vice Chairman of the Lavaca Regional Water Planning Group. Weinheimer seconded the motion. Motion passed.

Weinheimer moved to nominate Spenrath to serve as Chairman of the Lavaca Regional Water Planning Group. M Skalicky seconded the motion. Motion passed.

Putska moved to nominate the Executive Committee as follows: Spenrath, Hudgins, Brzozowski, Coleman, Day, Maloney, and Weinheimer. Weinheimer seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group April 16, 2018 Page 3

Briefing and Update from Texas Water Development Board

Ellis briefed the Group via Power Point presentation on the Texas Water Development Board Update on revised 31 Texas Administrative Code Rules, Chapters 355 and 357. A copy of the presentation is attached to these minutes.

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Update on process and progress, including project status to date.
- Presentation of final population and water demand projections.
- Discussion of water availability and supplies.
- Discussion of wholesale water providers and major water providers.
- Upcoming work effort and timeline.

The Group was presented a copy of the information including final population and water demand projections, and wholesale water providers and major water providers.

Identifying Potentially Feasible Water Management Strategies

Burke briefed the Group on the process on identifying potentially feasible water management strategies according to the Texas Water Development Board guidelines for Water Management Strategies. Burke presented the Lavaca Region Identification Process for Potentially Feasible Water Management Strategies.

There were no public comments.

Brzozowski moved to approve the process on identifying potentially feasible water management strategies as presented to the Group. Weinheimer seconded the motion. Motion passed.

Regional Water Planning Contract Amendment

Ellis briefed the Group on the proposed regional water planning contract amendment with TWDB for additional funding. The additional committed funds of \$83,547 will bring the total committed funds amount to \$122,544.

Brzozowski moved to approve Lavaca-Navidad River Authority (LNRA) as the contracting entity, to execute the contract amendment with TWDB for additional funding as presented and to negotiate with the TWDB for additional funding if available. M Skalicky seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group April 16, 2018 Page 4

Future Meeting Dates

Meetings are to be scheduled in June and September. A poll via email will be taken of the members to determine a date in which the majority can attend.

Public Comments

There were no public comments.

The meeting adjourned at 2:20 p.m.

For Phillip Spenrath

The Left Nail Hudging
Spenrath
Vice-Chairman Chairman

HAFSIX III

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, June 18, 2018 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Marie Day, Neil Hudgins, Jack Maloney, Bart McBeth, Richard Ottis, Robert Shoemate, Dennis Simons, Gary Skalicky, and Michael Skalicky.

Absent Voting Group Members were: John Butschek, Steve Cooper, Robert Martin, Edward Pustka, Phillip Spenrath, David Wagner, and Ed Weinheimer.

Also present was: Elizabeth McCoy of Texas Water Development Board, Jaime Burke of AECOM, Josh Harper of Texas Parks and Wildlife Department, Tony Franklin of Texas State Soil and Water Conservation Board, Esteban Ramos of City of Corpus Christi, and Jami McCool, Texas Department of Agriculture. Also present was Ronald Kubecka, LNRA Board President, Doug Anders, LNRA Deputy General Manager, Operations, and Karen Gregory, LNRA Deputy General Manager, Administration.

Vice Chairman Hudgins called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the April 16, 2018 meeting were reviewed. M Skalicky moved to approve the minutes as presented. Ottis seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski reported that the Group should continue the solicitation of a new voting member for Lavaca County, Small Business.

Briefing and Update from Texas Water Development Board

McCoy briefed the Group on the following:

- Revised 31 Texas Administrative Code Rules are on the TWDB website, Regional Water Planning, 5th Planning Cycle.
- Flood Assessment report will be posted for public comments this summer.

Minutes of Lavaca Regional Water Planning Group June 18, 2018 Page 2

- Reminder that the Technical Memo is due September 10, 2018.
- Identification of Major Water Providers.

Briefing from AECOM Consultant

RAYSTAK

RAFSIKE

Burke briefed the Group on the following:

- Update on process and progress, project status to date and timeline.
- Discussed existing water supplies, including the survey responses.
- Initial identification of water needs in the region.
- Discussed potentially feasible water management strategies, including the survey responses.

Submittal of Hydrologic Variance Request to TWDB

Burke briefed the Group on the surface water modeling assumptions and the associated hydrologic variance request. The Group was presented via power point information which supported LRWPG request to utilize a modified Texas Commission on Environmental Quality (TCEQ) Water Availability Model (WAM) Run 3 for surface water availability modeling in the 2021 Lavaca Regional Water Plan development (Hydrologic Variance Request). The Group was also presented a draft letter to TWDB requesting the hydrologic variance.

M Skalicky moved to approve the surface water availability modeling assumption for supplies and strategies and submittal of the associated hydrologic varance request to TWDB as presented. Brzozowski seconded the motion. Motion passed.

Potential Major Water Providers

Burke briefed the Group on the potential Major Water Providers (MWP). A MWP should be of particular significance to the region's water supply as determined by the RWPG, responsible for developing and/or delivering significant quantities of water in the region, and more data is reported for this category in the Plan.

Day moved to identify Lavaca-Navidad River Authority (LNRA) as the single Major Water Provider in the region. Ottis seconded the motion. Motion passed.

Future Meeting Dates

A Region P meeting is tentatively scheduled for Monday, August 6, 2018.

Public Comments

There were no public comments.

Minutes of Lavaca Regional Water Planning Group June 18, 2018 Page 3

The meeting adjourned at 1:20 p.m.

Phillip Spenrath Chairman

Minutes of Lavaca Regional Water Planning Group August 6, 2018 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, August 6, 2018 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Steve Cooper, Neil Hudgins, Jack Maloney, Robert Shoemate, Dennis Simons, Gary Skalicky, Michael Skalicky, Phillip Spenrath and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Jim Coleman, Marie Day, Robert Martin, Bart McBeth, Richard Ottis, Edward Pustka, and David Wagner.

Also present was: Elizabeth McCoy of Texas Water Development Board, Jaime Burke of AECOM, Caren Collins of Texas Parks and Wildlife Department, and Tony Franklin of Texas State Soil and Water Conservation Board. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, and Karen Gregory, LNRA Deputy General Manager, Administration.

Chairman Spenrath called the meeting to order.

It was determined that a quorum of the LRWPG was not present. Additional members were expected to arrive before any action items would need to be taken.

Public Comments

There were no public comments.

Briefing and Update from Texas Water Development Board

McCoy briefed the Group on the following:

- TWDB approval of LRWPG's request to modify surface water availability hydrologic assumptions for development of the 2021 Region P Regional Water Plan.
- State Flood Assessment is expected to be available online (texasfloodassessment.com) and open for public comments in August 2018. Final report is expected to be delivered in December 2018.
- Water for Texas 2019 Conference (January 23-25) registration is now available.

Minutes of Lavaca Regional Water Planning Group August 6, 2018 Page 2

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Update on effort to date and timeline.
- Update on existing water supplies and identified water needs.
- Update on potentially feasible waer management strategies.

Nominations for New Voting Members

Brzozowski informed the Group that Robert Martin, Jackson County, Agriculture, had submitted his resignation from the LRWPG. The Group will continue to solicit new voting members for Lavaca County, Small Business and Jackson County, Agriculture.

Presentation of Technical Memorandum

Burke briefed the Group on the Technical Memorandum which is a compilaton of the task work performed to date as part of the regional water planning process to develop the 2021 Lavaca Regional Water Plan for Region P. It is prepared for the Texas Water Development Board (TWDB) as a deliverable associated with Task 4C.

The Technical Memorandum includes the TWDB DB22 Database Reports that provide data on the following areas:

- Population Projections
- Water Demand Projections for all water use categories
- Summary of demands, supplies, and needs by water use category
- Water sources and their availability volumes
- Exising water supplies for all Water User Groups
- Analysis of water needs and surpluses
- Water Source Balance (Availability-Water User Group Supply)
- Comparison of Water User Group and Water Source data between the 2016 RWP and 2021 RWP

There were no public comments.

G Skalicky and Shoemate entered the Group's meeting at 1:28 p.m. and Chairman Spenrath declared that a quorum of the Region P Group was formed.

Weinheimer moved to authorize the Technical Consultant (AECOM) to address the Region P changes to the draft Technical Memorandum and approve submittal of the Technical Memorandum to TWDB prior to September 10, 2018, including public comments received through August 20, 2018. Cooper seconded the motion. Motion passed.

Minutes of Lavaca Regional Water Planning Group August 6, 2018 Page 3

Minutes

The minutes of the June 18, 2018 meeting were reviewed. Weinheimer moved to approve the minutes as presented. Brzozowski seconded the motion. Motion passed.

Potential Water Management Strategy Evaluation Scope of Work (Task 05A)

Burke briefed the Group on Task 5A Scope of Work, Water Management Strategy Evaluation Task. TWDB has allocated budget to Task 5A (\$45,001). The Group is required to prepare a scope of work for each strategy evaluation to be performed. The scope of work must be preented for public input and Group approval before submitting to TWDB for their approval. The Group was presented a copy of Scoping Template for Currently Contracted Task 5A Funding for Region-Specific Subtasks for their review. Burke recommended for \$2,500 of the budget to be unallocated for additional strategies.

There were no public comments.

Spenrath moved to approve the Task 5A Scope of Work as presented and authorize the technical consultant to make minor adjustments as needed, authorize LNRA to submit a request to the TWDB for a Notice-to-Proceed with the Scope of Work for Task 5A, and execute the subsequent contract amendments. Weinheimer seconded the motion. Motion passed.

Future Meeting Dates

A Region P meeting is tentatively scheduled for Monday, January 28, 2019 at noon.

Public Comments

There were no public comments.

The meeting adjourned at 1:41 p.m.

Phillip Spenrath

Chairman

Minutes of Lavaca Regional Water Planning Group January 28, 2019 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, January 28, 2019 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Steve Cooper, Marie Day, Neil Hudgins, Jack Maloney, Bart McBeth, Richard Ottis, Robert Shoemate, Gary Skalicky, Michael Skalicky, Phillip Spenrath and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Edward Pustka, Dennis Simons, and David Wagner.

Also present was: Elizabeth McCoy of Texas Water Development Board, Jaime Burke and Alicia Smiley of AECOM, Mike Rivet of Formosa Plastics Corporation, Josh Harper of Texas Parks and Wildlife Department, Tony Franklin of Texas State Soil and Water Conservation Board, and Jami McCool, Texas Department of Agriculture. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice President, Karen Gregory, LNRA Deputy General Manager, Administration, and Scott Hartl, LNRA Assistant Manager, Operations.

Chairman Spenrath called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the August 6, 2018 meeting were reviewed. M Skalicky moved to approve the minutes as presented. Cooper seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that nominations were needed for new members for Lavaca County, Small Business and Jackson County, Agriculture.

Election of Officers

Ottis moved to re-elect the current slate of officers of the Lavaca Regional Water Planning Group as follows: Spenrath, Chairman, Hudgins, Vice-Chairman, Brzozowski, Secretary and the Executive Committee as follows: Spenrath, Hudgins, Brzozowski, Coleman, Day, Maloney, and Weinheimer. Coleman seconded the motion. Motion passed.

Briefing and Update from Texas Water Development Board

McCoy briefed the Group on the following:

- Regional and State Water Planning Rules and Texas Statute Reference Pamphlet is now available.
 Copies were presented to the Group.
- Task 5A Notice to Proceed Request Approved by the TWDB Deputy Executive Administrator 10/24/18
- Technical Memorandum
 - Administratively complete letter issued 10/2/18
 - o TWDB reviewed source data and methodologies presented in the Technical Memorandum and has no comments on the Region P source data and methodology.
- Water Management Strategy (WMS) evaluation tools available on TWDB website.
 - Uniform Costing Tool
 - Conservation Planning Tool
- Socioeconomic analysis "as of date" and planning group action. Socioeconomic impact assessments of not meeting identified water needs are required by rule (31 TAC 357.33(c) and 357.40(a)).

RWPGs may request that the TWDB perform the socioeconomic impact analysis on the planning group's behalf. If they choose to do so, the RWPG must take action on the request and submit the request to the PM. Request must be submitted to TWDB by July 2019. Analysis will be based on water needs in the planning database as of May 31, 2019.

- Uniform Standards Stakeholder Committee Meeting
 - Committee met in November 2018 to review the uniform standards for prioritizing projects in the RWPs and agreed by consensus to adopt changes.
 - A TWDB Guidance Document will be made available for optional use.
 - o Consider approving the revised Uniform Standards at a February Board meeting.
- Texas Water Service Boundary Viewer

TWDB mapping application was developed to facilitate the collection of digital maps for retail water service areas of all community public water system (PWS) in the state of Texas. This tool also allows authorized PWS contact to update and verify their service area.

- State Flood Assessment
 - Final version presented to the Board in December. Available online.
- 2019 SWIFT abridged applications.
 - Abridged Applications are due February 1, 2019.
 - o SWIFT program information, applications, program requirements

Briefing from AECOM Consultant

Burke briefed the Group on the following:

Update on effort to date.

Minutes of Lavaca Regional Water Planning Group January 28, 2019 Page 3

- Discussion of 2021 Lavaca Regional Water Plan draft chapters 1-4. Handouts for RWPG members to begin review process.
- Discussion of conservation and drought management water management strategies and consideration of potential methodologies for developing evaluations.
- Upcoming work effort and timeline.

Socioeconomic Analysis

Brzozowski moved to approve to request TWDB to conduct a socioeconomic analysis of not meeting identified water needs for Region P for inclusion in the 2021 Lavaca Regional Water Plan. Day seconded the motion. Motion passed.

Future Meeting Dates

The Region P Group will meet on April 22, 2019 or May 20, 2019 after determining when a quorum of members are available.

Public Comments

There were no public comments.

The meeting adjourned at 2:00 p.m.

Phillip Spenrath
Chairman

Minutes of Lavaca Regional Water Planning Group May 20, 2019 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, May 20, 2019 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Steve Cooper, Marie Day, Neil Hudgins, Jack Maloney, Bart McBeth, , and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Richard Ottis, Edward Pustka, Robert Shoemate, Gary Skalicky, Michael Skalicky, Phillip Spenrath, and David Wagner.

Also present was: Elizabeth McCoy of Texas Water Development Board, Jaime Burke and Alicia Smiley of AECOM, Mike Rivet of Formosa Plastics Corporation, Josh Harper of Texas Parks and Wildlife Department. Also present was Ronald Kubecka, LNRA Board President, Doug Anders, LNRA Deputy General Manager, Operations, Karen Gregory, LNRA Deputy General Manager, Administration, and Scott Hartl, LNRA Assistant Manager.

Vice-Chairman Hudgins called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the January 28, 2019 meeting were reviewed. Maloney moved to approve the minutes as presented. Cooper seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that nominations were needed for new members for Lavaca County, Small Business, Jackson County, Agriculture, and Jackson County, Counties.

Briefing and Update from Texas Water Development Board

McCoy briefed the Group on 2019 Texas Legislative Bills:

- Related to the State and Regional Water Planning Process
- Related to Flood Planning and Infrastructure
 Addressing the needs of stormwater management and flooding in the state. This is largely due to
 the damage that Hurricane Harvey affected on Texas in 2018.

Minutes of Lavaca Regional Water Planning Group May 20, 2019 Page 2

McCoy informed the Group of anticipated recommendations from the Drought Preparednesd Council and a template for Chapter 7 that is posted on the TWDB website.

McCoy also briefed the Group on regional water planning educational information available on TWDB's website. The Group was presented copies of the following:

- Regional Water Planning Groups in Texas: What They Do and Don't Do
- Designating Unique Stream Segments and Unique Reservoir Sites
- State Water Implementation Fund for Texas (SWIFT) Project Prioritization

Amendment to Regional Water Planning Contract with TWDB

McCoy briefed the Group on the upcoming Fall 2019 amendment to the regional water planning contract between LNRA and TWDB for additional funding in the amount of \$41,775. This will increase the committed funds to the full study cost amount.

Maloney moved to authorize Lavaca-Navidad River Authority to amend and execute their regional water planning contract with TWDB for additional funding as presented. Brzozowski seconded the motion. Motion passed.

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Project Status to Date
- Timeline

Copies of the power point with details were available for the Group's review.

Regional Water Planning Group Comments on Draft Chapter 1-4

Burke requested for the Group to review the draft chapters. The chapters are available electronically or paper copies were made available. Comments may be sent to Burke electronically or discussed at a future meeting. Comments will be presented to the Group once received.

Update RWPG on Various Strategy Evaluations

Burke updated the Group on strategy evaluations for:

- Municipal Drought Management
- Manufacturing Drought Management
- Municipal Conservation
- Conservation for Manufacturing
- El Campo Reuse

Minutes of Lavaca Regional Water Planning Group May 20, 2019 Page 3

Discuss Expand Use of Groundwater Strategy and Potential MAG Peak Factor

After discussion by the Group, Weinheimer moved to not move forward with a MAG Peak Factor request. Day seconded the motion. Motion passed.

Future Meeting Dates

The Region P Group will meet in August or September after determining when a quorum of members are available.

Public Comments

There were no public comments.

The meeting adjourned at 2:07 p.m.

Phillip Spenrauk

Chairman

Minutes of Lavaca Regional Water Planning Group August 19, 2019 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, August 19, 2019 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Marie Day, Neil Hudgins, Richard Ottis, Robert Shoemate, Phillip Spenrath, Michael Skalicky, and Ed Weinheimer.

Absent Voting Group Members were: John Butschek, Jim Coleman, Steve Cooper, Jack Maloney, Bart McBeth, Edward Pustka, Gary Skalicky, and David Wagner.

Also present was: Elizabeth McCoy of Texas Water Development Board, Jaime Burke and Alicia Smiley of AECOM, Mike Rivet of Formosa Plastics Corporation, and Josh Harper of Texas Parks and Wildlife Department, and Jami McCool of Texas Department of Agriculture. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice-President, Doug Anders, LNRA Deputy General Manager, Operations, Karen Gregory, LNRA Deputy General Manager, Administration, and Scott Hartl, LNRA Assistant Manager.

Chairman Spenrath called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the May 20, 2019 meeting were reviewed. Skalicky moved to approve the minutes as presented. Weinheimer seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that nominations were needed for new members for Lavaca County, Small Business, Jackson County, Agriculture, and Jackson County, Counties.

Briefing on LNRA Water Conservation and Drought Contingency Plans

In compliance with Texas Commission on Environmental Quality (TCEQ), the LRWPG members were presented a copy of the LNRA Water Conservation Plan and Drought Contingency Plan (DCP) for their review. Brzozowski briefed the Group on the Drought Response Measures and the Response Stages as stated in the DCP.

Briefing and Update from Texas Water Development Board

McCoy briefed the Group on the following:

Soci-Economic Impact Analysis Reports – Available December 2019

Minutes of Lavaca Regional Water Planning Group August 19, 2019 Page 2

- TWDB recently launched a new interactive data dashboard that visualizes historical and project RWP data.
- Legislative Update

The Legislature passed three bills directly relevant to regional water planning and significant bills related to flood planning and project funding. Information regarding HB 807, HB 721, HB 723, SB 7 and 8 (flood related) was presented to the Group. McCoy informed the Group that stakeholder meeting have been held around the state to gather preliminary input on SB7 and SB8 implementation.

TWDB Interregional Planning Council

McCoy informed the Group of House Bill (HB) 807 which directs the Texas Water Development Board (TWDB) to appoint an Interregional Planning Council. The Council as appointed by the TWDB Board will consist of one member from each RWPG. Each Group is asked to nominate one or more members to serve on the Council.

Spenrath moved to nominate Patrick Brzozowski as a member of the TWDB Interegional Planning Council and naming the Region P Chair as an alternate. Skalicky seconded the motion. Motion passed.

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Project Status to Date
- Timeline

Copies of the power point with details were available for the Group's review.

Presentation and Discusson of Draft Water Management Strategy Evaluations

Burke presented the Group with the draft Water Management Strategy Evaluations which included Municipal Drought Management, Manufacturing Drought Management, Irrigation Drought Management, ElCampo Reuse, Conservation for Manufacturing, Municipal Conservation, Irrigation Conservation, Expand Use of Groundwater, Lavaca Off-Channel Reservoir, LNRA Desalination, LNRA Aquifer Storage and Recovery, and Lake Texana Dredging for their review. The Group discussed each one and were asked to submit additional comments before the next RWPG meeting.

Unique Stream Segments and Reservoirs

Burke outlined the terminology for a unique stream segment and reservoir. Information was available for the Group's review. Burke indicated that currently there are no ecologically unique stream segments in Region P. The proposed Palmetto Bend Stage II Reservoir has been designated as a unique reservoir site. The Group will need to review/update policy recommendations from last cycle for the 2021 Plan. The Group was presented a copy of the 2016 LRWP Policy Recommendations.

No action was taken.

Minutes of Lavaca Regional Water Planning Group August 19, 2019 Page 3

Future Meeting Dates

The Region P Group will meet in October or November determining when a quorum of members are available.

Public Comments

There were no public comments.

The meeting adjourned at 3:16 p.m.

Phillip Spenrath Chairman Minutes of Lavaca Regional Water Planning Group December 16, 2019 Edna, Texas

A meeting of the Lavaca Regional Water Planning Group was held in the Meeting Room of the Lavaca Navidad River Authority Office Complex, 4631 FM 3131, located approximately seven (7) miles east of Edna, Jackson County, Texas off FM 3131 on Monday, December 16, 2019 at noon.

Voting Group Members present were: Patrick Brzozowski, Tom Chandler, Jim Coleman, Neil Hudgins, Jack Maloney, Edward Pustka, Robert Shoemate, and Phillip Spenrath.

Absent Voting Group Members were: John Butschek, Steve Cooper, Marie Day, Bart McBeth, Richard Ottis, Michael Skalicky, David Wagner and Ed Weinheimer.

Also present was: Elizabeth McCoy and Jean Devlin of Texas Water Development Board, Jaime Burke and Alicia Smiley of AECOM, Leslie Hartman of Texas Parks and Wildlife Department, Rusty Ray of TSSWCB, Jill Sklar, Jackson County Judge, and Jami McCool of Texas Department of Agriculture. Also present was Ronald Kubecka, LNRA Board President, Jerry Adelman, LNRA Board Vice-President, Karen Gregory, LNRA Deputy General Manager, Administration, and Scott Hartl, LNRA Assistant Manager.

Chairman Spenrath called the meeting to order.

Public Comments

There were no public comments.

Minutes

The minutes of the August 19, 2019 meeting were reviewed. Brzozowski moved to approve the minutes as presented. Shoemate seconded the motion. Motion passed.

Nominations for New Voting Members

Brzozowski informed the Group that nominations were needed for new members for Small Business and Municipalities in Lavaca County and Counties and Agriculture (2) in Jackson County.

Brzozowski nominated and moved to approve Jill Sklar, Jackson Judge to fill the position of Counties, Jackson County. Pustka seconded the motion. Motion passed.

Briefing and Update from Texas Water Development Board

McCoy introduced Jean Devlin as the new TWDB Project Manager.

The Group was briefed on the following:

- Agency Rulemaking Efforts
 - o House Bill 807
 - o Flood Financial Assistance

Minutes of Lavaca Regional Water Planning Group December 16, 2019 Page 2

- Flood Planning Rules and Regions
- 2020 State Water Implementation Fund (SWIFT) Abridge Application
- Agriculture Water Conservation Grants
- Socioeconomic Impact Analysis Dashboard and Presentation
- Initially Prepared Plan/ Final Plan Process
 - Handout Schematic and Notice Summary

Briefing from AECOM Consultant

Burke briefed the Group on the following:

- Project Status to Date
- Timeline
 - o Draft 2021 Plan due March 2020
 - Spring/Summer 2020
 Public hearing on Draft Plan, respond to comments, Water Infrastructure Financin survey, adopt Final 2021 Plan
 - o Final 2021 Plan due October 2020

Presentation and Discusson of Draft Water Management Strategy Evaluations

Burke presented the Group with the draft Water Management Strategy Evaluations which included:

- Drought Management
 - Municipal, Manufacturing and Irrigation
- El Campo Reuse
- Conservation for Manufacturing
- Multiple Advanced Water Conservation Strategies
 - Municipal and Irrigation
- Expand Use of Groundwater
- Lavaca Off-Channel Reservoir
- LNRA Desalination
- LNRA Aquifer Storage and Recovery
- Lake Texana Dredging

The Group was presented copies for their review and discussed each strategy.

Unique Stream Segments and Reservoirs

Burke outlined the terminology for a unique stream segment and reservoir. Information was available for the Group's review. Burke indicated that currently there are no ecologically unique stream segments in Region P. The proposed Palmetto Bend Stage II Reservoir had been designated as a unique reservoir site, but that designation expired in 2015. The Group will need to review/update policy recommendations from last cycle for the 2021 Plan. The Group was presented a copy of the 2016 LRWP Policy Recommendations.

Minutes of Lavaca Regional Water Planning Group December 16, 2019 Page 3

Future Meeting Dates

The Region P Group decided tentatively to meet on January 20, 2020 and February 10, 2020.

Public Comments

There were no public comments.

The meeting adjourned at 2:12 p.m.

Phillip Spenrain Chairman

Contents

11.1	Implementation				
11.2	Compa	Comparison to the Previous Regional Water Plan			
	11.2.1	Population Projections			
	11.2.2	Water Demand Projections			
	11.2.3	Drought of Record and Hydrologic Assumptions			
	11.2.4	Groundwater and Surface Water Availability and Water Supplies 11-3			
	11.2.5	Water Needs 11-5			
	11.2.6	Recommended Water Management Strategies			
	11.2.7	Alternative Water Management Strategies			
	11.2.8	Assessment of Progress Towards "Regionalization"			
_ist of Ta	ables				
Γable 11-	1 Popul	ation Change by County in Year 2070, from 2016 RWP to 2021 RWP			
Table 11-	2 Water RWP	Demand Change by Water Usage Category in Year 2070, from 2016 RWP to 2021			
Table 11-	3 Count	ies with Year 2070 Water Demand Increase, from 2016 RWP to 2021 RWP			
Table 11-	4 Count	ies with Year 2070 Water Demand Decrease, from 2016 RWP to 2021 RWP			
Table 11-	5 Regio	n P Source Availability Comparison from 2016 RWP to 2021 RWP			
Table 11-	6 Regio	n P Supply Comparison from 2016 RWP to 2021 RWP			

Chapter 11 - Implementation and Comparison to the Previous Regional Water Plan 11-1

List of Appendices

Appendix 11A – Implementation Survey Template for 2016 RWP Projects

Appendix 11B - Comparison Tables and Graphs for Population and Demand Projections

This page intentionally left blank.

Chapter 11 – Implementation and Comparison to the Previous Regional Water Plan

This chapter presents a discussion and survey of water management strategy projects that were recommended in the 2016 Regional Water Plan and have since been implemented or the sponsors have begun some phase of implementation, as well as providing a summary comparison of the 2021 Regional Water Plan to the 2016 Regional Water Plan with respect to population, demands, water availability and supplies, and water management strategies.

11.1 Implementation

In the 2016 Lavaca Regional Water Plan, the only identified water needs were for Irrigation in Wharton County. Water management strategies involving irrigation conservation were recommended to meet the needs. In addition, strategies for municipal water user groups such as drought management and conservation, and several strategies for LNRA were recommended, even though there were no needs shown in the plan.

During this planning cycle, the TWDB developed an implementation survey spreadsheet that the RWPGs were required to fill out as best able based on responses from water management strategy project sponsors as part of the planning process. Individual surveys were created and sent to the project sponsors. Based on the responses received, the TWDB implementation survey template was filled out and is included as *Appendix 11A*.

11.2 Comparison to the Previous Regional Water Plan

This section discusses how the 2021 Regional Water Plan compares to the 2016 Regional Water Plan, with respect to population, water demands, water supplies, and water management strategies.

11.2.1 Population Projections

Across all counties in Region P, and across all planning decades in each plan, there is no difference in population projection between the 2016 and 2021 Regional Water Plans. Additionally, there is no change in population growth rate by planning decade between the 2016 RWP and 2021 RWP. Tabular data and bar graphs comparing the two plans can be found in *Appendix 11B*.

These changes by county are summarized in Table 11-1.

Table 11-1 Population Change by County in Year 2070, from 2016 RWP to 2021 RWP

County	Population in Year 2070 (2016 RWP to 2021 RWP)	Population Growth Rate (2016 RWP)
Jackson	No Change	No Change
Lavaca	No Change	No Change
Wharton (partial)	No Change	No Change
Total (Region P)	No Change	No Change

11.2.2 Water Demand Projections

Overall for Region P, there is a decrease in water demand of approximately 22,634 acre-feet/year for Year 2070 between the 2016 RWP and the 2021 RWP. Additionally, the water demand rate of growth by planning decade is approximately 0.1% less than estimated in the 2016 RWP. Tabular data and bar graphs comparing the two plans can be found in *Appendix 11B*.

Water demands for each usage category have changed between the 2016 RWP and the 2021 RWP, as compared to the 2016 RWP. The following water usage categories have a higher water demand predicted by Year 2070 in the 2021 RWP: Municipal, Livestock, Manufacturing, and Steam-Electric Power Generation. Irrigation is predicted to have a lower water demand, while Mining is predicted to have no change in water demand, by Year 2070 in the 2021 RWP, as compared to the 2016 RWP.

Water demand growth rates for each usage category have also changed between the 2016 RWP and the 2021 RWP. The following water usage categories had a slower water demand growth rate in the 2021 RWP: Municipal and Manufacturing. The remaining water usage categories had no change in demand growth rate between plans: Livestock, Irrigation, Mining, and Steam-Electric Power Generation.

These changes are summarized in Table 11-2.

Table 11-2 Water Demand Change by Water Usage Category in Year 2070, from 2016 RWP to 2021 RWP

2021 ((1))				
Water Usage Category	Demand in Year 2070 (2016 RWP to 2021 RWP)	Demand Growth Rate (2016 RWP to 2021 RWP)		
Municipal	Increase	Decrease		
Livestock	Increase	No Change		
Irrigation	Decrease	No Change		
Manufacturing	Increase	Decrease		
Mining	No Change	No Change		
Steam-Electric Power Generation	Increase	No Change		
Total Water Demand	Decrease	Decrease		

Table 11-3 identifies counties that have a higher water demand by Year 2070 than was shown in the 2016 RWP. In addition, the usage categories that have the greatest growth are shown in *Table 11-3*.

Table 11-3 Counties with Year 2070 Water Demand Increase, from 2016 RWP to 2021 RWP

County	Total Water Demand Increase in Year 2070 (acre-feet/year)	Greatest Water Usage Increase	
Jackson	29,699	Irrigation, Manufacturing	
Lavaca	2,027	Livestock, Irrigation	

Table 11-4 identifies Counties that have a lower water demand by Year 2070 than was shown in the 2016 RWP. In addition, the usage category that has the greatest decrease is shown in *Table 11-4*.

Table 11-4 Counties with Year 2070 Water Demand Decrease, from 2016 RWP to 2021 RWP

County	Total Water Demand Decrease in Year 2060 (acre-feet/year)	Greatest Water Usage Decrease
Wharton	(59,171)	Irrigation

11.2.3 Drought of Record and Hydrologic Assumptions

There are no changes to the Drought of Record for the Lavaca Region since the 2016 RWP. There have been changes to the hydrologic assumptions for the surface water availability analysis since the 2016 RWP.

For the 2016 RWP, the unmodified TCEQ Lavaca WAM Run 3 Model was used for the surface water availability analysis. For the 2021 RWP, the model used to determine surface water availability volumes, including the firm yield of the Lake Texana Reservoir, is a modified version of the TCEQ Lavaca WAM Run 3 Model (version date 9/2/2014) known as the proposed Freese & Nichols Inc. Lavaca WAM Run 3 Model. The modified model was approved for use in evaluating existing water supply availabilities by the TWDB Executive Administrator on July 20, 2018. Projected sedimentation has been incorporated into the model runs for 2020-2070.

The modifications to the TCEQ Lavaca WAM Run 3 include the following:

- Several changes to the existing code used to model SB3 pulse flow requirements in the Lavaca WAM.
- 2. Addition of missing SB3 pulse flow code for the Navidad River at Strane Park near Edna.
- 3. Revisions to Lake Texana SV SA records
 - These records are also updated for 2020-2070 sedimentation for regional water planning analysis, as required by TWDB guidelines.
- 4. Addition of a synthetic primary control point to correct a naturalized flow calculation.
- 5. Revisions to modeling of Lake Texana interruptible diversions
 - 3 authorizations split out rather than lumped under one diversion
 - Include annual diversion limit (simplifies the coding)
 - Pattern change to allow more water to be diverted in the last three months of the year (if available)
- Revisions to Stage 2 of the Palmetto Bend Project location and SV SA records to model it as described in COA 16-2095.

11.2.4 Groundwater and Surface Water Availability and Water Supplies

Overall for Region P, the total water source availability, including surface and groundwater, is 263,191 acre-feet/year in the 2021 RWP. This represents a decrease in water source availability of approximately 7,800 acre-feet/year (approximately 3 percent) for all planning decades when comparing the 2016 RWP and the 2021 RWP. This loss occurs from the Gulf Coast aquifer availability in Lavaca and Wharton Counties of 1 and 22 percent, respectively. Jackson County has an 18 percent increase in Gulf Coast aquifer availability as compared to the 2016 RWP. There is no change in the surface water source availability in Lavaca County between the 2016 RWP and the 2021 RWP. *Table 11-5* shows a comparison of the source availability in Region P between the 2016 RWP and the 2021 RWP.

Table 11-5 Region P Source Availability Comparison from 2016 RWP to 2021 RWP

REGION P SOURCE AVAILABILITY						
Water Source		County	Basin	2016 RWP Plan 2070 Source Availability (AFY)	2021 RWP Plan 2070 Source Availability (AFY)	Change from 2016 RWP to 2021 Plan (AFY)
		Jackson	Colorado-Lavaca	23,615	28,025	4,410
	Gulf Coast		Lavaca	41,927	49,582	7,655
	Aquifer		Lavaca-Guadalupe	10,844	12,875	2,031
			County Total	76,386	90,482	14,096
ater		Lavaca	Guadalupe	41	41	-
Groundwater	Gulf Coast Aquifer		Lavaca	19,932	19,811	(121)
			Lavaca-Guadalupe	400	401	1
			County Total	20,373	20,253	(120)
	Gulf Coast Aquifer	Wharton	Colorado	441	873	432
			Colorado-Lavaca	11,549	14,091	2,542
			Lavaca	87,763	62,992	(24,771)
			County Total	99,753	77,956	(21,797)
Surface Water	Lake Texana/ Reservoir	Jackson	Lavaca	74,500	74,500	-
Region P Total Source Availability			271,012	263,191	(7,821)	

The current water supplies available to Region P total 196,766 acre-feet/year in the 2021 RWP. This represents an increase in existing water supply of approximately 12,435 acre-feet/year (approximately 7 percent) for all planning decades between the 2016 RWP and the 2021 RWP.

Distributed between water usage categories, all categories increased in water supply since the 2016 RWP except mining, which remained the same, and municipal, which decreased very slightly.

Table 11-6 Region P Supply Comparison from 2016 RWP to 2021 RWP

REGION P 2070 SUPPLIES BY WUG CATEGORY				
	2016 RWP (AFY)	2021 RWP (AFY)	Change from 2016 RWP to 2021 RWP (AFY)	
Irrigation	167,561	167,569	8	
Livestock	3,866	6,479	2,613	
Manufacturing	1,843	11,664	9,821	
Mining	2,636	2,636	-	
Municipal	8,425	8,418	(7)	
Total Region P Supplies	184,331	196,766	12,435	

11.2.5 Water Needs

Water needs in the 2021 RWP and 2016 RWP are limited to Irrigation WUGs in Wharton County. The 2070 water needs in Wharton County, and thus Region P, have decreased from 50,235 acrefeet/year in the 2016 RWP to 8,067 acre-feet/year in the 2021 RWP.

There were no needs for any other water use category or the region's wholesale water provider in both the 2016 RWP and the 2021 RWP.

11.2.6 Recommended Water Management Strategies

A variety of strategies were recommended in the 2016 RWP to meet Irrigation water needs in Wharton County. Additional strategies were recommended by the LRWPG in order to aid municipalities and wholesale water providers in having the projects included in the Regional Water Plan, and thus eligible for certain types of State funding, including SWIFT funding. A number of these strategies continue to be recommended in the 2021 RWP, with minor updates. These include:

- Drought Management (Municipal Water Users only)
- Irrigation Conservation On-farm Conservation
- Irrigation Conservation Tail water Recovery
- Municipal Conservation
- Reuse of Municipal Effluent (El Campo)
- Lavaca River Off-Channel Reservoir
- LNRA Desalination

The following strategy was recommended in the 2016 RWP, but has since been removed from the 2021 RWP due to implementation:

Local Wharton County Off-Channel Reservoir(s) – Lane City Reservoir.

The following strategy was newly recommended by the LRWPG in the 2021 RWP:

Conservation for Manufacturing

11.2.7 Alternative Water Management Strategies

One strategy was included in the 2016 RWP as an alternative strategy. It is not able to be included in the RWP as a recommended strategy because the water volume exceeds the Modeled Available Groundwater (MAG) volume shown as available for regional water planning. This strategy continues to be included in the 2021 RWP as an alternative strategy:

• Expand Use of the Gulf Coast Aguifer – Wharton County

The following strategies were newly included as alternative strategies by the LRWPG in the 2021 RWP:

- LNRA Aquifer Storage and Recovery
- Lake Texana Dredging

11.2.8 Assessment of Progress Towards "Regionalization"

HB 807 requires that the regional water plan shall "assess the progress of the RWPA in encouraging cooperation between water user groups for the purpose of achieving economies of scale and otherwise incentivizing strategies that benefit the entire region."

Due to the dependence of the Lavaca Region on groundwater supplies, regional-level supply infrastructure has not developed in the region, nor is it anticipated to develop or be needed in the foreseeable future. WUGs and individual agricultural irrigators predominantly are supplied by their own wells. Municipal WUGs are unlikely to display interest in regional water infrastructure development as they have access to adequate supplies and for a majority of municipal WUGs, limited or no growth is projected. At the same time, irrigated agriculture cannot financially support development of large-scale water infrastructure.

APPENDIX 11A

Implementation Survey Template for 2016 RWP Projects

2016 RWP/2017 SWP Implementation Survey

Planning Region	WMS or WMS Project Name	Database Online Decade	Related Sponsor Entity and/or Benefitting WUGS	Implementation Survey Record Type	Database ID	Has Sponsor taken affirmative vote or actions?* (TWC 16.053(h)(10))	If yes, in what year did this occur?	If yes, by what date is the action on schedule for implementatio n?	At what level of implementation is the project currently?*	If not implemented, why?* (When "If other, please describe" is selected, please add the descriptive text to that field)	What impediments presented to implementation?* (When "If other, please describe" is selected, please add the descriptive text to that field)	Current water supply project yield (ac-ft/yr)		Project Cost (\$	Year the project is online?*	Is this a phased project?*
p	A OUR FED CTODA OF AND DECOVERY	2020	PROJECT SPONSOR(S): LAVACA NAVIDAD		4555			21/0		If other, please describe. No WTP with available capacity; Need further investigation to evaluate opportunity to	If other, please describe:					
P	AQUIFER STORAGE AND RECOVERY	2020	RIVER AUTHORITY	RECOMMENDED WMS PROJECT RECOMMENDED DEMAND REDUCTION STRATEGY	1667	<u> </u>		N/A	Feasibility study ongoing	store treated water	Lack of infrastructure	unknown				
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: EDNA	WITHOUT WMS PROJECT RECOMMENDED DEMAND REDUCTION STRATEGY	2993	3										
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: EL CAMPO	WITHOUT WMS PROJECT	2997	7										
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: EL CAMPO	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	10951	L										
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: GANADO	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	2999	9										
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: HALLETTSVILLE	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3001	L Yes	2019	2019	All phases fully implemented	-			<u>-</u> _			
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: MOULTON	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3003	3										
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: SHINER	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3005	Yes	2013	DCP Completed	Sponsor has taken	-	-	-	-	-		
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: YOAKUM	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3007	7 Yes	Ordinance #2066 5/21/14	-	official action to initiate project	-	Not applicable	-	-	-	2015	No
P	IRRIGATION CONSERVATION - ON FARM	2020	PROJECT SPONSOR(S): IRRIGATION (WHARTON)	RECOMMENDED WMS PROJECT	1273	3										
P	IRRIGATION CONSERVATION - TAILWATER RECOVERY	2020	PROJECT SPONSOR(S): IRRIGATION (WHARTON)	RECOMMENDED WMS PROJECT	1274	1										
			PROJECT SPONSOR(S): LAVACA NAVIDAD						Permit application		If other, please describe: Permit approval, land acquistion for diversion					
Р	LAVACA OFF-CHANNEL RESERVOIR	2020	RIVER AUTHORITY	RECOMMENDED WMS PROJECT	1162	Yes Yes	2020	6-Feb-20	submitted/pending		location, funding	30,000 AFY	\$ 1,000,000.00			Yes
P	LNRA DESALINATION	2020	PROJECT SPONSOR(S): LAVACA NAVIDAD RIVER AUTHORITY	RECOMMENDED WMS PROJECT	1276	5		N/A	Feasibility study ongoing	If other, please describe: Other less expensive sources available for development	Permitting process	28,000 AFY				
Р	MUNICIPAL CONSERVATION - EL CAMPO	2020	PROJECT SPONSOR(S): EL CAMPO	RECOMMENDED WMS PROJECT	1161	L										
Р	MUNICIPAL CONSERVATION - HALLETTSVILLE	2020	PROJECT SPONSOR(S): HALLETTSVILLE	RECOMMENDED WMS PROJECT	1264	1										
Р	MUNICIPAL CONSERVATION - MOULTON	2020	PROJECT SPONSOR(S): MOULTON	RECOMMENDED WMS PROJECT	1267	7										
P	MUNICIPAL CONSERVATION - SHINER	2020	PROJECT SPONSOR(S): SHINER	RECOMMENDED WMS PROJECT	1269)	-	-	Sponsor has taken	-	-	-	-	-		
Р	MUNICIPAL CONSERVATION - YOAKUM	2020	PROJECT SPONSOR(S): YOAKUM	RECOMMENDED WMS PROJECT	1270) Yes	5/21/2014	-	official action to initiate project	-	Not applicable	-	-	-	2014	No
Р	MUNICIPAL WATER CONSERVATION (RURAL)	2020	WUG REDUCING DEMAND: YOAKUM	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	14797	7										
Р	REUSE	2020	PROJECT SPONSOR(S): EL CAMPO	RECOMMENDED WMS PROJECT	1277	,										1

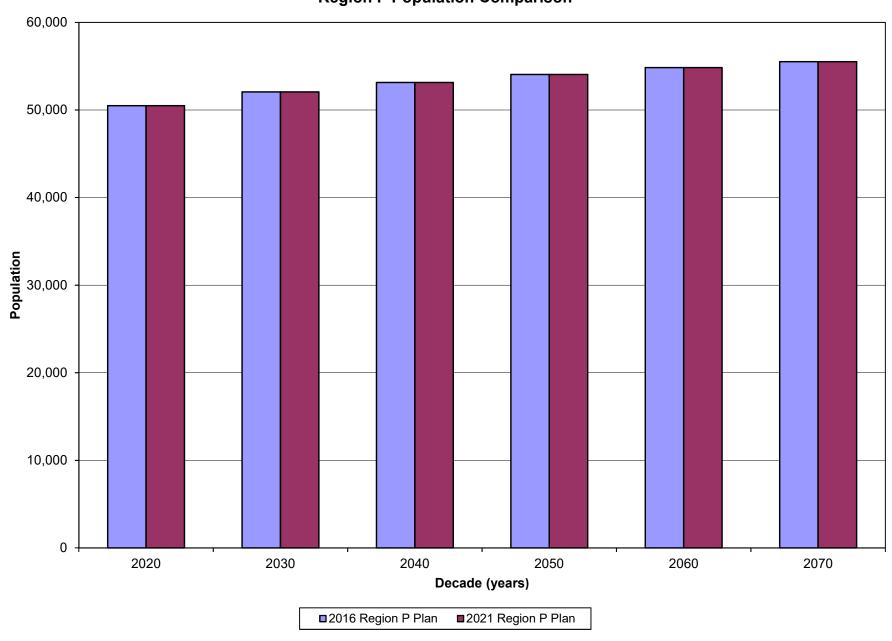
1 of 2 March 2020

2016 RWP/2017 SWP Implementation Survey

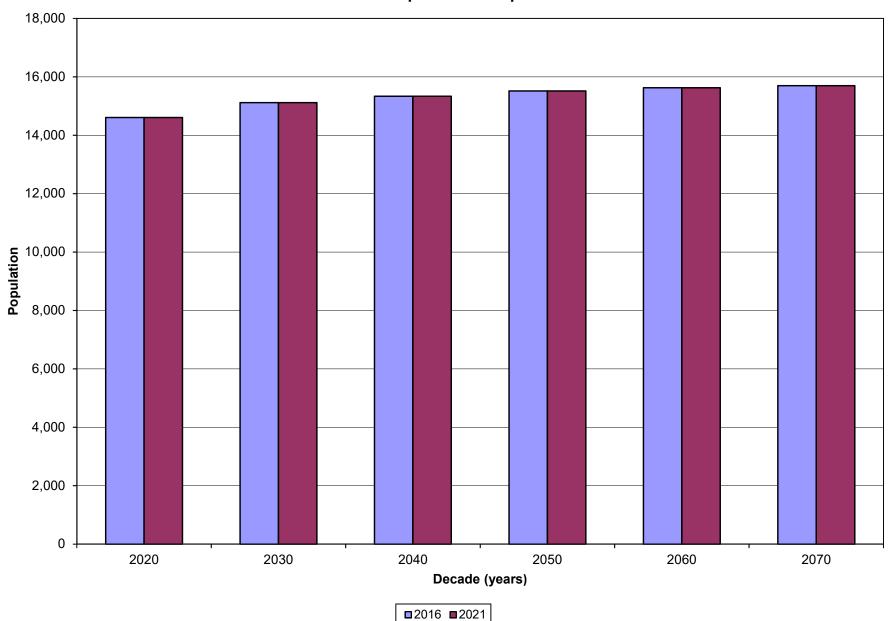
Planning Region	WMS or WMS Project Name	Database Online Decade	Related Sponsor Entity and/or Benefitting WUGs	Implementation Survey Record Type	Database ID	(Phased) Ultimate volume (ac-ft/yr)	(Phased) Ultimate project cost (\$)	Year project reaches maximum capacity?*	What is the project funding source(s)?*	Funding Mechanism if Other?	Included in 2021 plan?*	Does the project or WMS involve reallocation of flood control?*	Does the project or WMS provide any measurable flood risk reduction?*	Optional Comments
P	AQUIFER STORAGE AND RECOVERY	2020	PROJECT SPONSOR(S): LAVACA NAVIDAD RIVER AUTHORITY	RECOMMENDED WMS PROJECT	1667	unknown				unknown	Yes	No	No	
Р	DROUGHT MANAGEMENT	2020	WILL BEDLICING DEMAND: EDNA	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	2993						Voc			
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: EDNA WUG REDUCING DEMAND: EL CAMPO	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	2997						Yes Yes			
Р	DROUGHT MANAGEMENT	2020	MULC REDUCING DEMAND, EL CAMPO	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	10951						Vee			
		2020	WUG REDUCING DEMAND: EL CAMPO	RECOMMENDED DEMAND REDUCTION STRATEGY							Yes			
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: GANADO	WITHOUT WMS PROJECT RECOMMENDED DEMAND REDUCTION STRATEGY	2999						Yes			
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: HALLETTSVILLE	WITHOUT WMS PROJECT RECOMMENDED DEMAND REDUCTION STRATEGY	3001	-	-			-	Yes	No	No	
Р	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: MOULTON	WITHOUT WMS PROJECT	3003						Yes			
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: SHINER	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3005	-	-			-	Yes	No	No	Have not had to implement any water restrictions to date.
P	DROUGHT MANAGEMENT	2020	WUG REDUCING DEMAND: YOAKUM	RECOMMENDED DEMAND REDUCTION STRATEGY WITHOUT WMS PROJECT	3007	-	-	2070	Other	Current Budget	Yes	No	No	-
Р	IRRIGATION CONSERVATION - ON FARM	2020	PROJECT SPONSOR(S): IRRIGATION (WHARTON)	RECOMMENDED WMS PROJECT	1273						Yes			
P	IRRIGATION CONSERVATION - TAILWATER RECOVERY	2020	PROJECT SPONSOR(S): IRRIGATION (WHARTON)	RECOMMENDED WMS PROJECT	1274						Yes			
			PROJECT SPONSOR(S): LAVACA NAVIDAD											
Р	LAVACA OFF-CHANNEL RESERVOIR	2020	RIVER AUTHORITY	RECOMMENDED WMS PROJECT	1162	30,000 AFY	290,000,000				Yes	No	No	
			PROJECT SPONSOR(S): LAVACA NAVIDAD											
Р	LNRA DESALINATION	2020	RIVER AUTHORITY	RECOMMENDED WMS PROJECT	1276					unknown	Yes	No	No	
Р	MUNICIPAL CONSERVATION - EL CAMPO MUNICIPAL CONSERVATION -	2020	PROJECT SPONSOR(S): EL CAMPO	RECOMMENDED WMS PROJECT	1161						Yes			
P	HALLETTSVILLE	2020	PROJECT SPONSOR(S): HALLETTSVILLE	RECOMMENDED WMS PROJECT	1264						Yes			
Р	MUNICIPAL CONSERVATION - MOULTON	2020	PROJECT SPONSOR(S): MOULTON	RECOMMENDED WMS PROJECT	1267						Yes			
P	MUNICIPAL CONSERVATION - SHINER	2020	PROJECT SPONSOR(S): SHINER	RECOMMENDED WMS PROJECT	1269	-	-			-	Yes	No	No	Going to begin problematic water line replacement in 2020.
Р	MUNICIPAL CONSERVATION - YOAKUM MUNICIPAL WATER CONSERVATION	2020	PROJECT SPONSOR(S): YOAKUM	RECOMMENDED WMS PROJECT RECOMMENDED DEMAND REDUCTION STRATEGY	1270	-	-	2070	Other	Current Budget	Yes	No	No	-
Р	(RURAL)	2020	WUG REDUCING DEMAND: YOAKUM	WITHOUT WMS PROJECT	14797						No			
P	REUSE	2020	PROJECT SPONSOR(S): EL CAMPO	RECOMMENDED WMS PROJECT	1277						Yes			

2 of 2 March 2020

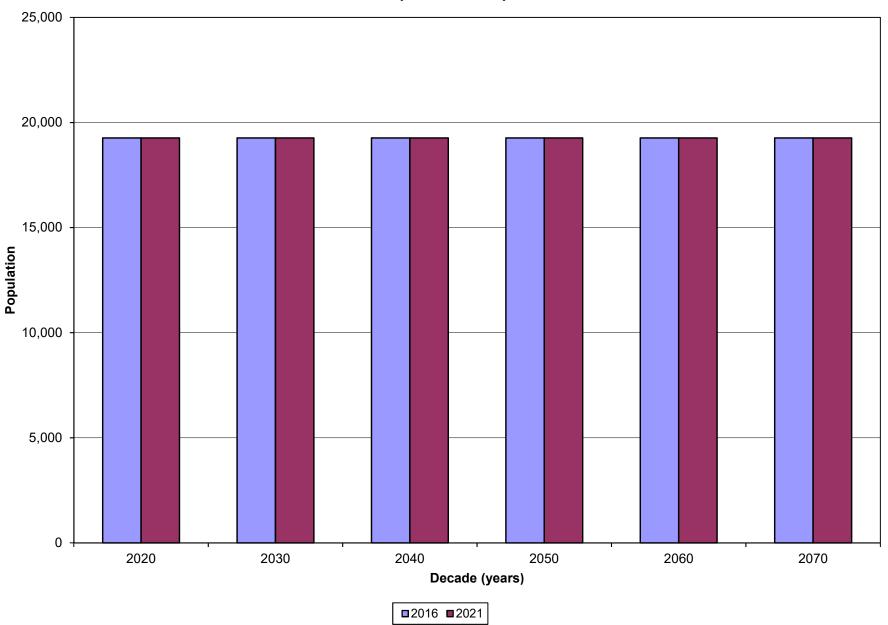
APPENDIX 11B

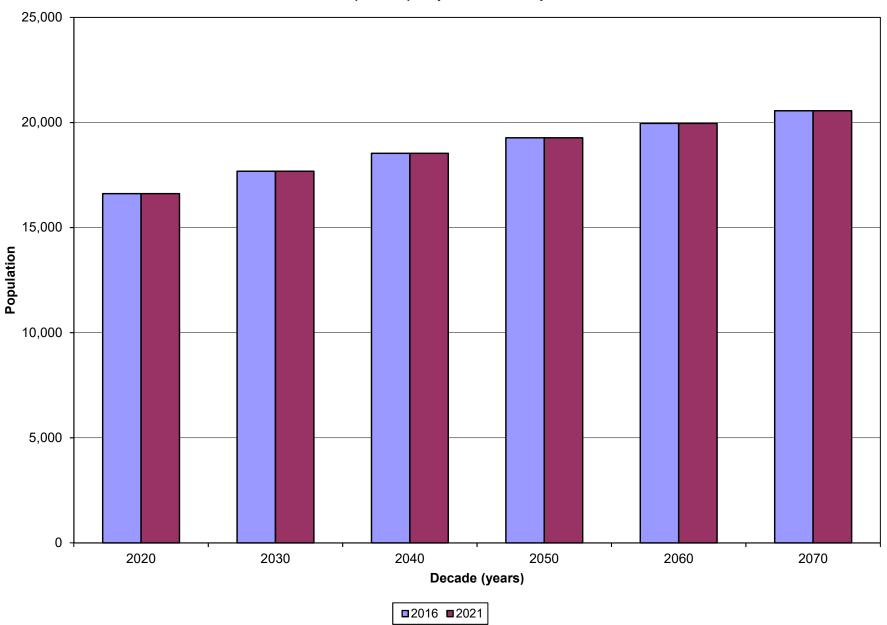

Comparison Tables and Graphs for Population and Demand Projections

Comparison Between 2016 RWP and 2021 RWP


Region P Population

RWP	2020	2030	2040	2050	2060	2070
			Region P			•
2021	50,489	52,068	53,137	54,053	54,846	55,522
2016	50,489	52,068	53,137	54,053	54,846	55,522
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0
			Jackson			
2021	14,606	15,119	15,336	15,515	15,627	15,699
2016	14,606	15,119	15,336	15,515	15,627	15,699
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0
			Lavaca			
2021	19,263	19,263	19,263	19,263	19,263	19,263
2016	19,263	19,263	19,263	19,263	19,263	19,263
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0
			Wharton			
2021	16,620	17,686	18,538	19,275	19,956	20,560
2016	16,620	17,686	18,538	19,275	19,956	20,560
Difference	0	0	0	0	0	0
% Change	0.0	0.0	0.0	0.0	0.0	0.0

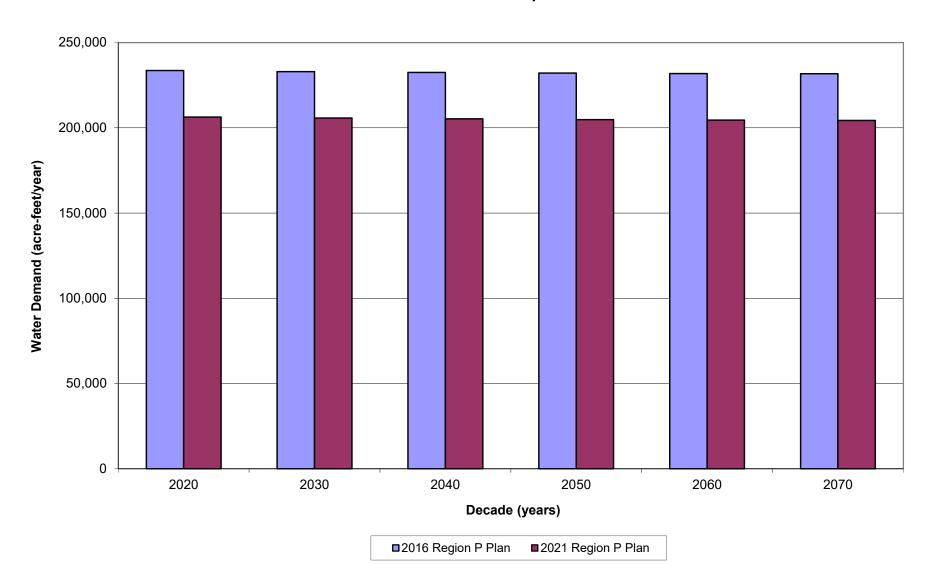

Region P Population Comparison


Jackson Population Comparison

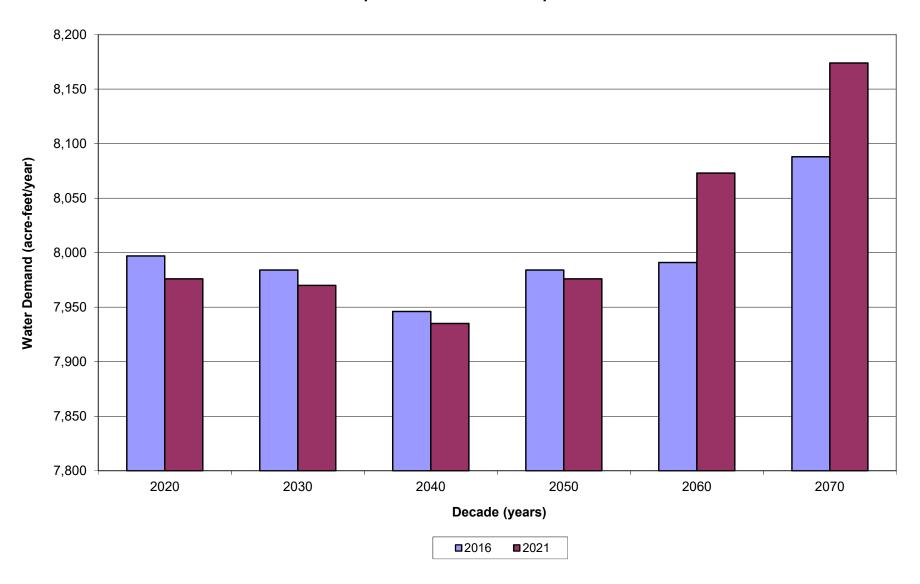
Lavaca Population Comparison

Wharton (Partial) Population Comparison

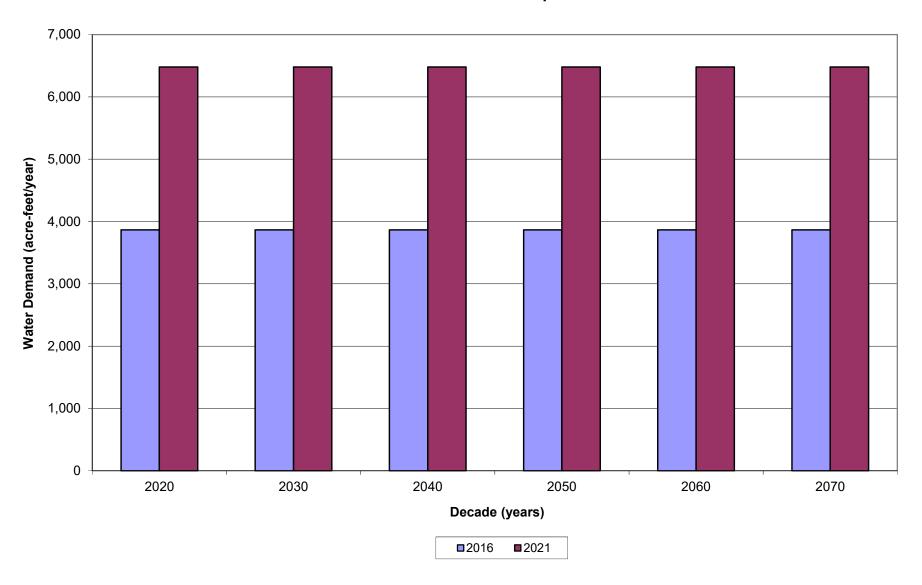
Water Demands* (in acre-feet per year) by WUG Category

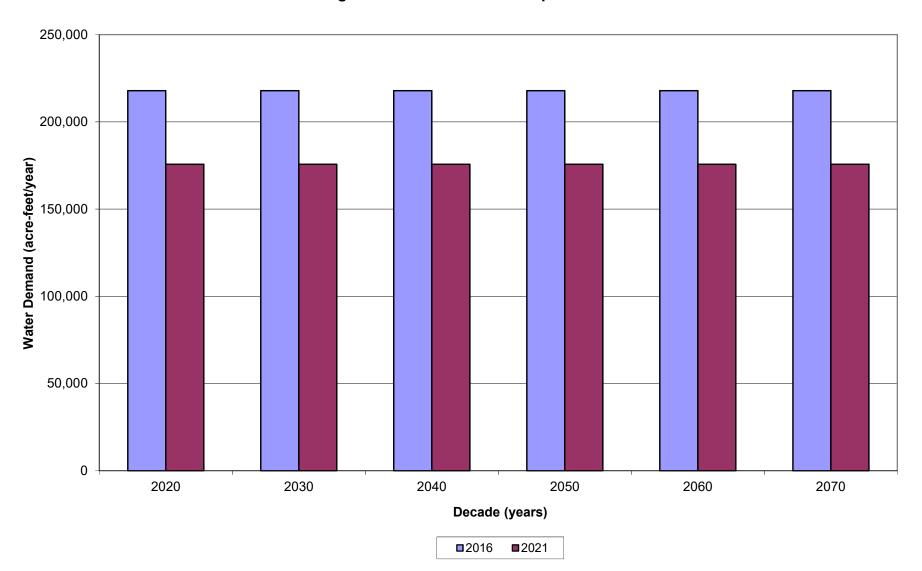

Region P

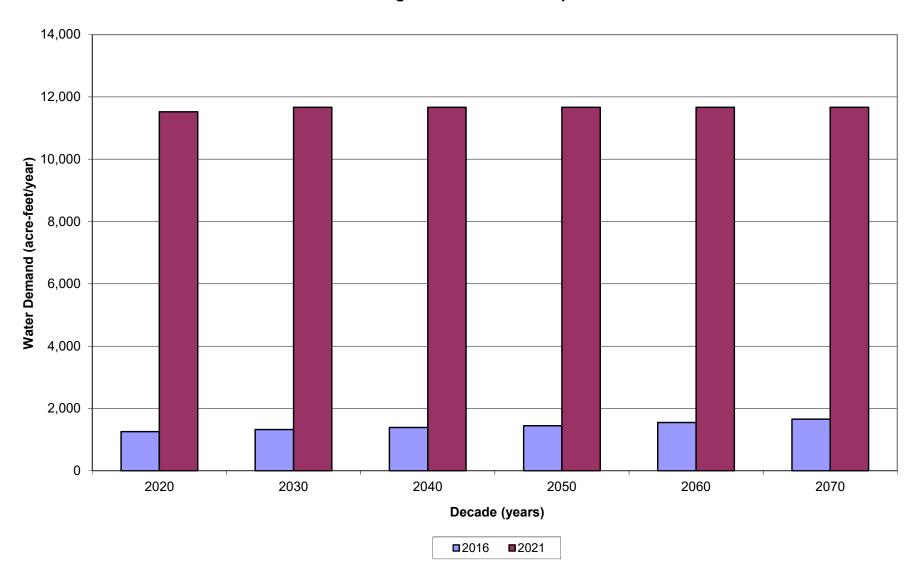
RWP	2020	2030	2040	2050	2060	2070					
Municipal											
2021	7,976	7,970	7,935	7,976	8,073	8,174					
2016	7,997	7,984	7,946	7,984	7,991	8,088					
Difference	-21	-14	-11	-8	82	86					
% Change	-0.3	-0.2	-0.1	-0.1	1.0	1.1					
			Livestock								
2021	6,479	6,479	6,479	6,479	6,479	6,479					
2016	3,866	3,866	3,866	3,866	3,866	3,866					
Difference	2,613	2,613	2,613	2,613	2,613	2,613					
% Change	67.6	67.6	67.6	67.6	67.6	67.6					
			Irrigation								
2021	175,636	175,636	175,636	175,636	175,636	175,636					
2016	217,846	217,846	217,846	217,846	217,846	217,846					
Difference	-42,210	-42,210	-42,210	-42,210	-42,210	-42,210					
% Change	-19.4	-19.4	-19.4	-19.4	-19.4	-19.4					
			Manufacturi	ing							
2021	11,521	11,664	11,664	11,664	11,664	11,664					
2016	1,255	1,323	1,388	1,444	1,547	1,658					
Difference	10,266	10,341	10,276	10,220	10,117	10,006					
% Change	818.0	781.6	740.3	707.8	654.0	603.5					
			Mining								
2021	2,632	1,952	1,485	1,027	570	320					
2016	2,632	1,952	1,485	1,027	570	320					
Difference	0	0	0	0	0	0					
% Change	0.0	0.0	0.0	0.0	0.0	0.0					
			Electric Power								
2021	2,060	2,060	2,060	2,060	2,060	2,060					
2016	0	0	0	0	0	0					
Difference	2,060	2,060	2,060	2,060	2,060	2,060					
% Change	NA	NA	NA	NA	NA	NA					

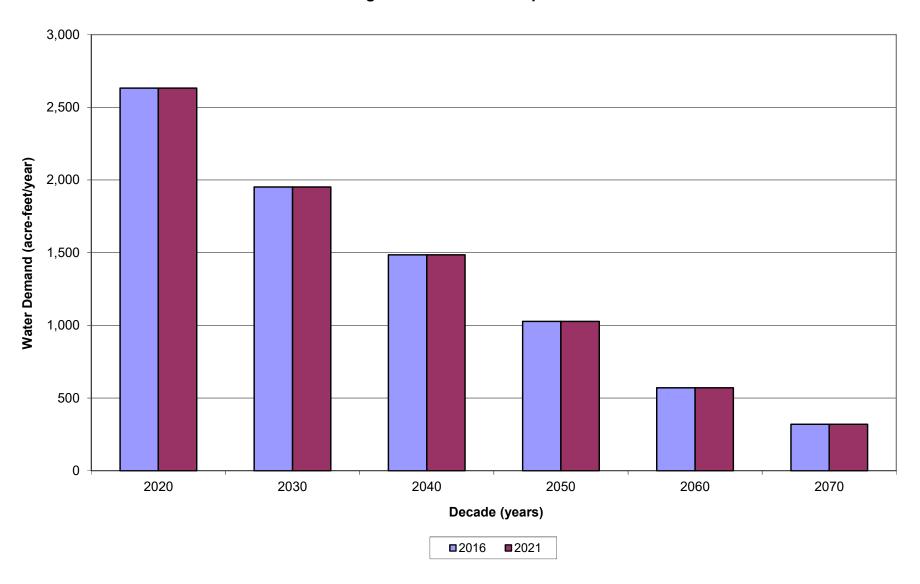

^{*}All values are presented in acre-feet per year

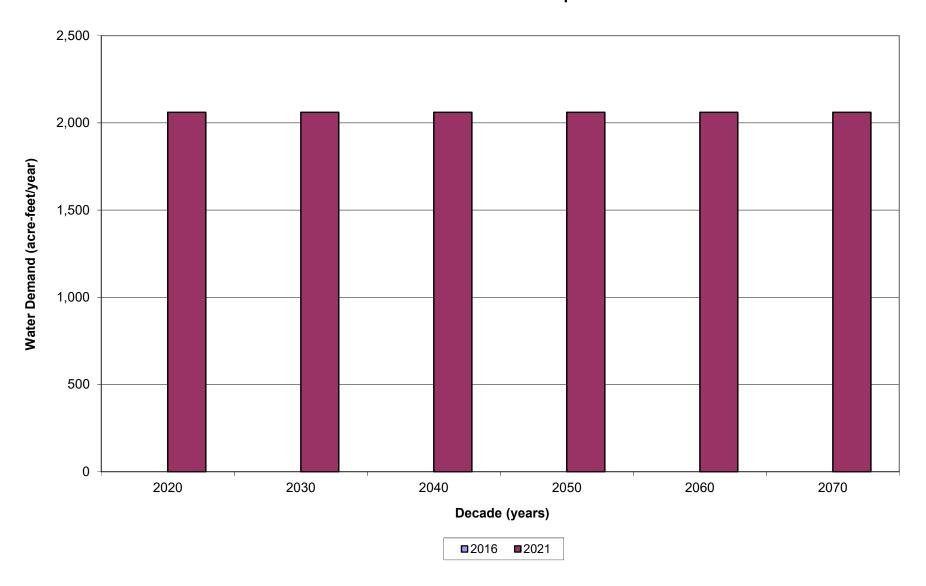
Total Water Demand										
2021	206,304	205,761	205,259	204,842	204,482	204,333				
2016	233,596	232,971	232,531	232,167	231,820	231,778				
Difference	-27,292	-27,210	-27,272	-27,325	-27,338	-27,445				
% Change	-11.7	-11.7	-11.7	-11.8	-11.8	-11.8				

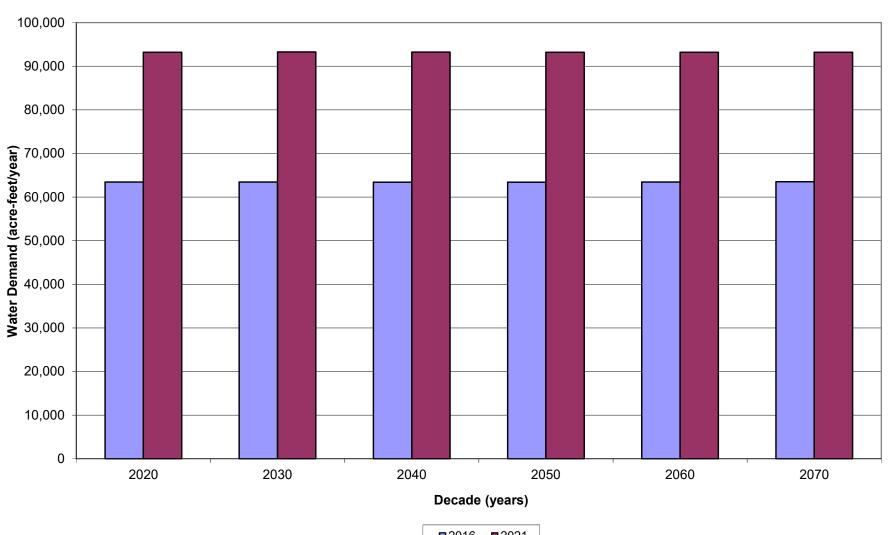

Region P
Total Water Demand Comparison


Region P Municipal Water Demand Comparison

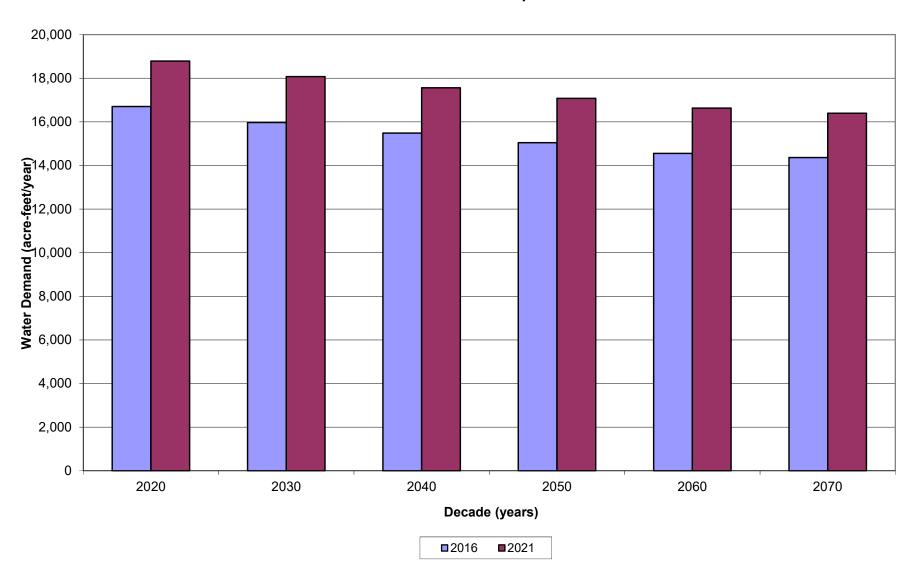

Region P Livestock Water Demand Comparison


Region P
Irrigation Water Demand Comparison


Region P
Manufacturing Water Demand Comparison


Region P Mining Water Demand Comparison

Region P Steam-Electric Water Demand Comparison



Jackson County Total Water Demand Comparison

■2016 **■**2021

Lavaca County Total Water Demand Comparison

Wharton County (Partial) Total Water Demand Comparison

